Difference between revisions of "Aufgaben:Exercise 5.6: Error Correlation Duration"
(13 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Digital_Signal_Transmission/Burst_Error_Channels}} |
− | [[File:P_ID1842__Dig_A_5_6.png|right|frame| | + | [[File:P_ID1842__Dig_A_5_6.png|right|frame|Error correlation function of the GE model]] |
− | + | The graph shows the ''error correlation function'' (ECF) of the ''Gilbert–Elliott model'' with the parameters | |
:$$p_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.001, | :$$p_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.001, | ||
\hspace{0.2cm}p_{\rm B} = 0.1,\hspace{0.2cm} | \hspace{0.2cm}p_{\rm B} = 0.1,\hspace{0.2cm} | ||
Line 11: | Line 11: | ||
B\hspace{0.05cm}|\hspace{0.05cm} G) = 0.01\hspace{0.05cm}$$ | B\hspace{0.05cm}|\hspace{0.05cm} G) = 0.01\hspace{0.05cm}$$ | ||
− | in | + | in logarithmic representation. |
− | + | This model is discussed in detail in [[Aufgaben:Exercise_5.6Z:_Gilbert-Elliott_Model|"Exercise 5.6Z"]]. In particular, the error correlation function (ECF) is also calculated in this exercise. With the auxiliary quantities | |
:$$A \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (p_{\rm B}- p_{\rm M}) | :$$A \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (p_{\rm B}- p_{\rm M}) | ||
\cdot (p_{\rm M}- p_{\rm | \cdot (p_{\rm M}- p_{\rm | ||
Line 21: | Line 21: | ||
G\hspace{0.05cm}|\hspace{0.05cm} B)$$ | G\hspace{0.05cm}|\hspace{0.05cm} B)$$ | ||
− | + | it can be written for: | |
:$$\varphi_{e}(k) = | :$$\varphi_{e}(k) = | ||
\left\{ \begin{array}{c} p_{\rm M} \\ | \left\{ \begin{array}{c} p_{\rm M} \\ | ||
p_{\rm M}^2 + A \cdot (1-B)^k \end{array} \right.\quad | p_{\rm M}^2 + A \cdot (1-B)^k \end{array} \right.\quad | ||
− | \begin{array}{*{1}c} f{\rm | + | \begin{array}{*{1}c} f{\rm or }\hspace{0.15cm}k = 0 \hspace{0.05cm}, |
− | \\ f{\rm | + | \\ f{\rm or }\hspace{0.15cm} k > 0 \hspace{0.05cm}.\\ \end{array}$$ |
− | + | This is a burst error channel. To quantitatively describe the statistical bonds, one often uses the correlation term according to the following definition: | |
:$$D_{\rm K} = \frac{1}{\varphi_{e0} - p_{\rm M}^2} \cdot \sum_{k = 1 | :$$D_{\rm K} = \frac{1}{\varphi_{e0} - p_{\rm M}^2} \cdot \sum_{k = 1 | ||
− | }^{\infty}\hspace{0.1cm} [\varphi_{e}(k) - p_{\rm | + | }^{\infty}\hspace{0.1cm}\big [\varphi_{e}(k) - p_{\rm |
− | M}^2]\hspace{0.05cm}.$$ | + | M}^2 \big]\hspace{0.05cm}.$$ |
+ | |||
+ | The reference value $\varphi_{e0}$ is obtained by <i>extrapolation</i> of the error correlation function to the point $k = 0$. If, as here, the ECF curve is given analytically, $\varphi_{e0}$ can also be calculated by inserting the value $k = 0$ into the equation which is actually only valid for $k > 0$. | ||
+ | |||
+ | |||
+ | |||
− | |||
− | '' | + | ''Notes:'' |
− | * | + | * The exercise belongs to the chapter [[Digital_Signal_Transmission/Burst_Error_Channels| "Burst Error Channels"]]. |
− | * | + | *Reference is made in particular to the section [[Digital_Signal_Transmission/Burst_Error_Channels#Error_correlation_function_of_the_Gilbert-Elliott_model|"Error correlation function of the Gilbert-Elliott model"]]. |
− | + | ||
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Which ECF value is exactly valid for $k = 0$? |
|type="{}"} | |type="{}"} | ||
$\varphi_e(k = 0) \ = \ ${ 1 3% } $\ \cdot 10^{-2}$ | $\varphi_e(k = 0) \ = \ ${ 1 3% } $\ \cdot 10^{-2}$ | ||
− | { | + | {What is the value extrapolated from the given ECF for $k = 0$? |
|type="{}"} | |type="{}"} | ||
$\varphi_{e0} \ = \ ${ 0.091 3% } $\ \cdot 10^{-2}$ | $\varphi_{e0} \ = \ ${ 0.091 3% } $\ \cdot 10^{-2}$ | ||
− | { | + | {What result is obtained for the error correlation duration $D_{\rm K}$ with the quantities $A$ and $B$ defined in front? |
− | |type=" | + | |type="()"} |
- $D_{\rm K} = A \cdot B$, | - $D_{\rm K} = A \cdot B$, | ||
- $D_{\rm K} = 1/A \, - B$, | - $D_{\rm K} = 1/A \, - B$, | ||
+ $D_{\rm K} = 1/B \, -1$. | + $D_{\rm K} = 1/B \, -1$. | ||
− | { | + | {What is the correlation duration for the GE model at hand? |
|type="{}"} | |type="{}"} | ||
$D_{\rm K} \ = \ ${ 8.091 3% } | $D_{\rm K} \ = \ ${ 8.091 3% } | ||
− | { | + | {Which statements are valid regarding the correlation duration $D_{\rm K}$ of the GE model? Note the logarithmic ordinate for your answer. |
|type="[]"} | |type="[]"} | ||
− | + $D_{\rm K}$ | + | + $D_{\rm K}$ remains the same if ${\rm Pr}({\rm B\hspace{0.05cm}|\hspace{0.05cm}G})$ and ${\rm Pr(G\hspace{0.05cm}|\hspace{0.05cm}B)}$ are interchanged. |
− | - $D_{\rm K}$ | + | - $D_{\rm K}$ depends only on the sum ${\rm Pr(G\hspace{0.05cm}|\hspace{0.05cm}B) + Pr(B\hspace{0.05cm}|\hspace{0.05cm}G)}$. |
− | - | + | - The red area in the graph is equal to the blue rectangular area. |
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' The ECF value $\varphi_e(k = 0)$ always indicates the mean error probability $p_{\rm M}$, while the ECF limit for $k → ∞$ is equal to $p_{\rm M}^2$. |
+ | *From the graph on the information section, one can read $p_{\rm M} \ \underline {= 0.01}$. | ||
+ | *In [[Aufgaben:Exercise_5.6Z:_Gilbert-Elliott_Model|"Exercise 5.6Z"]], this value is calculated in a different way. | ||
− | '''(2)''' | + | |
+ | '''(2)''' If we insert the parameter $k = 0$ into the lower ECF equation, which is actually only valid for $k > 0$, we obtain the extrapolation value we are looking for. | ||
:$$\varphi_{e0} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} p_{\rm M}^2 + | :$$\varphi_{e0} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} p_{\rm M}^2 + | ||
(p_{\rm B}- p_{\rm M}) \cdot (p_{\rm M}- p_{\rm | (p_{\rm B}- p_{\rm M}) \cdot (p_{\rm M}- p_{\rm | ||
Line 83: | Line 90: | ||
\hspace{0.15cm}\underline {\approx 0.091 \cdot 10^{-2}}\hspace{0.05cm}.$$ | \hspace{0.15cm}\underline {\approx 0.091 \cdot 10^{-2}}\hspace{0.05cm}.$$ | ||
− | '''(3)''' | + | |
+ | '''(3)''' According to the general definition equation, the following holds for the error correlation period | ||
:$$D_{\rm K} = \frac{1}{\varphi_{e0} - p_{\rm M}^2} \cdot \sum_{k = 1 | :$$D_{\rm K} = \frac{1}{\varphi_{e0} - p_{\rm M}^2} \cdot \sum_{k = 1 | ||
}^{\infty}\hspace{0.1cm} [\varphi_{e}(k) - p_{\rm | }^{\infty}\hspace{0.1cm} [\varphi_{e}(k) - p_{\rm | ||
M}^2]\hspace{0.05cm}.$$ | M}^2]\hspace{0.05cm}.$$ | ||
− | + | *With the expressions | |
:$$A \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (p_{\rm B}- p_{\rm M}) | :$$A \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (p_{\rm B}- p_{\rm M}) | ||
\cdot (p_{\rm M}- p_{\rm | \cdot (p_{\rm M}- p_{\rm | ||
Line 96: | Line 104: | ||
G\hspace{0.05cm}|\hspace{0.05cm} B)$$ | G\hspace{0.05cm}|\hspace{0.05cm} B)$$ | ||
− | + | :this equation can be written as follows: | |
:$$D_{\rm K} = {1}/{A} \cdot \sum_{k = 1 }^{\infty}\hspace{0.1cm} | :$$D_{\rm K} = {1}/{A} \cdot \sum_{k = 1 }^{\infty}\hspace{0.1cm} | ||
A \cdot (1 - B)^k = \sum_{k = 1 }^{\infty}\hspace{0.1cm} (1 - | A \cdot (1 - B)^k = \sum_{k = 1 }^{\infty}\hspace{0.1cm} (1 - | ||
B)^k\hspace{0.05cm}.$$ | B)^k\hspace{0.05cm}.$$ | ||
− | + | *Using the summation formula of a geometric series, this gives the final result: | |
:$$D_{\rm K} = {1}/{B} - 1 = \frac{1}{{\rm Pr}(\rm | :$$D_{\rm K} = {1}/{B} - 1 = \frac{1}{{\rm Pr}(\rm | ||
B\hspace{0.05cm}|\hspace{0.05cm} G) + {\rm Pr}(\rm | B\hspace{0.05cm}|\hspace{0.05cm} G) + {\rm Pr}(\rm | ||
G\hspace{0.05cm}|\hspace{0.05cm} B)} - 1\hspace{0.05cm}.$$ | G\hspace{0.05cm}|\hspace{0.05cm} B)} - 1\hspace{0.05cm}.$$ | ||
− | + | *So <u>solution 3</u> is correct. | |
− | '''(4)''' | + | |
+ | '''(4)''' With ${\rm Pr(B|G)} = 0.01$ and ${\rm Pr(G|B)} = 0.1$ we get | ||
:$$D_{\rm K} = \frac{1}{0.01 + 0.1} - 1 \hspace{0.15cm}\underline {\approx 8.091}\hspace{0.05cm}.$$ | :$$D_{\rm K} = \frac{1}{0.01 + 0.1} - 1 \hspace{0.15cm}\underline {\approx 8.091}\hspace{0.05cm}.$$ | ||
− | '''(5)''' | + | |
− | * | + | '''(5)''' Only <u>solution 1</u> is correct, as shown in the sample solutions to the last subtasks: |
− | * | + | *Thus the correlation term is fixed, for example: |
− | * | + | *With ${\rm Pr(B\hspace{0.05cm}|\hspace{0.05cm}G)} = 0.1$ and $\rm Pr(G\hspace{0.05cm}|\hspace{0.05cm}B) = 0.01$ we get the same $D_{\rm K} = 8.091$ as with $\rm Pr(B\hspace{0.05cm}|\hspace{0.05cm}G) = 0.01$ and $\rm Pr(G\hspace{0.05cm}|\hspace{0.05cm}B) = 0.1$. |
− | * | + | *But now the mean error probability $p_{\rm M} \approx 9.1\%$ instead of $1\%$, respectively for $p_{\rm G} = 0.001$ and $p_{\rm B} = 0.1$. |
+ | *The last statement is also false. This statement would only be true if $\varphi_e(k)$ was plotted linearly and not logarithmically as here. | ||
{{ML-Fuß}} | {{ML-Fuß}} | ||
− | [[Category: | + | [[Category:Digital Signal Transmission: Exercises|^5.3 Burst Error Channels^]] |
Latest revision as of 13:22, 19 October 2022
The graph shows the error correlation function (ECF) of the Gilbert–Elliott model with the parameters
- $$p_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.001, \hspace{0.2cm}p_{\rm B} = 0.1,\hspace{0.2cm} {\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.1, \hspace{0.2cm} {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G) = 0.01\hspace{0.05cm}$$
in logarithmic representation.
This model is discussed in detail in "Exercise 5.6Z". In particular, the error correlation function (ECF) is also calculated in this exercise. With the auxiliary quantities
- $$A \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (p_{\rm B}- p_{\rm M}) \cdot (p_{\rm M}- p_{\rm G})\hspace{0.05cm},$$
- $$B\hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G) + {\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)$$
it can be written for:
- $$\varphi_{e}(k) = \left\{ \begin{array}{c} p_{\rm M} \\ p_{\rm M}^2 + A \cdot (1-B)^k \end{array} \right.\quad \begin{array}{*{1}c} f{\rm or }\hspace{0.15cm}k = 0 \hspace{0.05cm}, \\ f{\rm or }\hspace{0.15cm} k > 0 \hspace{0.05cm}.\\ \end{array}$$
This is a burst error channel. To quantitatively describe the statistical bonds, one often uses the correlation term according to the following definition:
- $$D_{\rm K} = \frac{1}{\varphi_{e0} - p_{\rm M}^2} \cdot \sum_{k = 1 }^{\infty}\hspace{0.1cm}\big [\varphi_{e}(k) - p_{\rm M}^2 \big]\hspace{0.05cm}.$$
The reference value $\varphi_{e0}$ is obtained by extrapolation of the error correlation function to the point $k = 0$. If, as here, the ECF curve is given analytically, $\varphi_{e0}$ can also be calculated by inserting the value $k = 0$ into the equation which is actually only valid for $k > 0$.
Notes:
- The exercise belongs to the chapter "Burst Error Channels".
- Reference is made in particular to the section "Error correlation function of the Gilbert-Elliott model".
Questions
Solution
- From the graph on the information section, one can read $p_{\rm M} \ \underline {= 0.01}$.
- In "Exercise 5.6Z", this value is calculated in a different way.
(2) If we insert the parameter $k = 0$ into the lower ECF equation, which is actually only valid for $k > 0$, we obtain the extrapolation value we are looking for.
- $$\varphi_{e0} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} p_{\rm M}^2 + (p_{\rm B}- p_{\rm M}) \cdot (p_{\rm M}- p_{\rm G})\hspace{0.05cm} = 10^{-4} + (0.1- 0.01) \cdot (0.01- 0.001)=10^{-4} + 0.09 \cdot 0.009 \hspace{0.15cm}\underline {\approx 0.091 \cdot 10^{-2}}\hspace{0.05cm}.$$
(3) According to the general definition equation, the following holds for the error correlation period
- $$D_{\rm K} = \frac{1}{\varphi_{e0} - p_{\rm M}^2} \cdot \sum_{k = 1 }^{\infty}\hspace{0.1cm} [\varphi_{e}(k) - p_{\rm M}^2]\hspace{0.05cm}.$$
- With the expressions
- $$A \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (p_{\rm B}- p_{\rm M}) \cdot (p_{\rm M}- p_{\rm G}) = \varphi_{e0} - p_{\rm M}^2\hspace{0.05cm},$$
- $$B\hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G) + {\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)$$
- this equation can be written as follows:
- $$D_{\rm K} = {1}/{A} \cdot \sum_{k = 1 }^{\infty}\hspace{0.1cm} A \cdot (1 - B)^k = \sum_{k = 1 }^{\infty}\hspace{0.1cm} (1 - B)^k\hspace{0.05cm}.$$
- Using the summation formula of a geometric series, this gives the final result:
- $$D_{\rm K} = {1}/{B} - 1 = \frac{1}{{\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G) + {\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)} - 1\hspace{0.05cm}.$$
- So solution 3 is correct.
(4) With ${\rm Pr(B|G)} = 0.01$ and ${\rm Pr(G|B)} = 0.1$ we get
- $$D_{\rm K} = \frac{1}{0.01 + 0.1} - 1 \hspace{0.15cm}\underline {\approx 8.091}\hspace{0.05cm}.$$
(5) Only solution 1 is correct, as shown in the sample solutions to the last subtasks:
- Thus the correlation term is fixed, for example:
- With ${\rm Pr(B\hspace{0.05cm}|\hspace{0.05cm}G)} = 0.1$ and $\rm Pr(G\hspace{0.05cm}|\hspace{0.05cm}B) = 0.01$ we get the same $D_{\rm K} = 8.091$ as with $\rm Pr(B\hspace{0.05cm}|\hspace{0.05cm}G) = 0.01$ and $\rm Pr(G\hspace{0.05cm}|\hspace{0.05cm}B) = 0.1$.
- But now the mean error probability $p_{\rm M} \approx 9.1\%$ instead of $1\%$, respectively for $p_{\rm G} = 0.001$ and $p_{\rm B} = 0.1$.
- The last statement is also false. This statement would only be true if $\varphi_e(k)$ was plotted linearly and not logarithmically as here.