Difference between revisions of "Aufgaben:Exercise 3.12Z: Ring and Feedback"

From LNTwww
 
(26 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Distanzeigenschaften und Fehlerwahrscheinlichkeitsschranken}}
+
{{quiz-Header|Buchseite=Channel_Coding/Distance_Characteristics_and_Error_Probability_Barriers}}
  
[[File:P_ID2710__KC_Z_3_12.png|right|frame|Ring und Rückkopplung im Zustandsübergangsdiagramm]]
+
[[File:EN_KC_Z_3_12.png|right|frame|Ring and feedback in the state transition diagram]]
Um die Pfadgewichtsfunktio $T(X)$ eines Faltungscodes aus dem Zustandsübergangsdiagramm bestimmen zu können, ist es erforderlich, das Diagramm so zu reduzieren, bis es durch eine einzige Verbindung vom Startzustand zum Endzustand dargestellt werden kann.
+
In order to determine the path weighting enumerator function   $T(X)$   of a convolutional code from the state transition diagram,  it is necessary to reduce the diagram until it can be represented by a single connection from the initial state to the final state.
  
Im Zuge dieser Diagrammreduktion können auftreten:
+
In the course of this diagram reduction can occur:
* serielle und parallele Übergänge,
+
* serial and parallel transitions,
* ein Ring entsprechend der obigen Grafik,
 
* eine Rückkopplung entsprechend der unteren Grafik.
 
  
 +
* a ring according to the sketch above,
  
Für diese beiden Graphen sind die Entsprechungen $E(X, \, U)$ und $F(X, \, U)$ in Abhängigkeit der angegebenen Funktionen $A(X, \, U), \ B(X, \ U), \ C(X, \, U), \ D(X, \, U)$ zu ermitteln.
+
* a feedback according to the sketch below.
  
''Hinweise:''
 
* Mit dieser Aufgabe sollen einige der Angaben auf [[Kanalcodierung/Distanzeigenschaften_und_Fehlerwahrscheinlichkeitsschranken#Regeln_zur_Manipulation_des_Zustands.C3.BCbergangsdiagramms|Seite 4b]] von Kapitel 3.5 bewiesen werden.
 
* Angewendet werden diese Regeln in [[Aufgaben:3.12_Pfadgewichtsfunktion|Aufgabe A3.12]] und [[Aufgaben:3.13_Nochmals_Tenh(X,_U)_und_T(X)|Aufgabe A3.13]].
 
  
 +
For these two graphs,  find the correspondences   $E(X, \, U)$   and   $F(X, \, U)$   depending on the given functions   $A(X, \, U), \ B(X, \ U), \ C(X, \, U), \ D(X, \, U)$ .
  
  
===Fragebogen===
+
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<u>Hints:</u>
 +
* This exercise belongs to the chapter&nbsp; [[Channel_Coding/Distance_Characteristics_and_Error_Probability_Bounds| "Distance Characteristics and Error Probability Bounds"]].
 +
 
 +
* This exercise is intended to prove some of the statements on the&nbsp; [[Channel_Coding/Distance_Characteristics_and_Error_Probability_Bounds#Rules_for_manipulating_the_state_transition_diagram|"Rules for manipulating the state transition diagram"]]&nbsp; section.
 +
 
 +
* Applied these rules in&nbsp; [[Aufgaben:Exercise_3.12:_Path_Weighting_Function|$\text{Exercise 3.12}$]]&nbsp; and&nbsp; [[Aufgaben:Exercise_3.13:_Path_Weighting_Function_again|$\text{Exercise 3.13}$]].
 +
 
 +
 
 +
 
 +
 
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice
+
{Which of the listed transitions are possible with the ring?
 +
|type="[]"}
 +
+ $S_1 &#8594; S_2 &#8594; S_3$,
 +
+ $S_1 &#8594; S_2 &#8594; S_2 &#8594; S_2 &#8594; S_3$,
 +
- $S_1 &#8594; S_2 &#8594; S_1 &#8594; S_2 &#8594; S_3$.
 +
 
 +
{What is the substitution&nbsp; $E(X, \, U)$&nbsp; of a ring?
 +
|type="()"}
 +
- $E(X, \, U) = [A(X, \, U) + B(X, \, U)] \ / \ [1 \, -C(X, \, U)]$,
 +
+ $E(X, \, U) = A(X, \, U) \cdot B(X, \, U) \ / \ [1 \, -C(X, \, U)]$,
 +
- $E(X, \, U) = A(X, \, U) \cdot C(X, \, U) \ / \ [1 \, -B(X, \, U)]$.
 +
 
 +
{Which of the listed transitions are possible with feedback?
 
|type="[]"}
 
|type="[]"}
+ correct
+
+ $S_1 &#8594; S_2 &#8594; S_3 &#8594; S_4$,
- false
+
- $S_1 &#8594; S_2 &#8594; S_3 &#8594; S_2 &#8594; S_4$,
 +
+ $S_1 &#8594; S_2 &#8594; S_3 &#8594; S_2 &#8594; S_3 &#8594; S_4$,
 +
+ $S_1 &#8594; S_2 &#8594; S_3 &#8594; S_2 &#8594; S_3 &#8594; S_2 &#8594; S_3 &#8594; S_4$.
  
{Input-Box Frage
+
{What is the substitution&nbsp; $F(X, \, U)$&nbsp; of a feedback?
|type="{}"}
+
|type="()"}
$xyz \ = \ ${ 5.4 3% } $ab$
+
+ $F(X, \, U) = A(X, \, U) \cdot B(X, \, U) \cdot C(X, \, U) \ / \ [1 \, -C(X, \, U) \cdot D(X, \, U)]$
 +
- $F(X, \, U) = A(X, \, U) \cdot B(X, \, U) \ / \ [1 \, -C(X, \, U) + D(X, \, U)]$.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  
+
'''(1)'''&nbsp; Correct are the&nbsp; <u>solutions 1 and 2</u>:
'''(2)'''&nbsp;  
+
*In general terms,&nbsp; one first goes from&nbsp; $S_1$&nbsp; to&nbsp; $S_2$,&nbsp; remains&nbsp; $j$&ndash;times in the state&nbsp; $S_2 \ (j = 0, \ 1, \, 2, \ \text{ ...})$,&nbsp; and finally continues from&nbsp; $S_2$&nbsp; to&nbsp; $S_3$.
'''(3)'''&nbsp;  
+
 
'''(4)'''&nbsp;  
+
 
'''(5)'''&nbsp;  
+
 
 +
'''(2)'''&nbsp; Correct is the&nbsp; <u>solution suggestion 2</u>:
 +
*In accordance with the explanations for subtask&nbsp; '''(1)''',&nbsp; one obtains for the substitution of the ring:
 +
:$$E \hspace{-0.15cm} \ = \ \hspace{-0.15cm} A \cdot B + A  \cdot C \cdot B + A  \cdot C^2 \cdot B + A  \cdot C^3 \cdot B + \text{ ...} \hspace{0.1cm}=A \cdot B \cdot [1 + C + C^2+ C^3 +\text{ ...}\hspace{0.1cm}]
 +
\hspace{0.05cm}.$$
 +
 
 +
*The parenthesis expression gives&nbsp; $1/(1 \, &ndash;C)$.
 +
:$$E(X, U) =  \frac{A(X, U) \cdot B(X, U)}{1- C(X, U)}
 +
\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(3)'''&nbsp; Correct are the <u>solutions 1, 3 and 4</u>:
 +
* One goes first from&nbsp; $S_1$&nbsp; to&nbsp; $S_2 \ \Rightarrow \ A(X, \, U)$,
 +
 
 +
* then from&nbsp; $S_2$&nbsp; to&nbsp; $S_3 \ \Rightarrow \ C(X, \, U)$,
 +
 
 +
* then&nbsp; $j$&ndash;times back to&nbsp; $S_2$&nbsp; and again to&nbsp; $S_3 \ (j = 0, \ 1, \ 2, \ \text{ ...} \ ) \ \Rightarrow \ E(X, \, U)$,
 +
 
 +
* finally from&nbsp; $S_3$&nbsp; to&nbsp; $S_4 \ \Rightarrow \ B(X, \, U)$,
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; Thus, the correct solution is the&nbsp; <u>suggested solution 1</u>:
 +
*According to the sample solution to subtask&nbsp; '''(3)'''&nbsp; applies:
 +
:$$F(X, U) = A(X, U) \cdot C(X, U) \cdot E(X, U) \cdot B(X, U)\hspace{0.05cm}$$
 +
 
 +
*Here&nbsp; $E(X, \, U)$&nbsp; describes the path&nbsp; "$j$&ndash;times"&nbsp; back to&nbsp; $S_2$&nbsp; and again to&nbsp; $S_3 \ (j =0, \ 1, \ 2, \ \text{ ...})$:
 +
:$$E(X, U) =  1 + D \cdot C + (1 + D)^2 + (1 + D)^3 + \text{ ...} \hspace{0.1cm}= \frac{1}{1-C \hspace{0.05cm} D}
 +
\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm} F(X, U) =  \frac{A(X, U) \cdot B(X, U)\cdot C(X, U)}{1- C(X, U) \cdot D(X, U)}
 +
\hspace{0.05cm}.$$
 +
 
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu  Kanalcodierung|^3.5 Distanzeigenschaften und Fehlerwahrscheinlichkeitsschranken^]]
+
[[Category:Channel Coding: Exercises|^3.5 Distance Properties^]]

Latest revision as of 17:27, 22 November 2022

Ring and feedback in the state transition diagram

In order to determine the path weighting enumerator function   $T(X)$   of a convolutional code from the state transition diagram,  it is necessary to reduce the diagram until it can be represented by a single connection from the initial state to the final state.

In the course of this diagram reduction can occur:

  • serial and parallel transitions,
  • a ring according to the sketch above,
  • a feedback according to the sketch below.


For these two graphs,  find the correspondences   $E(X, \, U)$   and   $F(X, \, U)$   depending on the given functions   $A(X, \, U), \ B(X, \ U), \ C(X, \, U), \ D(X, \, U)$ .





Hints:



Questions

1

Which of the listed transitions are possible with the ring?

$S_1 → S_2 → S_3$,
$S_1 → S_2 → S_2 → S_2 → S_3$,
$S_1 → S_2 → S_1 → S_2 → S_3$.

2

What is the substitution  $E(X, \, U)$  of a ring?

$E(X, \, U) = [A(X, \, U) + B(X, \, U)] \ / \ [1 \, -C(X, \, U)]$,
$E(X, \, U) = A(X, \, U) \cdot B(X, \, U) \ / \ [1 \, -C(X, \, U)]$,
$E(X, \, U) = A(X, \, U) \cdot C(X, \, U) \ / \ [1 \, -B(X, \, U)]$.

3

Which of the listed transitions are possible with feedback?

$S_1 → S_2 → S_3 → S_4$,
$S_1 → S_2 → S_3 → S_2 → S_4$,
$S_1 → S_2 → S_3 → S_2 → S_3 → S_4$,
$S_1 → S_2 → S_3 → S_2 → S_3 → S_2 → S_3 → S_4$.

4

What is the substitution  $F(X, \, U)$  of a feedback?

$F(X, \, U) = A(X, \, U) \cdot B(X, \, U) \cdot C(X, \, U) \ / \ [1 \, -C(X, \, U) \cdot D(X, \, U)]$
$F(X, \, U) = A(X, \, U) \cdot B(X, \, U) \ / \ [1 \, -C(X, \, U) + D(X, \, U)]$.


Solution

(1)  Correct are the  solutions 1 and 2:

  • In general terms,  one first goes from  $S_1$  to  $S_2$,  remains  $j$–times in the state  $S_2 \ (j = 0, \ 1, \, 2, \ \text{ ...})$,  and finally continues from  $S_2$  to  $S_3$.


(2)  Correct is the  solution suggestion 2:

  • In accordance with the explanations for subtask  (1),  one obtains for the substitution of the ring:
$$E \hspace{-0.15cm} \ = \ \hspace{-0.15cm} A \cdot B + A \cdot C \cdot B + A \cdot C^2 \cdot B + A \cdot C^3 \cdot B + \text{ ...} \hspace{0.1cm}=A \cdot B \cdot [1 + C + C^2+ C^3 +\text{ ...}\hspace{0.1cm}] \hspace{0.05cm}.$$
  • The parenthesis expression gives  $1/(1 \, –C)$.
$$E(X, U) = \frac{A(X, U) \cdot B(X, U)}{1- C(X, U)} \hspace{0.05cm}.$$


(3)  Correct are the solutions 1, 3 and 4:

  • One goes first from  $S_1$  to  $S_2 \ \Rightarrow \ A(X, \, U)$,
  • then from  $S_2$  to  $S_3 \ \Rightarrow \ C(X, \, U)$,
  • then  $j$–times back to  $S_2$  and again to  $S_3 \ (j = 0, \ 1, \ 2, \ \text{ ...} \ ) \ \Rightarrow \ E(X, \, U)$,
  • finally from  $S_3$  to  $S_4 \ \Rightarrow \ B(X, \, U)$,


(4)  Thus, the correct solution is the  suggested solution 1:

  • According to the sample solution to subtask  (3)  applies:
$$F(X, U) = A(X, U) \cdot C(X, U) \cdot E(X, U) \cdot B(X, U)\hspace{0.05cm}$$
  • Here  $E(X, \, U)$  describes the path  "$j$–times"  back to  $S_2$  and again to  $S_3 \ (j =0, \ 1, \ 2, \ \text{ ...})$:
$$E(X, U) = 1 + D \cdot C + (1 + D)^2 + (1 + D)^3 + \text{ ...} \hspace{0.1cm}= \frac{1}{1-C \hspace{0.05cm} D} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} F(X, U) = \frac{A(X, U) \cdot B(X, U)\cdot C(X, U)}{1- C(X, U) \cdot D(X, U)} \hspace{0.05cm}.$$