Difference between revisions of "Aufgaben:Exercise 3.10Z: Maximum Likelihood Decoding of Convolutional Codes"

From LNTwww
 
(34 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Decodierung von Faltungscodes}}
+
{{quiz-Header|Buchseite=Channel_Coding/Decoding_of_Convolutional_Codes}}
  
[[File:P_ID2678__KC_Z_3_10.png|right|frame|Betrachtetes Systemmodell]]
+
[[File:EN_KC_Z_3_10.png|right|frame|Overall system model,  given for this exercise]]
Der Viterbi–Algorithmus stellt die bekannteste Realisierungsform für die Maximum–Likelihood–Decodierung eines Faltungscodes dar. Wir gehen hier von folgendem Modell aus:
+
The Viterbi algorithm represents the best known realization form for the maximum likelihood decoding of a convolutional code.  We assume here the following model:
* Die Informationssequenz $\underline{u}$ wird durch einen Faltungscode in die Codesequenz $\underline{x}$ umgesetzt. Es gelte $u_i ∈ \{0, \, 1\}$. Dagegen werden die Codesymbole bipolar dargestellt: $x_i ∈ \{–1, \, +1\}$.
+
* The information sequence  $\underline{u}$  is converted into the code sequence  $\underline{x}$  by a convolutional code.  
* Der Kanal sei durch das [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Binary_Symmetric_Channel_.E2.80.93_BSC| BSC–Modell]] gegeben  ⇒  $y_i ∈ \{–1, \, +1\}$ oder es wird der [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#AWGN.E2.80.93Kanal_bei_bin.C3.A4rem_Eingang| AWGN–Kanal]] vorausgesetzt  ⇒  reellwertige $y_i$.
+
 
* Bei gegebener Empfangssequenz $\underline{y}$ entscheidet sich der Viterbi–Algorithmus für die Codesequenz $\underline{z}$ entsprechend
+
*It is valid  $u_i ∈ \{0, \, 1\}$.  In contrast,  the code symbols are represented bipolar   ⇒   $x_i ∈ \{–1, \, +1\}$.
 +
 
 +
* Let the channel be given by the models  [[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Symmetric_Channel_.E2.80.93_BSC|$\text{BSC}$]]    ⇒   received values  $y_i ∈ \{–1, \, +1\}$  or  [[Channel_Coding/Channel_Models_and_Decision_Structures#AWGN_channel_at_binary_input| $\text{AWGN}$]]   ⇒ $y_i$  real-valued.
 +
 
 +
* Given a received sequence  $\underline{y}$  the Viterbi algorithm decides for the sequence  $\underline{z}$  according to
 
:$$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.03cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{x}_{\hspace{0.03cm}i} |\hspace{0.05cm} \underline{y} ) \hspace{0.05cm}.$$
 
:$$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.03cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{x}_{\hspace{0.03cm}i} |\hspace{0.05cm} \underline{y} ) \hspace{0.05cm}.$$
  
 +
*This corresponds to the  [[Channel_Coding/Channel_Models_and_Decision_Structures#Criteria_.C2.BBMaximum-a-posteriori.C2.AB_and_.C2.BBMaximum-Likelihood.C2.AB| "Maximum a posteriori"]]  $\rm (MAP)$  criterion.  If all information sequences  $\underline{u}$  are equally likely,  this transitions to the somewhat simpler  [[Channel_Coding/Channel_Models_and_Decision_Structures#Criteria_.C2.BBMaximum-a-posteriori.C2.AB_and_.C2.BBMaximum-Likelihood.C2.AB| "Maximum likelihood criterion"]]  $\rm (ML)$:
 +
:$$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{y}  \hspace{0.05cm}|\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) \hspace{0.05cm}.$$
  
Dies entspricht dem [[Maximum–a–posteriori]] (MAP)–Kriterium. Sind die Informationssequenzen $\underline{u}$ gleichwahrscheinlich, so geht dieses in das etwas einfachere [[Maximum–Likelihood–Kriterium]] über:
+
*As a further result,  the Viterbi algorithm additionally outputs the sequence  $\underline{v}$  as an estimate for the information sequence  $\underline{u}$.
:$$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{y}  \hspace{0.05cm}|\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) \hspace{0.05cm}.$$
 
  
Als weiteres Ergebnis gibt der Viterbi–Algorithmus zusätzlich die Sequenz $\underline{\upsilon}$ als Schätzung für die Informationssequenz $\underline{u}$ aus.
 
  
In dieser Aufgabe soll der Zusammenhang zwischen der [[Hamming–Distanz]] $d_{\rm H}(\underline{x}, \, \underline{y})$ sowie der [[Euklidischen Distanz]]
+
In this exercise,  you should determinethe relationship between the  [[Channel_Coding/Objective_of_Channel_Coding#Important_definitions_for_block_coding| $\text{Hamming distance}$]]  $d_{\rm H}(\underline{x}, \, \underline{y})$  and the  [[Channel_Coding/Channel_Models_and_Decision_Structures#Maximum-likelihood_decision_at_the_AWGN_channel|$\text{Euclidean distance}$]]
 
:$$d_{\rm E}(\underline{x}  \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) =
 
:$$d_{\rm E}(\underline{x}  \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) =
\sqrt{\sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2}\hspace{0.05cm}$$
+
\sqrt{\sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2}\hspace{0.05cm}.$$
 +
 
 +
Then,  the above maximum likelihood criterion is to be formulated with
 +
* the Hamming distance  $d_{\rm H}(\underline{x}, \, \underline{y})$,
 +
 
 +
* the Euclidean distance  $d_{\rm E}(\underline{x}, \, \underline{y})$,  and
 +
 
 +
* the  [[Channel_Coding/Decoding_of_Convolutional_Codes#Relationship_between_Hamming_distance_and_correlation|$\text{correlation value}$]]  $〈 x \cdot y 〉$.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<u>Hints:</u>
 +
* This exercise refers to the chapter&nbsp; [[Channel_Coding/Decoding_of_Convolutional_Codes| "Decoding of Convolutional Codes"]].
 +
 +
* Reference is made in particular to the section&nbsp; [[Channel_Coding/Decoding_of_Convolutional_Codes#Viterbi_algorithm_based_on_correlation_and_metrics|"Viterbi algorithm &ndash; based on correlation and metrics"]].
 +
 
 +
* For simplicity,&nbsp; "tilde"&nbsp; and&nbsp; "apostrophe"&nbsp; are omitted.
  
ermittelt werden. Anschließend ist das obige ML&ndash;Kriterium mit
+
* For more information on this topic,&nbsp; see the following sections in this book:
* der Hamming&ndash;Distanz $d_{\rm H}(\underline{x}, \, \underline{y})$,
+
:* [[Channel_Coding/Channel_Models_and_Decision_Structures#Criteria_.C2.BBMaximum-a-posteriori.C2.AB_and_.C2.BBMaximum-Likelihood.C2.AB| "MAP and ML criterion"]],
* der Euklidischen Distanz $d_{\rm E}(\underline{x}, \, \underline{y})$, und
 
* dem [[Korrelationswert]] $&#9001; x \cdot y &#9002;$ zu formulieren.
 
  
 +
:* [[Channel_Coding/Channel_Models_and_Decision_Structures#Maximum-likelihood_decision_at_the_BSC_channel| "ML decision at the BSC channel"]],
  
''Hinweise:''
+
:* [[Channel_Coding/Channel_Models_and_Decision_Structures#Maximum-likelihood_decision_at_the_AWGN_channel| "ML decision at the AWGN channel"]],
* Die Aufgabe bezieht sich auf die [[Theorieseite 6]] des Kapitels .
 
* Zur Vereinfachung wird auf Tilden und Apostroph verzichtet.
 
* Weitere Informationen zu diesem Thema finden Sie auf folgenden Seiten dieses Buches:
 
** [[MAP&ndash; und ML&ndash;Kriterium]],
 
** [[ML&ndash;Entscheidung beim BSC&ndash;Kanal]],
 
** [[ML&ndash;Entscheidung beim AWGN&ndash;Kanal]],
 
** [[Decodierung linearer Blockcodes &ndash; Seite 1]].
 
  
 +
:* [[Channel_Coding/Decoding_of_Linear_Block_Codes#Block_diagram_and_requirements| "Decoding linear block codes"]].
  
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice
+
{How are &nbsp; $d_{\rm H}(\underline{x}, \, \underline{y})$ &nbsp; and &nbsp; $d_{\rm E}(\underline{x}, \, \underline{y})$ &nbsp; related in the BSC model?
 +
|type="()"}
 +
- &nbsp; $d_{\rm H}(\underline{x}, \, \underline{y}) = d_{\rm E}(\underline{x}, \, \underline{y})$&nbsp; is valid.
 +
- &nbsp; $d_{\rm H}(\underline{x}, \, \underline{y}) = d_{\rm E}^2(\underline{x}, \, \underline{y})$&nbsp; is valid.
 +
+ &nbsp; $d_{\rm H}(\underline{x}, \, \underline{y}) = d_{\rm E}^2(\underline{x}, \, \underline{y})/4$&nbsp; is valid.
 +
 
 +
{Which of the equations describe the maximum likelihood decoding in the BSC model?&nbsp; The minimization/maximization refers alwaysto all&nbsp; $\underline{x} &#8712;\mathcal{ C}$.
 
|type="[]"}
 
|type="[]"}
+ correct
+
+ $\underline{z} = \arg \min {d_{\rm H}(\underline{x}, \, \underline{y})}$,
- false
+
+ $\underline{z} = \arg \min {d_{\rm E}(\underline{x}, \, \underline{y})}$,
 +
+ $\underline{z} = \arg \min {d_{\rm E}^2(\underline{x}, \, \underline{y})}$,
  
{Input-Box Frage
+
{Which equation describes the maximum likelihood decision in the BSC model?
|type="{}"}
+
|type="()"}
$xyz \ = \ ${ 5.4 3% } $ab$
+
- $\underline{z} = \arg \min &#9001; \underline{x} \cdot \underline{y} &#9002;$,
 +
+ $\underline{z} = \arg \max &#9001; \underline{x} \cdot \underline{y} &#9002;$.
 +
 
 +
{What equations apply to the maximum likelihood decision in the AWGN model?
 +
|type="[]"}
 +
- $\underline{z} = \arg \min {d_{\rm H}(\underline{x}, \, \underline{y})}$,
 +
+ $\underline{z} = \arg \min {d_{\rm E}(\underline{x}, \, \underline{y})}$,
 +
+ $\underline{z} = \arg \max &#9001; \underline{x} \cdot \underline{y} &#9002;$.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  
+
'''(1)'''&nbsp; Correct is the&nbsp; <u>proposed solution 3</u>:
'''(2)'''&nbsp;  
+
*Let the two binary sequences be &nbsp; $\underline{x}$ &nbsp; and &nbsp; $\underline{y}$ &nbsp; with &nbsp; $x_i &#8712; \{-1, \, +1\}, \ y_i &#8712; \{-1, \, +1\}$.&nbsp; Let the sequence length be&nbsp; $L$&nbsp; in each case.
'''(3)'''&nbsp;  
+
 
'''(4)'''&nbsp;  
+
*The Hamming distance &nbsp; $d_{\rm H}(\underline{x}, \, \underline{y})$ &nbsp; gives the number of bits in which&nbsp; $\underline{x}$&nbsp; and&nbsp; $\underline{y}$&nbsp; differ,&nbsp; for which thus&nbsp; $x_i \, - y_i = &plusmn;2$ &nbsp; &#8658; &nbsp; $ (x_i \, - y_i)^2 = 4$&nbsp; holds.
'''(5)'''&nbsp;  
+
 +
*Equal symbols&nbsp; $(x_i = y_i)$&nbsp; do not contribute to the Hamming distance and give&nbsp; $(x_i \, &ndash; y_i)^2 = 0$.&nbsp; According to the&nbsp; <u>solution 3</u>,&nbsp; we can therefore write:
 +
:$$ d_{\rm H}(\underline{x}  \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) =
 +
\frac{1}{4} \cdot \sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2= \frac{1}{4} \cdot d_{\rm E}^2(\underline{x}  \hspace{0.05cm}, \hspace{0.1cm}\underline{y})\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(2)'''&nbsp; <u>All proposed solutions</u>&nbsp; are correct:
 +
*In the BSC model,&nbsp; it is common practice to select the code word&nbsp; $\underline{x}$&nbsp; with the smallest Hamming distance&nbsp; $d_{\rm H}(\underline{x}, \, \underline{y})$&nbsp; for the given received vector&nbsp; $\underline{y}$:
 +
:$$\underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm}
 +
d_{\rm H}(\underline{x}  \hspace{0.05cm}, \hspace{0.1cm}\underline{y})\hspace{0.05cm}.$$
 +
*But according to the subtask&nbsp; '''(1)'''&nbsp; also applies:
 +
:$$\underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm}
 +
d_{\rm E}^{\hspace{0.15cm}2}(\underline{x}  \hspace{0.05cm}, \hspace{0.1cm}\underline{y})/4
 +
\hspace{0.2cm}\Rightarrow \hspace{0.2cm} \underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm}
 +
d_{\rm E}^{\hspace{0.15cm}2}(\underline{x}  \hspace{0.05cm}, \hspace{0.1cm}\underline{y})
 +
\hspace{0.2cm}\Rightarrow \hspace{0.2cm} \underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm}
 +
d_{\rm E}(\underline{x}  \hspace{0.05cm}, \hspace{0.1cm}\underline{y})
 +
\hspace{0.05cm}.$$
 +
 
 +
*The factor&nbsp; $1/4$&nbsp; does not matter for the minimization.&nbsp; Since&nbsp; $d_{\rm E}(\underline{x}, \, \underline{y}) &#8805; 0$,&nbsp; it does not matter whether the minimization is done with respect to &nbsp; $d_{\rm E}(\underline{x}, \, \underline{y})$ &nbsp; or &nbsp; $d_{\rm E}^2(\underline{x}, \, \underline{y})$.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; Correct is the&nbsp; <u>proposed solution 2</u>:
 +
*The square of the Euclidean distance can be expressed as follows:
 +
:$$d_{\rm E}^{\hspace{0.15cm}2}(\underline{x}  \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) =
 +
\sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2 =
 +
\hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} x_i^{\hspace{0.15cm}2} \hspace{0.1cm}+ \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} y_i^{\hspace{0.15cm}2}
 +
\hspace{0.1cm}-2 \cdot \sum_{i=1}^{L} \hspace{0.1cm} x_i \cdot y_i
 +
\hspace{0.05cm}.$$
 +
 
 +
*The first two summands are each equal to&nbsp; $L$&nbsp; and need not be considered for minimization.
 +
 +
*For the last expression in this equation,&nbsp; $&ndash;2 \cdot &#9001; \underline{x}, \, \underline{y} &#9002;$&nbsp; can be written.
 +
 +
*Due to the negative sign,&nbsp; minimization becomes maximization &nbsp; &#8658; &nbsp; <u>answer 2</u>.
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; Correct are the&nbsp; <u>proposed solutions 2 and 3</u>:
 +
*For the AWGN channel,&nbsp; unlike the BSC,&nbsp; no Hamming distance can be specified.
 +
 +
*Based on the equation
 +
:$$d_{\rm E}^{\hspace{0.15cm}2}(\underline{x}  \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) =
 +
\hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} x_i^{\hspace{0.15cm}2} \hspace{0.1cm}+ \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} y_i^{\hspace{0.15cm}2}
 +
\hspace{0.1cm}-2 \cdot \sum_{i=1}^{L} \hspace{0.1cm} x_i \cdot y_i$$
 +
 
 +
:the same statements apply for the first and last summands as for the BSC model &ndash; see subtask&nbsp; '''(3)'''.
 +
 
 +
*For the middle summand,&nbsp; $y_i = x_i + n_i$&nbsp; and&nbsp; $x_i &#8712; \{&ndash;1, \, +1\}$&nbsp; hold:
 +
:$$\sum_{i=1}^{L} \hspace{0.1cm} y_i^{\hspace{0.15cm}2} =
 +
\hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} x_i^{\hspace{0.15cm}2} \hspace{0.1cm}+ \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} n_i^{\hspace{0.15cm}2}
 +
\hspace{0.1cm}+2 \cdot \sum_{i=1}^{L} \hspace{0.1cm} x_i \cdot n_i \hspace{0.05cm}.$$
 +
 
 +
*The first summand gives again&nbsp; $L$,&nbsp; the second is proportional to the noise power,&nbsp; and the last term vanishes since&nbsp; $\underline{x}$&nbsp; and&nbsp; $\underline{n}$&nbsp; are uncorrelated.
 +
 +
*So for minimizing&nbsp; $d_{\rm E}(\underline{x}, \, \underline{y})$,&nbsp; the sum over&nbsp; $y_i^2$&nbsp; need not be considered since there is no relation to the code sequences&nbsp; $\underline{x}$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu  Kanalcodierung|^3.4 Decodierung von Faltungscodes^]]
+
[[Category:Channel Coding: Exercises|^3.4 Decoding of Convolutional Codes^]]

Latest revision as of 15:57, 21 November 2022

Overall system model,  given for this exercise

The Viterbi algorithm represents the best known realization form for the maximum likelihood decoding of a convolutional code.  We assume here the following model:

  • The information sequence  $\underline{u}$  is converted into the code sequence  $\underline{x}$  by a convolutional code.
  • It is valid  $u_i ∈ \{0, \, 1\}$.  In contrast,  the code symbols are represented bipolar   ⇒   $x_i ∈ \{–1, \, +1\}$.
  • Let the channel be given by the models  $\text{BSC}$    ⇒   received values  $y_i ∈ \{–1, \, +1\}$  or  $\text{AWGN}$   ⇒ $y_i$  real-valued.
  • Given a received sequence  $\underline{y}$  the Viterbi algorithm decides for the sequence  $\underline{z}$  according to
$$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.03cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{x}_{\hspace{0.03cm}i} |\hspace{0.05cm} \underline{y} ) \hspace{0.05cm}.$$
$$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) \hspace{0.05cm}.$$
  • As a further result,  the Viterbi algorithm additionally outputs the sequence  $\underline{v}$  as an estimate for the information sequence  $\underline{u}$.


In this exercise,  you should determinethe relationship between the  $\text{Hamming distance}$  $d_{\rm H}(\underline{x}, \, \underline{y})$  and the  $\text{Euclidean distance}$

$$d_{\rm E}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) = \sqrt{\sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2}\hspace{0.05cm}.$$

Then,  the above maximum likelihood criterion is to be formulated with

  • the Hamming distance  $d_{\rm H}(\underline{x}, \, \underline{y})$,
  • the Euclidean distance  $d_{\rm E}(\underline{x}, \, \underline{y})$,  and





Hints:

  • For simplicity,  "tilde"  and  "apostrophe"  are omitted.
  • For more information on this topic,  see the following sections in this book:


Questions

1

How are   $d_{\rm H}(\underline{x}, \, \underline{y})$   and   $d_{\rm E}(\underline{x}, \, \underline{y})$   related in the BSC model?

  $d_{\rm H}(\underline{x}, \, \underline{y}) = d_{\rm E}(\underline{x}, \, \underline{y})$  is valid.
  $d_{\rm H}(\underline{x}, \, \underline{y}) = d_{\rm E}^2(\underline{x}, \, \underline{y})$  is valid.
  $d_{\rm H}(\underline{x}, \, \underline{y}) = d_{\rm E}^2(\underline{x}, \, \underline{y})/4$  is valid.

2

Which of the equations describe the maximum likelihood decoding in the BSC model?  The minimization/maximization refers alwaysto all  $\underline{x} ∈\mathcal{ C}$.

$\underline{z} = \arg \min {d_{\rm H}(\underline{x}, \, \underline{y})}$,
$\underline{z} = \arg \min {d_{\rm E}(\underline{x}, \, \underline{y})}$,
$\underline{z} = \arg \min {d_{\rm E}^2(\underline{x}, \, \underline{y})}$,

3

Which equation describes the maximum likelihood decision in the BSC model?

$\underline{z} = \arg \min 〈 \underline{x} \cdot \underline{y} 〉$,
$\underline{z} = \arg \max 〈 \underline{x} \cdot \underline{y} 〉$.

4

What equations apply to the maximum likelihood decision in the AWGN model?

$\underline{z} = \arg \min {d_{\rm H}(\underline{x}, \, \underline{y})}$,
$\underline{z} = \arg \min {d_{\rm E}(\underline{x}, \, \underline{y})}$,
$\underline{z} = \arg \max 〈 \underline{x} \cdot \underline{y} 〉$.


Solution

(1)  Correct is the  proposed solution 3:

  • Let the two binary sequences be   $\underline{x}$   and   $\underline{y}$   with   $x_i ∈ \{-1, \, +1\}, \ y_i ∈ \{-1, \, +1\}$.  Let the sequence length be  $L$  in each case.
  • The Hamming distance   $d_{\rm H}(\underline{x}, \, \underline{y})$   gives the number of bits in which  $\underline{x}$  and  $\underline{y}$  differ,  for which thus  $x_i \, - y_i = ±2$   ⇒   $ (x_i \, - y_i)^2 = 4$  holds.
  • Equal symbols  $(x_i = y_i)$  do not contribute to the Hamming distance and give  $(x_i \, – y_i)^2 = 0$.  According to the  solution 3,  we can therefore write:
$$ d_{\rm H}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) = \frac{1}{4} \cdot \sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2= \frac{1}{4} \cdot d_{\rm E}^2(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y})\hspace{0.05cm}.$$


(2)  All proposed solutions  are correct:

  • In the BSC model,  it is common practice to select the code word  $\underline{x}$  with the smallest Hamming distance  $d_{\rm H}(\underline{x}, \, \underline{y})$  for the given received vector  $\underline{y}$:
$$\underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} d_{\rm H}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y})\hspace{0.05cm}.$$
  • But according to the subtask  (1)  also applies:
$$\underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} d_{\rm E}^{\hspace{0.15cm}2}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y})/4 \hspace{0.2cm}\Rightarrow \hspace{0.2cm} \underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} d_{\rm E}^{\hspace{0.15cm}2}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) \hspace{0.2cm}\Rightarrow \hspace{0.2cm} \underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} d_{\rm E}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) \hspace{0.05cm}.$$
  • The factor  $1/4$  does not matter for the minimization.  Since  $d_{\rm E}(\underline{x}, \, \underline{y}) ≥ 0$,  it does not matter whether the minimization is done with respect to   $d_{\rm E}(\underline{x}, \, \underline{y})$   or   $d_{\rm E}^2(\underline{x}, \, \underline{y})$.


(3)  Correct is the  proposed solution 2:

  • The square of the Euclidean distance can be expressed as follows:
$$d_{\rm E}^{\hspace{0.15cm}2}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) = \sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2 = \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} x_i^{\hspace{0.15cm}2} \hspace{0.1cm}+ \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} y_i^{\hspace{0.15cm}2} \hspace{0.1cm}-2 \cdot \sum_{i=1}^{L} \hspace{0.1cm} x_i \cdot y_i \hspace{0.05cm}.$$
  • The first two summands are each equal to  $L$  and need not be considered for minimization.
  • For the last expression in this equation,  $–2 \cdot 〈 \underline{x}, \, \underline{y} 〉$  can be written.
  • Due to the negative sign,  minimization becomes maximization   ⇒   answer 2.


(4)  Correct are the  proposed solutions 2 and 3:

  • For the AWGN channel,  unlike the BSC,  no Hamming distance can be specified.
  • Based on the equation
$$d_{\rm E}^{\hspace{0.15cm}2}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) = \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} x_i^{\hspace{0.15cm}2} \hspace{0.1cm}+ \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} y_i^{\hspace{0.15cm}2} \hspace{0.1cm}-2 \cdot \sum_{i=1}^{L} \hspace{0.1cm} x_i \cdot y_i$$
the same statements apply for the first and last summands as for the BSC model – see subtask  (3).
  • For the middle summand,  $y_i = x_i + n_i$  and  $x_i ∈ \{–1, \, +1\}$  hold:
$$\sum_{i=1}^{L} \hspace{0.1cm} y_i^{\hspace{0.15cm}2} = \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} x_i^{\hspace{0.15cm}2} \hspace{0.1cm}+ \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} n_i^{\hspace{0.15cm}2} \hspace{0.1cm}+2 \cdot \sum_{i=1}^{L} \hspace{0.1cm} x_i \cdot n_i \hspace{0.05cm}.$$
  • The first summand gives again  $L$,  the second is proportional to the noise power,  and the last term vanishes since  $\underline{x}$  and  $\underline{n}$  are uncorrelated.
  • So for minimizing  $d_{\rm E}(\underline{x}, \, \underline{y})$,  the sum over  $y_i^2$  need not be considered since there is no relation to the code sequences  $\underline{x}$.