Difference between revisions of "Channel Coding/The Basics of Product Codes"

From LNTwww
 
(46 intermediate revisions by 7 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Iterative Decodierverfahren
+
|Untermenü=Iterative Decoding Methods
|Vorherige Seite=Soft–in Soft–out Decoder
+
|Vorherige Seite=Soft-in Soft-Out Decoder
|Nächste Seite=Grundlegendes zu den Turbocodes
+
|Nächste Seite=The Basics of Turbo Codes
 
}}
 
}}
  
== Grundstruktur eines Produktcodes ==
+
== Basic structure of a product code ==
 
<br>
 
<br>
Die Grafik zeigt den prinzipiellen Aufbau von Produktcodes, die bereits 1954 von [https://de.wikipedia.org/wiki/Peter_Elias Peter Elias] eingeführt wurden.  
+
The graphic shows the principle structure of&nbsp; &raquo;product codes&laquo;,&nbsp; which were already introduced in 1954 by&nbsp; [https://en.wikipedia.org/wiki/Peter_Elias $\text{Peter Elias}$].&nbsp;
[[File:P ID3000 KC T 4 2 S1 v1.png|right|frame|Grundstruktur eines Produktcodes|class=fit]]
+
*The&nbsp; &raquo;'''two-dimensional product code'''&laquo;&nbsp; $\mathcal{C} = \mathcal{C}_1 &times; \mathcal{C}_2$&nbsp; shown here is based on the two linear and binary block codes with parameters&nbsp; $(n_1, \ k_1)$&nbsp; and&nbsp; $(n_2, \ k_2)$ respectively.  
<br><br><br><br>Der hier dargestellte '''zweidimensionale Produktcode''' $\mathcal{C} = \mathcal{C}_1 &times; \mathcal{C}_2$ basiert auf den beiden linearen und binären Blockcodes mit den Parametern $(n_1, \ k_1)$ bzw. $(n_2, \ k_2)$. Die Codewortlänge ist $n = n_1 \cdot n_2$.  
+
 
<br clear=all>
+
*The code word length is&nbsp; $n = n_1 \cdot n_2$.  
Diese $n$ Codebits lassen sich wie folgt gruppieren:
+
 
*Die $k = k_1 \cdot k_2$ Informationsbits sind in der $k_2 &times; k_1$&ndash;Matrix $\mathbf{U}$ angeordnet. Die Coderate ist gleich dem Produkt der Coderaten der beiden Basiscodes:  
+
 
 +
The&nbsp; $n$&nbsp; encoded bits can be grouped as follows:
 +
[[File:EN_KC_T_4_2_S1_v1.png|right|frame|Basic structure of a product code|class=fit]]
 +
*The&nbsp; $k = k_1 \cdot k_2$&nbsp; information bits are arranged in the&nbsp; $k_2 &times; k_1$ matrix&nbsp; $\mathbf{U}$.
 +
 
 +
*The code rate is equal to the product of the code rates of the base codes:  
 
:$$R = k/n = (k_1/n_1) \cdot (k_2/n_2) = R_1 \cdot R_2.$$
 
:$$R = k/n = (k_1/n_1) \cdot (k_2/n_2) = R_1 \cdot R_2.$$
  
*Die rechte obere Matrix $\mathbf{P}^{(1)}$ mit der Dimension $k_2 &times; m_1$ beinhaltet die Prüfbits (englisch: <i>Parity</i>) hinsichtlich des Codes $\mathcal{C}_1$. In jeder der $k_2$ Zeilen werden zu den $k_1$ Informationsbits $m_1 = n_1 \, &ndash;k_1$ Prüfbits hinzugefügt, wie in einem Kapitel am Beispiel der  [[Kanalcodierung/Beispiele_bin%C3%A4rer_Blockcodes#Hamming.E2.80.93Codes_.282.29|Hamming&ndash;Codes]] beschrieben wurde.<br>
+
*The upper right matrix&nbsp; $\mathbf{P}^{(1)}$&nbsp; with dimension&nbsp; $k_2 &times; m_1$&nbsp; contains the parity bits with respect to the code&nbsp; $\mathcal{C}_1$.  
  
*Die linke untere Matrix $\mathbf{P}^{(2)}$ der Dimension $m_2 &times; k_1$ beinhaltet die Prüfbits für den zweiten Komponentencodes $\mathcal{C}_2$. Hier erfolgt die Codierung (und auch die Decodierung) zeilenweise: In jeder der $k_1$ Spalten werden die $k_2$ Informationsbits noch um $m_2 = n_2 \, &ndash;k_2$ Prüfbits ergänzt.<br>
+
*In each of the&nbsp; $k_2$&nbsp; rows,&nbsp; $m_1 = n_1 - k_1$&nbsp; check bits are added to the&nbsp; $k_1$&nbsp;  information bits as described in an earlier chapter using the example of&nbsp; [[Channel_Coding/Examples_of_Binary_Block_Codes#Hamming_Codes|$\text{Hamming codes}$]]&nbsp;.<br>
  
*Die $m_2 &times; m_1$&ndash;Matrix $\mathbf{P}^{(12)}$ rechts unten bezeichnet man als <i>Checks&ndash;on&ndash;Checks</i>. Hier werden die vorher erzeugten Parity&ndash;Matrizen $\mathbf{P}^{(1)}$ und $\mathbf{P}^{(2)}$ entsprechend den Prüfgleichungen verknüpft.<br><br>
+
*The lower left matrix&nbsp; $\mathbf{P}^{(2)}$&nbsp; of dimension&nbsp; $m_2 &times; k_1$&nbsp; contains the check bits for the second component code&nbsp; $\mathcal{C}_2$.&nbsp; Here the encoding&nbsp; $($and also the decoding$)$&nbsp; is done line by line: &nbsp; In each of the&nbsp; $k_1$&nbsp; columns,&nbsp;  the&nbsp; $k_2$&nbsp; information bits are still supplemented by&nbsp; $m_2 = n_2 -k_2$&nbsp; check bits.<br>
 +
 
 +
*The&nbsp; $m_2 &times; m_1$&ndash;matrix&nbsp; $\mathbf{P}^{(12)}$&nbsp; on the bottom right is called&nbsp; "checks&ndash;on&ndash;checks".&nbsp; Here the two previously generated parity matrices&nbsp; $\mathbf{P}^{(1)}$&nbsp; and&nbsp; $\mathbf{P}^{(2)}$&nbsp; are linked according to the parity-check equations.<br><br>
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Fazit:}$&nbsp;  Alle Produktcodes entsprechend obiger Grafik weisen folgende Eigenschaften auf:
+
$\text{Conclusions:}$&nbsp;  &raquo;'''All product codes'''&laquo;&nbsp; according to the above graph have the following properties:
*Bei linearen Komponentencodes $\mathcal{C}_1$ und $\mathcal{C}_2$ ist auch der Produktcode $\mathcal{C} = \mathcal{C}_1 &times; \mathcal{C}_2$ linear.<br>
+
*For linear component codes&nbsp; $\mathcal{C}_1$&nbsp; and&nbsp; $\mathcal{C}_2$&nbsp; the product code&nbsp; $\mathcal{C} = \mathcal{C}_1 &times; \mathcal{C}_2$&nbsp; is also linear.<br>
  
*Jede Zeile von $\mathcal{C}$ gibt ein Codewort von $\mathcal{C}_1$ wieder und jede Spalte ein Codewort von $\mathcal{C}_2$.<br>
+
*Each row of&nbsp; $\mathcal{C}$&nbsp; returns a code word of&nbsp; $\mathcal{C}_1$&nbsp; and each column returns a code word of&nbsp; $\mathcal{C}_2$.<br>
  
*Die Summe zweier Zeilen ergibt aufgrund der Linearität wieder ein Codewort von $\mathcal{C}_1$.<br>
+
*The sum of two rows again gives a code word of&nbsp; $\mathcal{C}_1$ due to linearity.<br>
  
*Ebenso ergibt die Summe zweier Spalten ein gültiges Codewort von $\mathcal{C}_2$.<br>
+
*Also,&nbsp; the sum of two columns gives a valid code word of&nbsp; $\mathcal{C}_2$.<br>
  
*Jeder Produktcodes beinhaltet auch das Nullwort $\underline{0}$ (ein Vektor mit $n$ Nullen).<br>
+
*Each product code also includes the&nbsp; "zero word"&nbsp; $\underline{0}$&nbsp; $($a vector of&nbsp; $n$&nbsp; "zeros"$)$.<br>
  
*Die minimale Distanz von $C$ ist $d_{\rm min} = d_1 \cdot d_2$, wobei $d_i$ die minimale Distanz von $\mathcal{C}_i$ angibt.}}
+
*The minimum distance of&nbsp; $C$&nbsp; is&nbsp; $d_{\rm min} = d_1 \cdot d_2$,&nbsp; where&nbsp; $d_i$&nbsp; indicates the minimum distance of&nbsp; $\mathcal{C}_i$&nbsp; }}
  
== Iterative Syndromdecodierung von Produktcodes ==
+
== Iterative syndrome decoding of product codes ==
 
<br>
 
<br>
Wir betrachten nun den Fall, dass ein Produktcode mit Matrix $\mathbf{X}$ über einen Binärkanal übertragen wird. Die Empfangsmatrix sei $\mathbf{Y} = \mathbf{X} + \mathbf{E}$, wobei $\mathbf{E}$ die Fehlermatrix bezeichnet. Alle Elemente der Matrizen $\mathbf{X}, \ \mathbf{E}$ und $\mathbf{Y}$ seien binär, also $0$ oder $1$.<br>
+
We now consider the case where a product code with matrix&nbsp; $\mathbf{X}$&nbsp; is transmitted over a binary channel.&nbsp;
 +
*Let the received matrix&nbsp; $\mathbf{Y} = \mathbf{X} + \mathbf{E}$, where&nbsp; $\mathbf{E}$&nbsp; denotes the&nbsp; "error matrix".  
  
Für die Decodierung der beiden Komponentencodes bietet sich die Syndromdecodierung entsprechend dem Kapitel [[Kanalcodierung/Decodierung_linearer_Blockcodes#Blockschaltbild_und_Voraussetzungen| Decodierung linearer Blockcodes]] an. Im zweidimensionalen Fall bedeutet dies:
+
*Let all elements of the matrices&nbsp; $\mathbf{X}, \ \mathbf{E}$&nbsp; and&nbsp; $\mathbf{Y}$&nbsp; be binary,&nbsp; that is&nbsp; $0$&nbsp; or&nbsp; $1$.<br>
*Man decodiert zunächst die $n_2$ Zeilen der Empfangsmatrix $\mathbf{Y}$, basierend auf der Prüfmatrix $\mathbf{H}_1$ des Komponentencodes $\mathcal{C}_1$. Eine Möglichkeit ist die Syndromdecodierung.<br>
 
  
*Dazu bildet man jeweils das sogenannte Syndrom $\underline{s} = \underline{y} \cdot \mathbf{H}_1^{\rm T}$, wobei der Vektor $\underline{y}$ der Länge $n_1$ die aktuelle Zeile von $\mathbf{Y}$ angibt und &bdquo;T&rdquo; für &bdquo;transponiert&rdquo; steht.<br>
 
  
*Entsprechend dem berechneten $\underline{s}_{\mu}$ (mit $0 &#8804; \mu < 2^{n_1 \, &ndash;k_1}$) findet man dann in einer vorbereiteten Syndromtabelle das zugehörige wahrscheinliche Fehlermuster $\underline{e} = \underline{e}_{\mu}$ .<br>
+
For the decoding of the two component codes the syndrome decoding according to the chapter&nbsp; [[Channel_Coding/Decoding_of_Linear_Block_Codes#Block_diagram_and_requirements| "Decoding linear block codes"]]&nbsp; is suitable.&nbsp;  
  
*Bei nur wenigen Fehlern innerhalb der Zeile stimmt dann $\underline{y} + \underline{e}$ mit dem gesendeten Zeilenvektor $\underline{x}$ überein. Sind zu viele Fehler aufgetreten, so kommt es allerdings zu Fehlkorrekturen.<br>
+
In the two-dimensional case this means:
 +
#One first decodes the&nbsp; $n_2$&nbsp; rows of the received matrix&nbsp; $\mathbf{Y}$,&nbsp; based on the parity-check matrix&nbsp; $\mathbf{H}_1$&nbsp; of the component code&nbsp; $\mathcal{C}_1$.&nbsp; <br>Syndrome decoding is one way to do this.<br>
 +
#For this one forms in each case the so-called&nbsp; "syndrome" &nbsp; $\underline{s} = \underline{y} \cdot \mathbf{H}_1^{\rm T}$,&nbsp; where the vector &nbsp; $\underline{y}$ &nbsp; of length&nbsp; $n_1$&nbsp; indicates the current row of&nbsp; $\mathbf{Y}$&nbsp; and&nbsp; <br>"T"&nbsp; stands for "transposed".
 +
#Correspondingly to the calculated&nbsp; $\underline{s}_{\mu}$ &nbsp; $($with&nbsp; $0 &#8804; \mu < 2^{n_1 -k_1})$ &nbsp; one finds in a prepared syndrome table the corresponding probable error pattern&nbsp; $\underline{e} = \underline{e}_{\mu}$.<br>
 +
#If there are only a few errors within the row,&nbsp; then &nbsp; $\underline{y} + \underline{e}$ &nbsp; matches the sent row vector&nbsp; $\underline{x}$.&nbsp;
 +
#However,&nbsp; if too many errors have occurred,&nbsp; then incorrect corrections will occur.<br>
 +
#Afterwards one decodes the&nbsp; $n_1$&nbsp; columns of the&nbsp; $($corrected$)$&nbsp; received matrix&nbsp; $\mathbf{Y}\hspace{0.03cm}'$,&nbsp; this time based on the&nbsp; $($transposed$)$&nbsp; parity-check matrix&nbsp; $\mathbf{H}_2^{\rm T}$&nbsp; of the component code&nbsp; $\mathcal{C}_2$.
 +
#For this,&nbsp; one forms the syndrome &nbsp; $\underline{s} = \underline{y}\hspace{0.03cm}' \cdot \mathbf{H}_2^{\rm T}$,&nbsp; where the vector&nbsp; $\underline{y}\hspace{0.03cm}'$&nbsp; of length&nbsp; $n_2$&nbsp; denotes the considered column of&nbsp; $\mathbf{Y}\hspace{0.03cm}'$&nbsp; .<br>
 +
#From a second syndrome table&nbsp; $($valid for code&nbsp; $\mathcal{C}_2)$&nbsp; we find for the computed&nbsp; $\underline{s}_{\mu}$&nbsp; $($with&nbsp; $0 &#8804; \mu < 2^{n_2 -k_2})$&nbsp; the probable error pattern $\underline{e} = \underline{e}_{\mu}$ of the edited column.
 +
#After correcting all columns,&nbsp; the matrix&nbsp; $\mathbf{Y}$&nbsp; is present.&nbsp; Now one can do another row and then a column decoding &nbsp; &#8658; &nbsp; second iteration,&nbsp; and so on,&nbsp; and so forth.<br><br>
  
*Anschließend syndromdecodiert man die $n_1$ Spalten der (korrigierten) Empfangsmatrix $\mathbf{Y}'$, diesmal basierend auf der (transponierten) Prüfmatrix $\mathbf{H}_2^{\rm T}$ des Komponentencodes $\mathcal{C}_2$.<br>
+
{{GraueBox|TEXT= 
 +
$\text{Example 1:}$&nbsp;  To illustrate the decoding algorithm,&nbsp; we again consider the&nbsp; $(42, 12)$&nbsp; product code,&nbsp; based on
 +
*the Hamming code&nbsp; $\text{HC (7, 4, 3)}$ &nbsp; &#8658; &nbsp; code&nbsp; $\mathcal{C}_1$,<br>
  
*Hierzu bildet man das Syndrom $\underline{s} = \underline{y}' \cdot \mathbf{H}_2^{\rm T}$, wobei der Vektor $\underline{y}'$ der Länge $n_2$ die betrachtete Spalte von $\mathbf{Y}'$ bezeichnet.<br>
+
*the truncated Hamming code&nbsp; $\text{HC (6, 3, 3)}$ &nbsp; &#8658; &nbsp; code&nbsp; $\mathcal{C}_2$.<br>
  
*Aus einer zweiten Syndromtabelle (gültig für  den Code $\mathcal{C}_2$) findet man für das berechnete $\underline{s}_{\mu}$ (mit $0 &#8804; \mu < 2^{n_2 \, &ndash;k_2}$) das wahrscheinliche Fehlermuster $\underline{e} = \underline{e}_{\mu}$ der bearbeiteten Spalte.<br>
 
  
*Nach Korrektur aller Spalten liegt die Marix $\mathbf{Y}$ vor. Nun kann man wieder eine Zeilen&ndash; und anschließend eine Spaltendecodierung vornehmen &nbsp;&#8658;&nbsp; zweite Iteration, und so weiter, und so fort.<br><br>
+
[[File:EN_KC_T_4_2_S2a_v1.png|right|frame|Syndrome decoding of the&nbsp; $(42, 12)$&nbsp; product code|class=fit]]
 +
[[File:EN KC T 4 2 S2b v2 neu.png|right|frame|Syndrome table for code $\mathcal{C}_1$]]
 +
[[File:EN_KC_T_4_2_S2c_v2.png|right|frame|Syndrome table for the code $\mathcal{C}_2$]]
  
{{GraueBox|TEXT= 
+
The left graph shows the received matrix&nbsp; $\mathbf{Y}$.&nbsp;  
$\text{Beispiel 1:}$&nbsp; Zur Verdeutlichung des Decodieralgorithmuses  betrachten wir wieder den $(42, 12)$ Produktcode, basierend auf
 
*dem Hammingcode $(7, 4, 3)$ &nbsp; &#8658; &nbsp; Code $\mathcal{C}_1$,<br>
 
  
*dem verkürzten Hammingcode $(6, 3, 3)$ &nbsp;&#8658;&nbsp; Code $\mathcal{C}_2$.<br>
+
<u>Note:</u> &nbsp; For display reasons,&nbsp;  
 +
*the code matrix&nbsp; $\mathbf{X}$&nbsp; was chosen to be a&nbsp; $6 &times; 7$ zero matrix,&nbsp;
  
 +
*so the eight&nbsp; "ones"&nbsp; in&nbsp; $\mathbf{Y}$&nbsp; represent transmission errors.<br>
  
Die linke Grafik zeigt die Empfangsmatrix $\mathbf{Y}$, Aus Darstellungsgründen wurde die Codermatrix $\mathbf{X}$ zu einer $6 &times; 7$&ndash;Nullmatrix gewählt, so dass die neun Einsen in $\mathbf{Y}$ gleichzeitig Übertragungsfehler darstellen.<br>
 
[[File:P ID3014 KC T 4 2 S2a v1.png|right|frame|Zur Syndromdecodierung des $(42, 12)$–Produktcodes|class=fit]]
 
  
<br>Die <b>zeilenweise Syndromdecodierung</b> geschieht über das Syndrom $\underline{s} = \underline{y} \cdot \mathbf{H}_1^{\rm T}$
+
&rArr; &nbsp; The&nbsp; &raquo;<b>row-by-row syndrome decoding</b>&laquo;&nbsp; is done via the syndrome&nbsp; $\underline{s} = \underline{y} \cdot \mathbf{H}_1^{\rm T}$&nbsp; with
$$\text{mit} \hspace{0.5cm} \boldsymbol{\rm H}_1^{\rm T} =  
+
:$$\boldsymbol{\rm H}_1^{\rm T} =  
 
   \begin{pmatrix}
 
   \begin{pmatrix}
 
1 &0 &1 \\
 
1 &0 &1 \\
Line 79: Line 95:
 
\end{pmatrix}  \hspace{0.05cm}. $$
 
\end{pmatrix}  \hspace{0.05cm}. $$
  
 
+
In particular:
Im Einzelnen:  
+
*<b>Row 1</b> &nbsp;&#8658;&nbsp; Single error correction is successful&nbsp;  $($also in rows 3,&nbsp; 4 and 6$)$:  
*<b>Zeile 1</b> &nbsp;&#8658;&nbsp; Einzelfehlerkorrektur ist erfolgreich (ebenso in den Zeilen 3, 4 und 6):  
 
[[File:P ID3015 KC T 4 2 S2b v1.png|right|frame|Syndromtabelle für den Code $\mathcal{C}_1$]]
 
  
 
::<math>\underline{s} = \left ( 0, \hspace{0.02cm} 0, \hspace{0.02cm}1, \hspace{0.02cm}0, \hspace{0.02cm}0, \hspace{0.02cm}0, \hspace{0.02cm}0 \right ) \hspace{-0.03cm}\cdot \hspace{-0.03cm}{ \boldsymbol{\rm H} }_1^{\rm T}  
 
::<math>\underline{s} = \left ( 0, \hspace{0.02cm} 0, \hspace{0.02cm}1, \hspace{0.02cm}0, \hspace{0.02cm}0, \hspace{0.02cm}0, \hspace{0.02cm}0 \right ) \hspace{-0.03cm}\cdot \hspace{-0.03cm}{ \boldsymbol{\rm H} }_1^{\rm T}  
Line 92: Line 106:
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
  
*<b>Zeile 2</b> &nbsp;&#8658;&nbsp; Fehlkorrektur bezüglich Bit 5:
+
*<b>Row 2</b> &nbsp; $($contains two errors$)$ &nbsp; &#8658; &nbsp; Error correction concerning bit&nbsp; '''5''':
  
 
::<math>\underline{s} = \left ( 1, \hspace{0.02cm} 0, \hspace{0.02cm}0, \hspace{0.02cm}0, \hspace{0.02cm}0, \hspace{0.02cm}0, \hspace{0.02cm}1 \right ) \hspace{-0.03cm}\cdot \hspace{-0.03cm}{ \boldsymbol{\rm H} }_1^{\rm T}  
 
::<math>\underline{s} = \left ( 1, \hspace{0.02cm} 0, \hspace{0.02cm}0, \hspace{0.02cm}0, \hspace{0.02cm}0, \hspace{0.02cm}0, \hspace{0.02cm}1 \right ) \hspace{-0.03cm}\cdot \hspace{-0.03cm}{ \boldsymbol{\rm H} }_1^{\rm T}  
Line 102: Line 116:
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
  
*<b>Zeile 5</b> &nbsp;&#8658;&nbsp; Fehlkorrektur bezüglich Bit 3:
+
*<b>Row 5</b> &nbsp;$($also contains two errors$)$ &nbsp;&#8658;&nbsp; Error correction concerning bit&nbsp; ''' 3''':
  
 
::<math>\underline{s} = \left ( 0, \hspace{0.02cm} 0, \hspace{0.02cm}0, \hspace{0.02cm}1, \hspace{0.02cm}1, \hspace{0.02cm}0, \hspace{0.02cm}0 \right ) \hspace{-0.03cm}\cdot \hspace{-0.03cm}{ \boldsymbol{\rm H} }_1^{\rm T}  
 
::<math>\underline{s} = \left ( 0, \hspace{0.02cm} 0, \hspace{0.02cm}0, \hspace{0.02cm}1, \hspace{0.02cm}1, \hspace{0.02cm}0, \hspace{0.02cm}0 \right ) \hspace{-0.03cm}\cdot \hspace{-0.03cm}{ \boldsymbol{\rm H} }_1^{\rm T}  
Line 112: Line 126:
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
  
Die <b>spaltenweisen Syndromdecodierung</b> entfernt alle Einzelfehler in den Spalten 1, 2, 3, 4, 6 und 7.  
+
&rArr; &nbsp; The&nbsp; &raquo;<b>column-by-column syndrome decoding</b>&laquo;&nbsp; removes all single errors in columns&nbsp; 1,&nbsp; 2,&nbsp; 3,&nbsp; 4&nbsp; and&nbsp; 7.  
[[File:P ID3019 KC T 4 2 S2c v1.png|right|frame|Syndromtabelle für den Code $\mathcal{C}_2$]]
+
*<b>Column 5</b> &nbsp;$($contains two errors$)$ &nbsp; &#8658; &nbsp; Error correction concerning bit&nbsp; '''4''':
*<b>Spalte 5</b> &nbsp;&#8658;&nbsp; Fehlkorrektur bezüglich Bit 4:
 
  
 
::<math>\underline{s} = \left ( 0, \hspace{0.02cm} 1, \hspace{0.02cm}0, \hspace{0.02cm}0, \hspace{0.02cm}1, \hspace{0.02cm}0 \right ) \hspace{-0.03cm}\cdot \hspace{-0.03cm}{ \boldsymbol{\rm H} }_2^{\rm T}  
 
::<math>\underline{s} = \left ( 0, \hspace{0.02cm} 1, \hspace{0.02cm}0, \hspace{0.02cm}0, \hspace{0.02cm}1, \hspace{0.02cm}0 \right ) \hspace{-0.03cm}\cdot \hspace{-0.03cm}{ \boldsymbol{\rm H} }_2^{\rm T}  
Line 131: Line 144:
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
  
Die verbliebenen drei Fehler werden durch zeilenweise Decodierung der <b>zweiten Iterationsschleife</b> korrigiert.<br>
+
&rArr; &nbsp; The remaining three errors are corrected by decoding the&nbsp; &raquo;<b>second row iteration loop</b>&laquo;&nbsp; $($line-by-line$)$.<br>
  
Ob alle Fehler eines Blockes korrigierbar sind, hängt vom Fehlermuster ab. <br>Hier verweisen wir auf die [[Aufgabe 4.7]].}}<br>
+
Whether all errors of a block are correctable depends on the error pattern.&nbsp; Here we refer to&nbsp; [[Aufgaben:Aufgabe_4.7:_Decodierung_von_Produktcodes|"Exercise 4.7"]].}}<br>
  
== Leistungsfähigkeit der Produktcodes ==
+
== Performance of product codes ==
 
<br>
 
<br>
Die 1954 eingeführten <i>Produktcodes</i> waren die ersten Codes, die auf rekursiven Konstruktionsregeln basierten und somit grundsätzlich für die iterative Decodierung geeignet waren. Der Erfinder Peter Elias hat sich diesbezüglich zwar nicht geäußert, aber in den letzten zwanzig Jahren hat dieser Aspekt und die gleichzeitige Verfügbarkeit schneller Prozessoren dazu beigetragen, dass inzwischen auch Produktcodes in realen Kommunikationssystemen eingesetzt werden, zum Beispiel
+
The 1954 introduced&nbsp; product codes&nbsp; were the first codes,&nbsp; which were based on recursive construction rules and thus in principle suitable for iterative decoding.&nbsp; The inventor Peter Elias did not comment on this,&nbsp; but in the last twenty years this aspect and the simultaneous availability of fast processors have contributed to the fact that in the meantime product codes are also used in real communication systems, e.g.
*beim Fehlerschutz von Speichermedien, und
+
*in error protection of storage media,&nbsp; and
*bei Glasfasersystemen mit sehr hoher Datenrate.<br>
+
 +
*in very high data rate fiber optic systems.<br>
 +
 
 +
 
 +
Usually one uses very long product codes &nbsp; $($large&nbsp; $n = n_1 \cdot n_2)$ &nbsp; with the following consequence:
 +
*For effort reasons,&nbsp; the&nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#Criteria_.C2.BBMaximum-a-posteriori.C2.AB_and_.C2.BBMaximum-Likelihood.C2.AB|$\text{maximum likelihood decoding at block level}$]]&nbsp; is not applicable for the component codes&nbsp; $\mathcal{C}_1$&nbsp; and&nbsp; $\mathcal{C}_2$&nbsp; nor the&nbsp; [[Channel_Coding/Decoding_of_Linear_Block_Codes#Principle_of_syndrome_decoding|$\text{syndrome decoding}$]],&nbsp; which is after all a realization form of maximum likelihood decoding.
 +
 
 +
*Applicable,&nbsp; on the other hand,&nbsp; even with large&nbsp; $n$&nbsp; is the&nbsp; [[Channel_Coding/Soft-in_Soft-Out_Decoder#Bit-wise_soft-in_soft-out_decoding|$\text{iterative symbol-wise MAP decoding}$]].&nbsp; The exchange of extrinsic and a-priori&ndash;information happens here between the two component codes.&nbsp; More details on this can be found in&nbsp; [Liv15]<ref name='Liv15'>Liva, G.:&nbsp; Channels Codes for Iterative Decoding.&nbsp; Lecture manuscript, Department of Communications Engineering, TU Munich and DLR Oberpfaffenhofen, 2015.</ref>.<br>
  
  
Meist verwendet man sehr lange Produktcodes (großes $n = n_1 \cdot n_2$) mit folgender Konsequenz:
+
[[File:EN_KC_T_4_2_S3_v3.png|right|frame|Bit and block error probability of a&nbsp; $(1024, 676)$&nbsp; product code at AWGN |class=fit]]
*Aus Aufwandsgründen ist hier die [[Kanalcodierung/Klassifizierung_von_Signalen#MAP.E2.80.93_und_ML.E2.80.93Kriterium_.282.29| Maximum&ndash;Likelihood&ndash;Decodierung auf Blockebene]] für die Komponentencodes $\mathcal{C}_1$ und $\mathcal{C}_2$ nicht anwendbar, auch nicht die [[Kanalcodierung/Decodierung_linearer_Blockcodes#Prinzip_der_Syndromdecodierung| Syndromdecodierung]], die ja eine Realisierungsform der ML&ndash;Decodierung darstellt.<br>
+
The graph shows for a&nbsp; $(1024, 676)$&nbsp; product code, based on the&nbsp; extended Hamming code&nbsp; ${\rm eHC} \ (32, 26)$&nbsp; as component codes,
 +
*on the left,&nbsp; the bit error probability as  function of the AWGN parameter&nbsp; $10 \cdot {\rm lg} \, (E_{\rm B}/N_0)$&nbsp; the number of iterations&nbsp; $(I)$,
  
*Anwendbar ist dagegen auch bei großem $n$ die [[Kanalcodierung/Soft–in_Soft–out_Decoder#Symbolweise_Soft.E2.80.93in_Soft.E2.80.93out_Decodierung|iterative symbolweise MAP&ndash;Decodierung]]. Der Austausch von extrinsischer und Apriori&ndash;Information geschieht hier zwischen den beiden Komponentencodes. Genaueres hierüber findet man in [Liv15]<ref name='Liv15'>Liva, G.: ''Channels Codes for Iterative Decoding.'' Vorlesungsmanuskript, Lehrstuhl für Nachrichtentechnik, TU München und DLR Oberpfaffenhofen, 2015.</ref>.<br>
+
*on the right,&nbsp; the error probability of the blocks,&nbsp; $($or code words$)$.  
  
Die Grafik zeigt für einen $(1024, 676)$&ndash;Produktcode, basierend auf dem <i>Extended Hammingcode</i> ${\rm eHC} \ (32, 26)$ als Komponentencodes,
 
*links die AWGN&ndash;Bitfehlerwahrscheinlichkeit in Abhängigkeit der Iterationen $(I)$
 
*rechts die  Fehlerwahrscheinlichkeit der Blöcke (bzw. Codeworte).
 
  
[[File:P ID3020 KC T 4 2 S3 v4.png|center|frame|Bit– und Blockfehlerwahrscheinlichkeit eines $(1024, 676)$–Produktcodes bei AWGN|class=fit]]
 
  
Hier noch einige ergänzende Bemerkungen:
+
Here are some additional remarks:
*Die Coderate beträgt $R = R_1 \cdot R_2 = 0.66$, womit sich die Shannon&ndash;Grenze zu $10 \cdot {\rm lg} \, (E_{\rm B}/N_0) \approx 1 \ \rm dB$ ergibt.<br>
+
*The code rate is &nbsp; $R = R_1 \cdot R_2 = 0.66$;&nbsp; this results to the Shannon bound&nbsp; $10 \cdot {\rm lg} \, (E_{\rm B}/N_0) \approx 1 \ \rm dB$.<br>
  
*In der linken Grafik erkennt man den Einfluss der Iterationen. Beim Übergang von $I = 1$ auf $I=2$ gewinnt man ca. $2 \ \rm dB$ (bei der Bitfehlerrate $10^{&ndash;5}$) und mit $I = 10$ ein weiteres $\rm dB$.  Weitere Iterationen lohnen sich nicht.<br>
+
*The left graph shows the influence of the iterations.&nbsp; At the transition from&nbsp; $I = 1$&nbsp; to&nbsp; $I=2$&nbsp; one gains&nbsp; $\approx 2 \ \rm dB$ $($at&nbsp; $\rm BER =10^{-5})$&nbsp; and with&nbsp; $I = 10$&nbsp; another&nbsp; $\rm dB$.&nbsp; Further iterations are not worthwhile.<br>
  
*Alle im Kapitel [[Kanalcodierung/Schranken_f%C3%BCr_die_Blockfehlerwahrscheinlichkeit#Distanzspektrum_eines_linearen_Codes_.281.29| Schranken für die Blockfehlerwahrscheinlichkeit]] genannten Schranken können hier ebenfalls angewendet werden, so auch die in der rechten Grafik gestrichelt eingezeichnete <i>Truncated Union Bound</i>:
+
*All bounds mentioned in the chapter&nbsp; [[Channel_Coding/Bounds_for_Block_Error_Probability#Union_Bound_of_the_block_error_probability| "Bounds for the Block Error Probability"]]&nbsp; can be applied here as well,&nbsp; e.g. the &nbsp; "truncated union bound"&nbsp; $($dashed curve in the right graph$)$:
  
 
::<math>{\rm Pr(Truncated\hspace{0.15cm}Union\hspace{0.15cm} Bound)}= W_{d_{\rm min}} \cdot {\rm Q} \left ( \sqrt{d_{\rm min} \cdot {2R \cdot E_{\rm B}}/{N_0}} \right )  
 
::<math>{\rm Pr(Truncated\hspace{0.15cm}Union\hspace{0.15cm} Bound)}= W_{d_{\rm min}} \cdot {\rm Q} \left ( \sqrt{d_{\rm min} \cdot {2R \cdot E_{\rm B}}/{N_0}} \right )  
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
*Die minimale Distanz beträgt $d_{\rm min} = d_1 \cdot d_2 = 4 \cdot 4 = 16$. Mit der Gewichtsfunktion des ${\rm eHC} \ (32, 26)$,
+
*The minimum distance is&nbsp; $d_{\rm min} = d_1 \cdot d_2 = 4 \cdot 4 = 16$.&nbsp;  With the weight function of the&nbsp; ${\rm eHC} \ (32, 26)$,
  
 
::<math>W_{\rm eHC(32,\hspace{0.08cm}26)}(X) = 1 + 1240 \cdot X^{4}  
 
::<math>W_{\rm eHC(32,\hspace{0.08cm}26)}(X) = 1 + 1240 \cdot X^{4}  
Line 169: Line 186:
 
330460 \cdot X^{8} + ...\hspace{0.05cm} + X^{32},</math>
 
330460 \cdot X^{8} + ...\hspace{0.05cm} + X^{32},</math>
  
:erhält man für den Produktcode $W_{d, \ \rm min} = 1240^2 = 15\hspace{0.05cm}376\hspace{0.05cm}000$. Damit ist die obere Gleichung bestimmt, deren numerische Auswertung der rechten Grafik zugrundeliegt.<br>
+
:we obtain for the product code:&nbsp; $W_{d,\ min} = 1240^2 = 15\hspace{0.05cm}376\hspace{0.05cm}000$.  
 +
*This gives the block error probability bound shown in the graph on the right.<br>
  
== Aufgaben zum Kapitel==
+
== Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben:A4.6: Produktcode–Generierung|A4.6: Produktcode–Generierung]]
+
[[Aufgaben:Exercise_4.6:_Product_Code_Generation|Exercise 4.6: Product Code Generation]]
  
[[Zusatzaufgaben:Z4.6: Grundlagen der Produktcodes]]
+
[[Aufgaben:Exercise_4.6Z:_Basics_of_Product_Codes|Exercise 4.6Z: Basics of Product Codes]]
  
[[Aufgaben:A4.7: Produktcode–Decodierung|A4.7: Produktcode–Decodierung]]
+
[[Aufgaben:Exercise_4.7:_Product_Code_Decoding|Exercise 4.7: Product Code Decoding]]
  
[[Zusatzaufgaben:Z4.7: Syndromdecodierung – Prinzip]]
+
[[Aufgaben:Exercise_4.7Z:_Principle_of_Syndrome_Decoding|Exercise 4.7Z: Principle of Syndrome Decoding]]
  
==Quellenverzeichnis==
+
==References==
 
<references/>
 
<references/>
  
 
{{Display}}
 
{{Display}}

Latest revision as of 17:26, 16 January 2023

Basic structure of a product code


The graphic shows the principle structure of  »product codes«,  which were already introduced in 1954 by  $\text{Peter Elias}$

  • The  »two-dimensional product code«  $\mathcal{C} = \mathcal{C}_1 × \mathcal{C}_2$  shown here is based on the two linear and binary block codes with parameters  $(n_1, \ k_1)$  and  $(n_2, \ k_2)$ respectively.
  • The code word length is  $n = n_1 \cdot n_2$.


The  $n$  encoded bits can be grouped as follows:

Basic structure of a product code
  • The  $k = k_1 \cdot k_2$  information bits are arranged in the  $k_2 × k_1$ matrix  $\mathbf{U}$.
  • The code rate is equal to the product of the code rates of the base codes:
$$R = k/n = (k_1/n_1) \cdot (k_2/n_2) = R_1 \cdot R_2.$$
  • The upper right matrix  $\mathbf{P}^{(1)}$  with dimension  $k_2 × m_1$  contains the parity bits with respect to the code  $\mathcal{C}_1$.
  • In each of the  $k_2$  rows,  $m_1 = n_1 - k_1$  check bits are added to the  $k_1$  information bits as described in an earlier chapter using the example of  $\text{Hamming codes}$ .
  • The lower left matrix  $\mathbf{P}^{(2)}$  of dimension  $m_2 × k_1$  contains the check bits for the second component code  $\mathcal{C}_2$.  Here the encoding  $($and also the decoding$)$  is done line by line:   In each of the  $k_1$  columns,  the  $k_2$  information bits are still supplemented by  $m_2 = n_2 -k_2$  check bits.
  • The  $m_2 × m_1$–matrix  $\mathbf{P}^{(12)}$  on the bottom right is called  "checks–on–checks".  Here the two previously generated parity matrices  $\mathbf{P}^{(1)}$  and  $\mathbf{P}^{(2)}$  are linked according to the parity-check equations.

$\text{Conclusions:}$  »All product codes«  according to the above graph have the following properties:

  • For linear component codes  $\mathcal{C}_1$  and  $\mathcal{C}_2$  the product code  $\mathcal{C} = \mathcal{C}_1 × \mathcal{C}_2$  is also linear.
  • Each row of  $\mathcal{C}$  returns a code word of  $\mathcal{C}_1$  and each column returns a code word of  $\mathcal{C}_2$.
  • The sum of two rows again gives a code word of  $\mathcal{C}_1$ due to linearity.
  • Also,  the sum of two columns gives a valid code word of  $\mathcal{C}_2$.
  • Each product code also includes the  "zero word"  $\underline{0}$  $($a vector of  $n$  "zeros"$)$.
  • The minimum distance of  $C$  is  $d_{\rm min} = d_1 \cdot d_2$,  where  $d_i$  indicates the minimum distance of  $\mathcal{C}_i$ 

Iterative syndrome decoding of product codes


We now consider the case where a product code with matrix  $\mathbf{X}$  is transmitted over a binary channel. 

  • Let the received matrix  $\mathbf{Y} = \mathbf{X} + \mathbf{E}$, where  $\mathbf{E}$  denotes the  "error matrix".
  • Let all elements of the matrices  $\mathbf{X}, \ \mathbf{E}$  and  $\mathbf{Y}$  be binary,  that is  $0$  or  $1$.


For the decoding of the two component codes the syndrome decoding according to the chapter  "Decoding linear block codes"  is suitable. 

In the two-dimensional case this means:

  1. One first decodes the  $n_2$  rows of the received matrix  $\mathbf{Y}$,  based on the parity-check matrix  $\mathbf{H}_1$  of the component code  $\mathcal{C}_1$. 
    Syndrome decoding is one way to do this.
  2. For this one forms in each case the so-called  "syndrome"   $\underline{s} = \underline{y} \cdot \mathbf{H}_1^{\rm T}$,  where the vector   $\underline{y}$   of length  $n_1$  indicates the current row of  $\mathbf{Y}$  and 
    "T"  stands for "transposed".
  3. Correspondingly to the calculated  $\underline{s}_{\mu}$   $($with  $0 ≤ \mu < 2^{n_1 -k_1})$   one finds in a prepared syndrome table the corresponding probable error pattern  $\underline{e} = \underline{e}_{\mu}$.
  4. If there are only a few errors within the row,  then   $\underline{y} + \underline{e}$   matches the sent row vector  $\underline{x}$. 
  5. However,  if too many errors have occurred,  then incorrect corrections will occur.
  6. Afterwards one decodes the  $n_1$  columns of the  $($corrected$)$  received matrix  $\mathbf{Y}\hspace{0.03cm}'$,  this time based on the  $($transposed$)$  parity-check matrix  $\mathbf{H}_2^{\rm T}$  of the component code  $\mathcal{C}_2$.
  7. For this,  one forms the syndrome   $\underline{s} = \underline{y}\hspace{0.03cm}' \cdot \mathbf{H}_2^{\rm T}$,  where the vector  $\underline{y}\hspace{0.03cm}'$  of length  $n_2$  denotes the considered column of  $\mathbf{Y}\hspace{0.03cm}'$  .
  8. From a second syndrome table  $($valid for code  $\mathcal{C}_2)$  we find for the computed  $\underline{s}_{\mu}$  $($with  $0 ≤ \mu < 2^{n_2 -k_2})$  the probable error pattern $\underline{e} = \underline{e}_{\mu}$ of the edited column.
  9. After correcting all columns,  the matrix  $\mathbf{Y}$  is present.  Now one can do another row and then a column decoding   ⇒   second iteration,  and so on,  and so forth.

$\text{Example 1:}$  To illustrate the decoding algorithm,  we again consider the  $(42, 12)$  product code,  based on

  • the Hamming code  $\text{HC (7, 4, 3)}$   ⇒   code  $\mathcal{C}_1$,
  • the truncated Hamming code  $\text{HC (6, 3, 3)}$   ⇒   code  $\mathcal{C}_2$.


Syndrome decoding of the  $(42, 12)$  product code
Syndrome table for code $\mathcal{C}_1$
Syndrome table for the code $\mathcal{C}_2$

The left graph shows the received matrix  $\mathbf{Y}$. 

Note:   For display reasons, 

  • the code matrix  $\mathbf{X}$  was chosen to be a  $6 × 7$ zero matrix, 
  • so the eight  "ones"  in  $\mathbf{Y}$  represent transmission errors.


⇒   The  »row-by-row syndrome decoding«  is done via the syndrome  $\underline{s} = \underline{y} \cdot \mathbf{H}_1^{\rm T}$  with

$$\boldsymbol{\rm H}_1^{\rm T} = \begin{pmatrix} 1 &0 &1 \\ 1 &1 &0 \\ 0 &1 &1 \\ 1 &1 &1 \\ 1 &0 &0 \\ 0 &1 &0 \\ 0 &0 &1 \end{pmatrix} \hspace{0.05cm}. $$

In particular:

  • Row 1  ⇒  Single error correction is successful  $($also in rows 3,  4 and 6$)$:
\[\underline{s} = \left ( 0, \hspace{0.02cm} 0, \hspace{0.02cm}1, \hspace{0.02cm}0, \hspace{0.02cm}0, \hspace{0.02cm}0, \hspace{0.02cm}0 \right ) \hspace{-0.03cm}\cdot \hspace{-0.03cm}{ \boldsymbol{\rm H} }_1^{\rm T} \hspace{-0.05cm}= \left ( 0, \hspace{0.03cm} 1, \hspace{0.03cm}1 \right ) = \underline{s}_3\]
\[\Rightarrow \hspace{0.3cm} \underline{y} + \underline{e}_3 = \left ( 0, \hspace{0.02cm} 0, \hspace{0.02cm}0, \hspace{0.02cm}0, \hspace{0.02cm}0, \hspace{0.02cm}0, \hspace{0.02cm}0 \right ) \hspace{0.05cm}.\]
  • Row 2   $($contains two errors$)$   ⇒   Error correction concerning bit  5:
\[\underline{s} = \left ( 1, \hspace{0.02cm} 0, \hspace{0.02cm}0, \hspace{0.02cm}0, \hspace{0.02cm}0, \hspace{0.02cm}0, \hspace{0.02cm}1 \right ) \hspace{-0.03cm}\cdot \hspace{-0.03cm}{ \boldsymbol{\rm H} }_1^{\rm T} \hspace{-0.05cm}= \left ( 1, \hspace{0.03cm} 0, \hspace{0.03cm}0 \right ) = \underline{s}_4\]
\[\Rightarrow \hspace{0.3cm} \underline{y} + \underline{e}_4 = \left ( 1, \hspace{0.02cm} 0, \hspace{0.02cm}0, \hspace{0.02cm}0, \hspace{0.02cm}1, \hspace{0.02cm}0, \hspace{0.02cm}1 \right ) \hspace{0.05cm}.\]
  • Row 5  $($also contains two errors$)$  ⇒  Error correction concerning bit  3:
\[\underline{s} = \left ( 0, \hspace{0.02cm} 0, \hspace{0.02cm}0, \hspace{0.02cm}1, \hspace{0.02cm}1, \hspace{0.02cm}0, \hspace{0.02cm}0 \right ) \hspace{-0.03cm}\cdot \hspace{-0.03cm}{ \boldsymbol{\rm H} }_1^{\rm T} \hspace{-0.05cm}= \left ( 0, \hspace{0.03cm} 1, \hspace{0.03cm}1 \right ) = \underline{s}_3\]
\[\Rightarrow \hspace{0.3cm} \underline{y} + \underline{e}_3 = \left ( 0, \hspace{0.02cm} 0, \hspace{0.02cm}1, \hspace{0.02cm}1, \hspace{0.02cm}1, \hspace{0.02cm}0, \hspace{0.02cm}0 \right ) \hspace{0.05cm}.\]

⇒   The  »column-by-column syndrome decoding«  removes all single errors in columns  1,  2,  3,  4  and  7.

  • Column 5  $($contains two errors$)$   ⇒   Error correction concerning bit  4:
\[\underline{s} = \left ( 0, \hspace{0.02cm} 1, \hspace{0.02cm}0, \hspace{0.02cm}0, \hspace{0.02cm}1, \hspace{0.02cm}0 \right ) \hspace{-0.03cm}\cdot \hspace{-0.03cm}{ \boldsymbol{\rm H} }_2^{\rm T} \hspace{-0.05cm}= \left ( 0, \hspace{0.02cm} 1, \hspace{0.02cm}0, \hspace{0.02cm}0, \hspace{0.02cm}1, \hspace{0.02cm}0 \right ) \hspace{-0.03cm}\cdot \hspace{-0.03cm} \begin{pmatrix} 1 &1 &0 \\ 1 &0 &1 \\ 0 &1 &1 \\ 1 &0 &0 \\ 0 &1 &0 \\ 0 &0 &1 \end{pmatrix} = \left ( 1, \hspace{0.03cm} 0, \hspace{0.03cm}0 \right ) = \underline{s}_4\]
\[\Rightarrow \hspace{0.3cm} \underline{y} + \underline{e}_4 = \left ( 0, \hspace{0.02cm} 1, \hspace{0.02cm}0, \hspace{0.02cm}1, \hspace{0.02cm}1, \hspace{0.02cm}0 \right ) \hspace{0.05cm}.\]

⇒   The remaining three errors are corrected by decoding the  »second row iteration loop«  $($line-by-line$)$.

Whether all errors of a block are correctable depends on the error pattern.  Here we refer to  "Exercise 4.7".


Performance of product codes


The 1954 introduced  product codes  were the first codes,  which were based on recursive construction rules and thus in principle suitable for iterative decoding.  The inventor Peter Elias did not comment on this,  but in the last twenty years this aspect and the simultaneous availability of fast processors have contributed to the fact that in the meantime product codes are also used in real communication systems, e.g.

  • in error protection of storage media,  and
  • in very high data rate fiber optic systems.


Usually one uses very long product codes   $($large  $n = n_1 \cdot n_2)$   with the following consequence:

  • Applicable,  on the other hand,  even with large  $n$  is the  $\text{iterative symbol-wise MAP decoding}$.  The exchange of extrinsic and a-priori–information happens here between the two component codes.  More details on this can be found in  [Liv15][1].


Bit and block error probability of a  $(1024, 676)$  product code at AWGN

The graph shows for a  $(1024, 676)$  product code, based on the  extended Hamming code  ${\rm eHC} \ (32, 26)$  as component codes,

  • on the left,  the bit error probability as function of the AWGN parameter  $10 \cdot {\rm lg} \, (E_{\rm B}/N_0)$  the number of iterations  $(I)$,
  • on the right,  the error probability of the blocks,  $($or code words$)$.


Here are some additional remarks:

  • The code rate is   $R = R_1 \cdot R_2 = 0.66$;  this results to the Shannon bound  $10 \cdot {\rm lg} \, (E_{\rm B}/N_0) \approx 1 \ \rm dB$.
  • The left graph shows the influence of the iterations.  At the transition from  $I = 1$  to  $I=2$  one gains  $\approx 2 \ \rm dB$ $($at  $\rm BER =10^{-5})$  and with  $I = 10$  another  $\rm dB$.  Further iterations are not worthwhile.
\[{\rm Pr(Truncated\hspace{0.15cm}Union\hspace{0.15cm} Bound)}= W_{d_{\rm min}} \cdot {\rm Q} \left ( \sqrt{d_{\rm min} \cdot {2R \cdot E_{\rm B}}/{N_0}} \right ) \hspace{0.05cm}.\]
  • The minimum distance is  $d_{\rm min} = d_1 \cdot d_2 = 4 \cdot 4 = 16$.  With the weight function of the  ${\rm eHC} \ (32, 26)$,
\[W_{\rm eHC(32,\hspace{0.08cm}26)}(X) = 1 + 1240 \cdot X^{4} + 27776 \cdot X^{6}+ 330460 \cdot X^{8} + ...\hspace{0.05cm} + X^{32},\]
we obtain for the product code:  $W_{d,\ min} = 1240^2 = 15\hspace{0.05cm}376\hspace{0.05cm}000$.
  • This gives the block error probability bound shown in the graph on the right.

Exercises for the chapter


Exercise 4.6: Product Code Generation

Exercise 4.6Z: Basics of Product Codes

Exercise 4.7: Product Code Decoding

Exercise 4.7Z: Principle of Syndrome Decoding

References

  1. Liva, G.:  Channels Codes for Iterative Decoding.  Lecture manuscript, Department of Communications Engineering, TU Munich and DLR Oberpfaffenhofen, 2015.