Difference between revisions of "Aufgaben:Exercise 3.09Z: Viterbi Algorithm again"

From LNTwww
 
(33 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Decodierung von Faltungscodes}}
+
{{quiz-Header|Buchseite=Channel_Coding/Decoding_of_Convolutional_Codes}}
  
[[File:P_ID2656__KC_Z_3_8_neu.png|right|frame|Trellis für einen Rate–1/2–Code mit Gedächtnis $m = 1$]]
+
[[File:P_ID2656__KC_Z_3_8_neu.png|right|frame|Trellis for a rate-1/2 code and memory  $m = 1$]]
Die Grafik zeigt das Trellisdiagramm das Faltungscodes entsprechend [[Aufgaben:3.6_Zustands%C3%BCbergangsdiagramm| Aufgabe A3.6]], gekennzeichnet durch folgende Größen:
+
The diagram shows the trellis of the convolutional code according to  [[Aufgaben:Exercise_3.6:_State_Transition_Diagram|$\text{Exercise 3.6}$]],  characterized by the following quantities:
* Rate 1/2  ⇒  $k = 1, \ n = 2$,
+
* Rate 1/2  ⇒   $k = 1, \ n = 2$,
* Gedächtnis $m = 1$,
 
* Übertragungsfunktionsmatrix $\mathbf{G}(D) = (1, \ 1 + D)$,
 
* Länge der Informationssequenz: $L = 4$,
 
* Sequenzlänge inclusive Terminierung: $L' = L + m = 5$.
 
  
 +
* memory  $m = 1$,
  
Anhand dieser Darstellung soll die Viterbi–Decodierung schrittweise nachvollzogen werde, wobei von der folgenden Empfangssequenz auszugehen ist: $\underline{y} = (11, \, 01, \, 01, \, 11, \, 01)$.
+
* transfer function matrix  $\mathbf{G}(D) = (1, \ 1 + D)$,
  
In das Trellis eingezeichnet sind:
+
* length of the information sequence:  $L = 4$,
* Der Initialwert ${\it \Gamma}_0(S_0)$ für den Viterbi–Algorithmus wird stets zu $0$ gewählt.
+
 
* Die beiden Fehlergrößen für den ersten Decodierschritt $(i = 1)$ erhält man mit $\underline{y}_1 = (11)$ wie folgt:
+
* sequence length including termination:  $L\hspace{0.05cm}' = L + m = 5$.
 +
 
 +
 
 +
On the basis of this representation,  the Viterbi decoding is to be understood step-by-step,  starting from the following received sequence:  
 +
:$$\underline{y} = (11, \, 01, \, 01, \, 11, \, 01).$$
 +
 
 +
Into the trellis are drawn:
 +
* The initial value  ${\it \Gamma}_0(S_0)$  for the Viterbi algorithm,  which is always chosen to  $0$.
 +
 
 +
* The two error values for the first decoding step  $(i = 1)$  are obtained with  $\underline{y}_1 = (11)$  as follows:
 
:$${\it \Gamma}_1(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\it \Gamma}_0(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (11) \big )  = 2  \hspace{0.05cm},$$
 
:$${\it \Gamma}_1(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\it \Gamma}_0(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (11) \big )  = 2  \hspace{0.05cm},$$
 
:$${\it \Gamma}_1(S_1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\it \Gamma}_0(S_0) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (11) \big )  = 0  \hspace{0.05cm}.$$
 
:$${\it \Gamma}_1(S_1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\it \Gamma}_0(S_0) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (11) \big )  = 0  \hspace{0.05cm}.$$
  
* Die Fehlergrößen zum Schritt $i = 2$  ⇒  $\underline{y}_2 = (01)$ egeben sich durch folgende Vergleiche:
+
* The error values for step  $i = 2$   ⇒   $\underline{y}_2 = (01)$  are obtained by the following comparisons:
:$${\it \Gamma}_2(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{1}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm}, \hspace{0.2cm}{\it \Gamma}_{1}(S_1) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] =$$
+
:$${\it \Gamma}_2(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{1}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm}, \hspace{0.2cm}{\it \Gamma}_{1}(S_1) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] $$
:$$\ = \ \hspace{-0.15cm} {\rm min} \left [ 2+1\hspace{0.05cm},\hspace{0.05cm} 0+0 \right ] = 0\hspace{0.05cm},$$
+
:$$\Rightarrow\hspace{0.3cm} {\it \Gamma}_2(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm min} \big [ 2+1\hspace{0.05cm},\hspace{0.05cm} 0+0 \big ] = 0\hspace{0.05cm},$$
:$${\it \Gamma}_2(S_1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{1}(S_0) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm}, \hspace{0.2cm}{\it \Gamma}_{1}(S_1) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] =$$
+
:$${\it \Gamma}_2(S_1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{1}(S_0) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm}, \hspace{0.2cm}{\it \Gamma}_{1}(S_1) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ]$$
:$$\ = \ \hspace{-0.15cm} {\rm min} \left [ 2+1\hspace{0.05cm},\hspace{0.05cm} 0+2 \right ] = 2\hspace{0.05cm}.$$
+
:$$\Rightarrow\hspace{0.3cm} {\it \Gamma}_2(S_1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm min} \big [ 2+1\hspace{0.05cm},\hspace{0.05cm} 0+2 \big ] = 2\hspace{0.05cm}.$$
 +
 
 +
 
 +
In the same way you are
 +
* to compute the error values at time points  $i = 3, \ i = 4$  and  $i = 5$  $($termination$)$,  and
 +
 +
* to eliminate the less favorable paths to a node  ${\it \Gamma}_i(S_{\mu})$  in each case;  in the graph this is indicated by dotted lines for  $i = 2$ .
 +
 
 +
 
 +
⇒   Then the continuous path from  ${\it \Gamma}_0(S_0)$  to  ${\it \Gamma}_5(S_0)$  is to be found,  where the backward direction is recommended. 
 +
 
 +
⇒   If one follows the found path in forward direction,  one recognizes:
 +
* the most likely decoded sequence  $\underline{z}$  $($ideally equal  $\underline{x})$  by the labels,
 +
 
 +
* the most probable information sequence  $\underline{v}$  $($ideally equal  $\underline{u})$  at the colors.
 +
 
 +
 
 +
 
 +
 
  
  
 +
<u>Hints:</u>&nbsp; This exercise belongs to the chapter&nbsp; [[Channel_Coding/Decoding_of_Convolutional_Codes|"Decoding of Convolutional Codes"]].
 +
  
===Fragebogen===
+
 
 +
 
 +
 
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice
+
{Calculate the minimum error values for time&nbsp; $i = 3$.
 +
|type="{}"}
 +
${\it \Gamma}_3(S_0) \ = \ ${ 1 }
 +
${\it \Gamma}_3(S_1) \ = \ ${ 1 }
 +
 
 +
{Calculate the minimum error values for time&nbsp; $i = 4$.
 +
|type="{}"}
 +
${\it \Gamma}_4(S_0) \ = \ ${ 2 }
 +
${\it \Gamma}_4(S_1) \ = \ ${ 1 }
 +
 
 +
{Calculate the final error value for time&nbsp; $i = 5$.
 +
|type="{}"}
 +
${\it \Gamma}_5(S_0) \ = \ ${ 1 }
 +
 
 +
{What are the final results of the Viterbi algorithm:
 
|type="[]"}
 
|type="[]"}
+ correct
+
+ $\underline{z} = (11, \, 01, \, 00, \, 11, \, 01)$.
- false
+
- $\underline{z} = (11, \, 01, \, 11, \, 01, \, 00)$.
 +
+ $\underline{v} = (1, \, 0, \, 0, \, 1, \, 0)$.
 +
- $\underline{v} = (1, \, 0, \, 1, \, 0, \, 0)$.
  
{Input-Box Frage
+
{What decision would have been made without scheduling?
|type="{}"}
+
|type="()"}
$xyz \ = \ ${ 5.4 3% } $ab$
+
+ The same,
 +
- another.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  
+
[[File:P_ID2657__KC_Z_3_8a_v1.png|right|frame|Trellis with branch metrics]]
'''(2)'''&nbsp;  
+
[[File:P_ID2658__KC_Z_3_8d.png|right|frame|Path finding]]
'''(3)'''&nbsp;  
+
 
'''(4)'''&nbsp;  
+
'''(1)'''&nbsp; Starting from&nbsp; ${\it \Gamma}_2(S_0) = 0, \ \ {\it \Gamma}_2(S_1) = 2$&nbsp; we get&nbsp; $\underline{y}_3 = (01)$:
'''(5)'''&nbsp;  
+
:$${\it \Gamma}_3(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm min} \left [0 + d_{\rm H} \big ((00), (01) \big ), \hspace{0.05cm}2 + d_{\rm H} \big ((01), (01) \big ) \right ] = {\rm min} \left [ 0+1\hspace{0.05cm},\hspace{0.05cm} 2+0 \right ] \hspace{0.15cm}\underline{= 1}\hspace{0.05cm},$$
 +
:$${\it \Gamma}_3(S_1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [0 + d_{\rm H} \big ((11), (01) \big ), \hspace{0.05cm}2 + d_{\rm H} \big ((10), (01) \big ) \right ] {\rm min} \left [ 0+1\hspace{0.05cm},\hspace{0.05cm} 2+2 \right ] \hspace{0.15cm}\underline{= 1}\hspace{0.05cm}.$$
 +
 
 +
&#8658; &nbsp; Eliminated are the two (dotted)&nbsp;  subpaths that start from state&nbsp; $S_1$&nbsp; at time&nbsp; $i = 2$&nbsp; $($i.e.,&nbsp; at the third decoding step$)$.
 +
 
 +
 
 +
'''(2)'''&nbsp; Analogous to subtask&nbsp; '''(1)''',&nbsp; we obtain with&nbsp; $y_4 = (11)$:
 +
:$${\it \Gamma}_4(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [1 + d_{\rm H} \big ((00), (11) \big ), \hspace{0.05cm}1 + d_{\rm H} \big ((01), (11) \big ) \right ] = {\rm min} \left [ 1+2\hspace{0.05cm},\hspace{0.05cm} 1+1 \right ] \hspace{0.15cm}\underline{= 2}\hspace{0.05cm},$$
 +
:$${\it \Gamma}_4(S_1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [1 + d_{\rm H} \big ((11), (11) \big ), \hspace{0.05cm}1 + d_{\rm H} \big ((10), (11) \big ) \right ] ={\rm min} \left [ 1+0\hspace{0.05cm},\hspace{0.05cm} 1+1 \right ] \hspace{0.15cm}\underline{= 1}\hspace{0.05cm}$$
 +
 
 +
&#8658; &nbsp; Elimination in the fourth decoding step of the two subpaths&nbsp; "$S_0 &#8594; S_0$"&nbsp; and&nbsp; "$S_1 &#8594; S_1$".
 +
 
 +
 
 +
'''(3)'''&nbsp; For&nbsp;  $i = 5$ &nbsp; &#8658; &nbsp; the&nbsp; "termination"&nbsp; is obtained with&nbsp; $\underline{y}_5 = (01)$:
 +
:$${\it \Gamma}_5(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [2 + d_{\rm H} \big ((00), (01) \big ), \hspace{0.05cm}1 + d_{\rm H} \big ((01), (01) \big ) \right ]  {\rm min} \left [ 2+1\hspace{0.05cm},\hspace{0.05cm} 1+0 \right ] \hspace{0.15cm}\underline{= 1}\hspace{0.05cm}.$$
 +
 
 +
&#8658; &nbsp; To be eliminated is the subpath&nbsp;  "$S_0 &#8594; S_0$".
 +
 
 +
 
 +
'''(4)'''&nbsp; The backward search of the continuous path&nbsp;  from ${\it \Gamma}_5(S_0)$&nbsp;  to&nbsp;  ${\it \Gamma}_0(S_0)$&nbsp;  yields
 +
:$$S_0 &#8592; S_1 &#8592; S_0 &#8592; S_0 &#8592; S_1 &#8592; S_0.$$
 +
 
 +
In the forward direction,&nbsp;  this yields the path&nbsp;  "$S_0 &#8594; S_1 &#8594; S_0 &#8594; S_0 &#8594; S_1 &#8594; S_0$" and thus the
 +
* the most likely code sequence&nbsp;  $\underline{z} = (11, \, 01, \, 00, \, 11, \, 01)$,
 +
 
 +
* the most likely information&nbsp;  sequence $\underline{v} = (1, \, 0, \, 0, \, 1, \, 0)$.
 +
 
 +
 
 +
Thus,&nbsp;  the&nbsp;  <u>proposed solutions 1 and 3</u>&nbsp;  are correct:
 +
*Comparison with the received vector&nbsp;  $\underline{y} = (11, \, 01, \, 01, \, 11, \, 01)$&nbsp;  shows that the sixth bit was falsified during transmission.
 +
 
 +
 
 +
'''(5)'''&nbsp; Without termination &#8658; final decision at&nbsp; $i = 4$,&nbsp; there would have been two continuous paths:
 +
* from&nbsp; "$S_0 &#8594; S_1 &#8594; S_0 &#8594; S_1 &#8594; S_0$"&nbsp; $($shown in yellow$)$,
 +
 
 +
* from&nbsp; "$S_0 &#8594; S_1 &#8594; S_0 &#8594; S_0 &#8594; S_1$"&nbsp; $($the ultimately correct path$)$.
 +
 
 +
 
 +
The constraint decision at time&nbsp; $i = 4$&nbsp; would have led here to the second path and thus to the result&nbsp; $\underline{v} = (1, \, 0, \, 0, \, 1)$&nbsp; because of&nbsp; ${\it \Gamma}_4(S_1) < {\it \Gamma}_4(S_0)$.
 +
 +
*In the considered example,&nbsp; therefore,&nbsp; to the&nbsp; <u>same decision</u>&nbsp; as in subtask&nbsp; '''(4)'''&nbsp; with termination bit.
 +
 +
*However,&nbsp; there are many constellations where only the termination bit enables the correct and safe decision.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu  Kanalcodierung|^3.4 Decodierung von Faltungscodes^]]
+
[[Category:Channel Coding: Exercises|^3.4 Decoding of Convolutional Codes^]]

Latest revision as of 14:06, 18 November 2022

Trellis for a rate-1/2 code and memory  $m = 1$

The diagram shows the trellis of the convolutional code according to  $\text{Exercise 3.6}$,  characterized by the following quantities:

  • Rate 1/2  ⇒   $k = 1, \ n = 2$,
  • memory  $m = 1$,
  • transfer function matrix  $\mathbf{G}(D) = (1, \ 1 + D)$,
  • length of the information sequence:  $L = 4$,
  • sequence length including termination:  $L\hspace{0.05cm}' = L + m = 5$.


On the basis of this representation,  the Viterbi decoding is to be understood step-by-step,  starting from the following received sequence:  

$$\underline{y} = (11, \, 01, \, 01, \, 11, \, 01).$$

Into the trellis are drawn:

  • The initial value  ${\it \Gamma}_0(S_0)$  for the Viterbi algorithm,  which is always chosen to  $0$.
  • The two error values for the first decoding step  $(i = 1)$  are obtained with  $\underline{y}_1 = (11)$  as follows:
$${\it \Gamma}_1(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\it \Gamma}_0(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (11) \big ) = 2 \hspace{0.05cm},$$
$${\it \Gamma}_1(S_1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\it \Gamma}_0(S_0) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (11) \big ) = 0 \hspace{0.05cm}.$$
  • The error values for step  $i = 2$   ⇒   $\underline{y}_2 = (01)$  are obtained by the following comparisons:
$${\it \Gamma}_2(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{1}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm}, \hspace{0.2cm}{\it \Gamma}_{1}(S_1) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] $$
$$\Rightarrow\hspace{0.3cm} {\it \Gamma}_2(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm min} \big [ 2+1\hspace{0.05cm},\hspace{0.05cm} 0+0 \big ] = 0\hspace{0.05cm},$$
$${\it \Gamma}_2(S_1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{1}(S_0) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm}, \hspace{0.2cm}{\it \Gamma}_{1}(S_1) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ]$$
$$\Rightarrow\hspace{0.3cm} {\it \Gamma}_2(S_1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm min} \big [ 2+1\hspace{0.05cm},\hspace{0.05cm} 0+2 \big ] = 2\hspace{0.05cm}.$$


In the same way you are

  • to compute the error values at time points  $i = 3, \ i = 4$  and  $i = 5$  $($termination$)$,  and
  • to eliminate the less favorable paths to a node  ${\it \Gamma}_i(S_{\mu})$  in each case;  in the graph this is indicated by dotted lines for  $i = 2$ .


⇒   Then the continuous path from  ${\it \Gamma}_0(S_0)$  to  ${\it \Gamma}_5(S_0)$  is to be found,  where the backward direction is recommended. 

⇒   If one follows the found path in forward direction,  one recognizes:

  • the most likely decoded sequence  $\underline{z}$  $($ideally equal  $\underline{x})$  by the labels,
  • the most probable information sequence  $\underline{v}$  $($ideally equal  $\underline{u})$  at the colors.




Hints:  This exercise belongs to the chapter  "Decoding of Convolutional Codes".



Questions

1

Calculate the minimum error values for time  $i = 3$.

${\it \Gamma}_3(S_0) \ = \ $

${\it \Gamma}_3(S_1) \ = \ $

2

Calculate the minimum error values for time  $i = 4$.

${\it \Gamma}_4(S_0) \ = \ $

${\it \Gamma}_4(S_1) \ = \ $

3

Calculate the final error value for time  $i = 5$.

${\it \Gamma}_5(S_0) \ = \ $

4

What are the final results of the Viterbi algorithm:

$\underline{z} = (11, \, 01, \, 00, \, 11, \, 01)$.
$\underline{z} = (11, \, 01, \, 11, \, 01, \, 00)$.
$\underline{v} = (1, \, 0, \, 0, \, 1, \, 0)$.
$\underline{v} = (1, \, 0, \, 1, \, 0, \, 0)$.

5

What decision would have been made without scheduling?

The same,
another.


Solution

Trellis with branch metrics
Path finding

(1)  Starting from  ${\it \Gamma}_2(S_0) = 0, \ \ {\it \Gamma}_2(S_1) = 2$  we get  $\underline{y}_3 = (01)$:

$${\it \Gamma}_3(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm min} \left [0 + d_{\rm H} \big ((00), (01) \big ), \hspace{0.05cm}2 + d_{\rm H} \big ((01), (01) \big ) \right ] = {\rm min} \left [ 0+1\hspace{0.05cm},\hspace{0.05cm} 2+0 \right ] \hspace{0.15cm}\underline{= 1}\hspace{0.05cm},$$
$${\it \Gamma}_3(S_1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [0 + d_{\rm H} \big ((11), (01) \big ), \hspace{0.05cm}2 + d_{\rm H} \big ((10), (01) \big ) \right ] {\rm min} \left [ 0+1\hspace{0.05cm},\hspace{0.05cm} 2+2 \right ] \hspace{0.15cm}\underline{= 1}\hspace{0.05cm}.$$

⇒   Eliminated are the two (dotted)  subpaths that start from state  $S_1$  at time  $i = 2$  $($i.e.,  at the third decoding step$)$.


(2)  Analogous to subtask  (1),  we obtain with  $y_4 = (11)$:

$${\it \Gamma}_4(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [1 + d_{\rm H} \big ((00), (11) \big ), \hspace{0.05cm}1 + d_{\rm H} \big ((01), (11) \big ) \right ] = {\rm min} \left [ 1+2\hspace{0.05cm},\hspace{0.05cm} 1+1 \right ] \hspace{0.15cm}\underline{= 2}\hspace{0.05cm},$$
$${\it \Gamma}_4(S_1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [1 + d_{\rm H} \big ((11), (11) \big ), \hspace{0.05cm}1 + d_{\rm H} \big ((10), (11) \big ) \right ] ={\rm min} \left [ 1+0\hspace{0.05cm},\hspace{0.05cm} 1+1 \right ] \hspace{0.15cm}\underline{= 1}\hspace{0.05cm}$$

⇒   Elimination in the fourth decoding step of the two subpaths  "$S_0 → S_0$"  and  "$S_1 → S_1$".


(3)  For  $i = 5$   ⇒   the  "termination"  is obtained with  $\underline{y}_5 = (01)$:

$${\it \Gamma}_5(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [2 + d_{\rm H} \big ((00), (01) \big ), \hspace{0.05cm}1 + d_{\rm H} \big ((01), (01) \big ) \right ] {\rm min} \left [ 2+1\hspace{0.05cm},\hspace{0.05cm} 1+0 \right ] \hspace{0.15cm}\underline{= 1}\hspace{0.05cm}.$$

⇒   To be eliminated is the subpath  "$S_0 → S_0$".


(4)  The backward search of the continuous path  from ${\it \Gamma}_5(S_0)$  to  ${\it \Gamma}_0(S_0)$  yields

$$S_0 ← S_1 ← S_0 ← S_0 ← S_1 ← S_0.$$

In the forward direction,  this yields the path  "$S_0 → S_1 → S_0 → S_0 → S_1 → S_0$" and thus the

  • the most likely code sequence  $\underline{z} = (11, \, 01, \, 00, \, 11, \, 01)$,
  • the most likely information  sequence $\underline{v} = (1, \, 0, \, 0, \, 1, \, 0)$.


Thus,  the  proposed solutions 1 and 3  are correct:

  • Comparison with the received vector  $\underline{y} = (11, \, 01, \, 01, \, 11, \, 01)$  shows that the sixth bit was falsified during transmission.


(5)  Without termination ⇒ final decision at  $i = 4$,  there would have been two continuous paths:

  • from  "$S_0 → S_1 → S_0 → S_1 → S_0$"  $($shown in yellow$)$,
  • from  "$S_0 → S_1 → S_0 → S_0 → S_1$"  $($the ultimately correct path$)$.


The constraint decision at time  $i = 4$  would have led here to the second path and thus to the result  $\underline{v} = (1, \, 0, \, 0, \, 1)$  because of  ${\it \Gamma}_4(S_1) < {\it \Gamma}_4(S_0)$.

  • In the considered example,  therefore,  to the  same decision  as in subtask  (4)  with termination bit.
  • However,  there are many constellations where only the termination bit enables the correct and safe decision.