Difference between revisions of "Aufgaben:Exercise 1.09: Extended Hamming Code"
(25 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Channel_Coding/General_Description_of_Linear_Block_Codes |
}} | }} | ||
− | [[File: | + | [[File:EN_KC_A_1_9_neu.png|right|frame|$\text{HC (7, 4)}$ (yellow background) and $\text{(8, 4)}$ extension (green background).]] |
− | + | Two codes are to be compared, whose code tables are given on the right. | |
+ | *The first four bits of each code word $\underline{x} are equal to the respective information word \underline{u}$ (black font). | ||
+ | |||
+ | *Then follow $m = n- k$ parity bit (red font). | ||
− | + | ||
+ | The systematic $\text{(7, 4)}$ Hamming code has already been discussed in [[Aufgaben:Exercise_1.6:_(7,_4)_Hamming_Code|"Exercise 1.6"]] and [[Aufgaben:Exercise_1.6:_(7,_4)_Hamming_Code|"Exercise 1.7"]]. The parity-check matrix and generator matrix of this code are given as follows: | ||
:{ \boldsymbol{\rm H}}_1 = \begin{pmatrix} 1 &1 &0 &1 &1 &0 &0\\ 0 &1 &1 &1 &0 &1 &0\\ 1 &0 &1 &1 &0 &0 &1 \end{pmatrix}\hspace{0.05cm}, | :{ \boldsymbol{\rm H}}_1 = \begin{pmatrix} 1 &1 &0 &1 &1 &0 &0\\ 0 &1 &1 &1 &0 &1 &0\\ 1 &0 &1 &1 &0 &0 &1 \end{pmatrix}\hspace{0.05cm}, | ||
:{ \boldsymbol{\rm G}}_1 = \begin{pmatrix} 1 &0 &0 &0 &1 &0 &1\\ 0 &1 &0 &0 &1 &1 &0\\ 0 &0 &1 &0 &0 &1 &1\\ 0 &0 &0 &1 &1 &1 &1 \end{pmatrix}\hspace{0.05cm}. | :{ \boldsymbol{\rm G}}_1 = \begin{pmatrix} 1 &0 &0 &0 &1 &0 &1\\ 0 &1 &0 &0 &1 &1 &0\\ 0 &0 &1 &0 &0 &1 &1\\ 0 &0 &0 &1 &1 &1 &1 \end{pmatrix}\hspace{0.05cm}. | ||
− | + | In the further course of the exercise this (yellow highlighted) code is called \mathcal{C}_{1}. | |
+ | |||
+ | The right column in the above table specifies a block code with parameters n = 8 and k = 4, usually referred to in the literature as the "Extended Hamming Code". We refer to this code (highlighted in green) in the following \mathcal{C}_{2} and denote its parity-check matrix by ${ \boldsymbol{\rm H}}_{2} and the corresponding generator matrix by { \boldsymbol{\rm G}}_{2}$. | ||
+ | |||
+ | The questions for this exercise are related to | ||
+ | *the [[Channel_Coding/Objective_of_Channel_Coding#Important_definitions_for_block_coding|"code rate"]], | ||
+ | *the [[Channel_Coding/Objective_of_Channel_Coding#Important_definitions_for_block_coding|"minimum distance"]] between two code words, | ||
+ | *the [[Channel_Coding/General_Description_of_Linear_Block_Codes#Code_definition_by_the_parity-check_matrix|"parity-check matrix"]] and the [[Channel_Coding/General_Description_of_Linear_Block_Codes#Code_definition_by_the_generator_matrix|"generator matrix"]] of the extended $\text{(8, 4)}$ Hamming code. | ||
+ | |||
+ | |||
+ | |||
− | + | Hints: | |
− | + | *This exercise belongs to the chapter [[Channel_Coding/General_Description_of_Linear_Block_Codes|"General Description of Linear Block Codes"]]. | |
− | * | ||
− | |||
− | |||
+ | *Note in the solution that \mathcal{C}_{1} and \mathcal{C}_{2} are each [[Channel_Coding/General_Description_of_Linear_Block_Codes#Systematic_Codes|"systematic codes"]]. | ||
+ | |||
+ | *The following [[Aufgaben:Exercise_1.09Z:_Extension_and/or_Puncturing|"Exercise 1.9Z"]] deals with the extension of codes in somewhat more general terms. | ||
+ | |||
− | |||
− | + | ||
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Specify the code rates of $\mathcal{C}_{1}$ and $\mathcal{C}_{2}$. |
|type="{}"} | |type="{}"} | ||
− | $\ | + | $\mathcal{C}_{1}\text{:}\hspace{0.4cm}R \ = \ $ { 0.571 3% } |
− | $\ | + | $\mathcal{C}_{2}\text{:}\hspace{0.4cm}R \ = \ $ { 0.5 3% } |
− | { | + | {Give the minimum distances of $\mathcal{C}_{1}$ and $\mathcal{C}_{2}$. |
|type="{}"} | |type="{}"} | ||
− | $\ | + | $\mathcal{C}_{1}\text{:}\hspace{0.4cm}d_{\rm min} \ = \ $ { 3 } |
− | $\ | + | $\mathcal{C}_{2}\text{:}\hspace{0.4cm}d_{\rm min} \ = \ $ { 4 } |
− | { | + | {What is the format of the parity-check matrix $\boldsymbol{\rm H}_{2} of \mathcal{C}_{2}$? |
|type="{}"} | |type="{}"} | ||
− | $\ { | + | $\text{Number of columns} \ = \ $ { 8 } |
− | $\ { | + | $\text{Number of rows} \ = \ $ { 4 } |
− | { | + | {Derive the equation for the code bit x_ {8} (= p_{4}) from the code table. Which specification is correct? |
− | |type=" | + | |type="()"} |
- x_{8} = 0. | - x_{8} = 0. | ||
Line 53: | Line 67: | ||
+ x_{8} = x_{1}⊕x_{2}⊕x_{3}⊕x_{4}⊕x_{5}⊕x_{6}⊕x_{7}. | + x_{8} = x_{1}⊕x_{2}⊕x_{3}⊕x_{4}⊕x_{5}⊕x_{6}⊕x_{7}. | ||
− | { | + | {Which statements are true for { \boldsymbol{\rm H}}_{2}? Hint: Correct are three out of four answers. |
|type="[]"} | |type="[]"} | ||
− | + | + | + Row 1 reads: 1 1 0 1 1 0 0 0. |
− | + | + | + Row 2 reads: 0 1 1 1 0 1 0 0. |
− | - | + | - Row 3 reads: 0 0 0 0 1 1 1 1. |
− | + | + | + Row 4 reads: 1 1 1 1 1 1 1 1. |
− | { | + | {Which transformation is allowed for the last row of { \boldsymbol{\rm H}}_{2} ? |
− | |type=" | + | |type="()"} |
- 1 1 1 1 1 1 1 1 → 0 0 0 0 0 0 0 0, | - 1 1 1 1 1 1 1 1 → 0 0 0 0 0 0 0 0, | ||
+ 1 1 1 1 1 1 1 1 → 1 1 1 0 0 0 0 1, | + 1 1 1 1 1 1 1 1 → 1 1 1 0 0 0 0 1, | ||
- 1 1 1 1 1 1 1 1 → 0 0 1 0 1 0 0 0. | - 1 1 1 1 1 1 1 1 → 0 0 1 0 1 0 0 0. | ||
− | { | + | {Give the corresponding generator matrix { \boldsymbol{\rm G}}_{2}. Which statements are true? |
|type="[]"} | |type="[]"} | ||
− | - { \boldsymbol{\rm G}}_{2} | + | - { \boldsymbol{\rm G}}_{2} has same format as matrix { \boldsymbol{\rm G}}_{1} of the $\text{(7, 4)}$ code. |
− | + { \boldsymbol{\rm G}}_{2} | + | + { \boldsymbol{\rm G}}_{2} starts like { \boldsymbol{\rm G}}_{1} with a diagonal matrix { \boldsymbol{\rm I}}_{4}. |
− | + { \boldsymbol{\rm G}}_{2} | + | + { \boldsymbol{\rm G}}_{2} in the considered example has the same format as { \boldsymbol{\rm H}}_{2} . |
Line 80: | Line 94: | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''1 | + | '''(1)''' The corresponding equation for the code rate in both cases is R = k/n\text{:} |
− | '''2 | + | *\mathcal{C}_{1} \text{:} \ n = 7, k = 4\ ⇒ \ R = 4/7 \underline {= 0.571}, |
− | '''3 | + | |
− | '''4 | + | *\mathcal{C}_{2} \text{:} \ n = 8, k = 4 \ ⇒ \ R = 4/8 \underline { =0.5}. |
− | '''5 | + | |
− | '''6 | + | |
− | '''7 | + | |
+ | '''(2)''' The minimum distance of the (7, 4, 3) Hamming code \mathcal{C}_{1} is d_{\rm min} \underline{= 3}, which can be read from the naming alone. | ||
+ | |||
+ | *From the table in the information section, it can be seen that for the extended Hamming code d_{\rm min} \underline{= 4} holds. | ||
+ | |||
+ | * \mathcal{C}_{2} is therefore also called in the literature a \rm (8, 4, 4) block code. | ||
+ | |||
+ | |||
+ | |||
+ | '''(3)''' The parity-check matrix { \boldsymbol{\rm H}} generally consists of n columns and m = n - k rows, where m indicates the number of parity-check equations. | ||
+ | |||
+ | *For the (7, 4, 3) Hamming code, { \boldsymbol{\rm H}} is a 3 × 7 matrix. | ||
+ | |||
+ | *For the extended Hamming code ⇒ \mathcal{C}_{2}, on the other hand: \underline{n = 8} (column number) and \underline{m = 4} (row number). | ||
+ | |||
+ | |||
+ | |||
+ | '''(4)''' From the code table in the information section you can see that only <u>answer 3</u> is correct. | ||
+ | *The parity bit p_{4} is to be determined in such a way that the modulo 2 sum over all bits of the code word results in the value 0. | ||
+ | |||
+ | |||
+ | |||
+ | '''(5)''' It should first be noted that the specification of the parity-check matrix is never unambiguous, if only because the order of the parity-check equations is interchangeable. | ||
+ | *However, considering that only one of the given rows is wrong, { \boldsymbol{\rm H}}_{2} is uniquely determined: | ||
+ | |||
+ | :{ \boldsymbol{\rm H}}_2 = \begin{pmatrix} 1 &1 &0 &1 &1 &0 &0 &0\\ 0 &1 &1 &1 &0 &1 &0 &0\\ 1 &0 &1 &1 &0 &0 &1 &0\\ 1 &1 &1 &1 &1 &1 &1 &1 \end{pmatrix} \hspace{0.05cm}. | ||
+ | |||
+ | *Correct are therefore the <u>statements 1, 2 and 4</u>. The rows of this parity-check matrix represent the four parity-check equations in this order: | ||
+ | |||
+ | : x_1\oplus x_2 \oplus x_4 \oplus x_5 = 0 \hspace{0.05cm}, | ||
+ | :x_2 \oplus x_3 \oplus x_4 \oplus x_6 = 0 \hspace{0.05cm}, | ||
+ | : x_1 \oplus x_3 \oplus x_4 \oplus x_7 = 0 \hspace{0.05cm}, | ||
+ | : x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5 \oplus x_6 \oplus x_7 \oplus x_8 = 0 \hspace{0.05cm}. | ||
+ | |||
+ | |||
+ | '''(6)''' Correct is <u>answer 2</u>: | ||
+ | *This result is obtained by replacing the last row with the modulo 2 sum over all four rows, which is allowed. | ||
+ | |||
+ | *Proposition 1 does not represent a parity-check equation. | ||
+ | |||
+ | *Proposal 3 represents the parity-check equation x_{3}⊕x_{5} = 0, which also does not correspond to the facts. | ||
+ | |||
+ | |||
+ | According to the correct solution suggestion 2, on the other hand, the parity-check equation becomes | ||
+ | :x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5 \oplus x_6 \oplus x_7 \oplus x_8 = 0 | ||
+ | :is replaced by the following new parity-check equation: | ||
+ | :x_1 \oplus x_2 \oplus x_3 \oplus x_8 = 0 \hspace{0.05cm}. | ||
+ | *The modified parity-check matrix is now: | ||
+ | :{ \boldsymbol{\rm H}}_2 = \begin{pmatrix} 1 &1 &0 &1 &1 &0 &0 &0\\ 0 &1 &1 &1 &0 &1 &0 &0\\ 1 &0 &1 &1 &0 &0 &1 &0\\ 1 &1 &1 &0 &0 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}. | ||
+ | |||
+ | |||
+ | '''(7)''' After this matrix manipulation, { \boldsymbol{\rm H}}_{2} is in the form typical for systematic codes: | ||
+ | |||
+ | :{ \boldsymbol{\rm H}}_2 =\left({ \boldsymbol{\rm P}}^{\rm T} \: ; \: { \boldsymbol{\rm I}}_m \right)\hspace{0.3cm} \Rightarrow\hspace{0.3cm} m = 4 {\rm :}\hspace{0.3cm}{ \boldsymbol{\rm H}}_2 =\left({ \boldsymbol{\rm P}}^{\rm T} \: ; \: { \boldsymbol{\rm I}}_4 \right) \hspace{0.05cm}. | ||
+ | |||
+ | *Thus, the generator matrix is: | ||
+ | :{ \boldsymbol{\rm G_{2}}} =\left({ \boldsymbol{\rm I}}_4 \: ; \: { \boldsymbol{\rm P}}\right) = \begin{pmatrix} 1 &0 &0 &0 &1 &0 &1 &1\\ 0 &1 &0 &0 &1 &1 &0 &1\\ 0 &0 &1 &0 &0 &1 &1 &1\\ 0 &0 &0 &1 &1 &1 &1 &0 \end{pmatrix} \hspace{0.05cm}. | ||
+ | |||
+ | So the <u>statements 2 and 3</u> are correct: | ||
+ | * { \boldsymbol{\rm G}}_{2} starts like { \boldsymbol{\rm G}}_{1} (see specification sheet) with a diagonal matrix { \boldsymbol{\rm I}}_{4}, but unlike { \boldsymbol{\rm G}}_{1} now has 8 columns. | ||
+ | |||
+ | *In the present case n = 8, k = 4 \ ⇒ \ m = 4 both { \boldsymbol{\rm G}}_{2} and { \boldsymbol{\rm H}}_{2} are 4×8 matrices respectively. | ||
{{ML-Fuß}} | {{ML-Fuß}} | ||
− | [[Category: | + | [[Category:Channel Coding: Exercises|^1.4 Linear Block Code Description |
^]] | ^]] |
Latest revision as of 18:01, 23 January 2023
Two codes are to be compared, whose code tables are given on the right.
- The first four bits of each code word \underline{x} are equal to the respective information word \underline{u} (black font).
- Then follow m = n- k parity bit (red font).
The systematic \text{(7, 4)} Hamming code has already been discussed in "Exercise 1.6" and "Exercise 1.7". The parity-check matrix and generator matrix of this code are given as follows:
- { \boldsymbol{\rm H}}_1 = \begin{pmatrix} 1 &1 &0 &1 &1 &0 &0\\ 0 &1 &1 &1 &0 &1 &0\\ 1 &0 &1 &1 &0 &0 &1 \end{pmatrix}\hspace{0.05cm},
- { \boldsymbol{\rm G}}_1 = \begin{pmatrix} 1 &0 &0 &0 &1 &0 &1\\ 0 &1 &0 &0 &1 &1 &0\\ 0 &0 &1 &0 &0 &1 &1\\ 0 &0 &0 &1 &1 &1 &1 \end{pmatrix}\hspace{0.05cm}.
In the further course of the exercise this (yellow highlighted) code is called \mathcal{C}_{1}.
The right column in the above table specifies a block code with parameters n = 8 and k = 4, usually referred to in the literature as the "Extended Hamming Code". We refer to this code (highlighted in green) in the following \mathcal{C}_{2} and denote its parity-check matrix by { \boldsymbol{\rm H}}_{2} and the corresponding generator matrix by { \boldsymbol{\rm G}}_{2}.
The questions for this exercise are related to
- the "code rate",
- the "minimum distance" between two code words,
- the "parity-check matrix" and the "generator matrix" of the extended \text{(8, 4)} Hamming code.
Hints:
- This exercise belongs to the chapter "General Description of Linear Block Codes".
- Note in the solution that \mathcal{C}_{1} and \mathcal{C}_{2} are each "systematic codes".
- The following "Exercise 1.9Z" deals with the extension of codes in somewhat more general terms.
Questions
Solution
- \mathcal{C}_{1} \text{:} \ n = 7, k = 4\ ⇒ \ R = 4/7 \underline {= 0.571},
- \mathcal{C}_{2} \text{:} \ n = 8, k = 4 \ ⇒ \ R = 4/8 \underline { =0.5}.
(2) The minimum distance of the (7, 4, 3) Hamming code \mathcal{C}_{1} is d_{\rm min} \underline{= 3}, which can be read from the naming alone.
- From the table in the information section, it can be seen that for the extended Hamming code d_{\rm min} \underline{= 4} holds.
- \mathcal{C}_{2} is therefore also called in the literature a \rm (8, 4, 4) block code.
(3) The parity-check matrix { \boldsymbol{\rm H}} generally consists of n columns and m = n - k rows, where m indicates the number of parity-check equations.
- For the (7, 4, 3) Hamming code, { \boldsymbol{\rm H}} is a 3 × 7 matrix.
- For the extended Hamming code ⇒ \mathcal{C}_{2}, on the other hand: \underline{n = 8} (column number) and \underline{m = 4} (row number).
(4) From the code table in the information section you can see that only answer 3 is correct.
- The parity bit p_{4} is to be determined in such a way that the modulo 2 sum over all bits of the code word results in the value 0.
(5) It should first be noted that the specification of the parity-check matrix is never unambiguous, if only because the order of the parity-check equations is interchangeable.
- However, considering that only one of the given rows is wrong, { \boldsymbol{\rm H}}_{2} is uniquely determined:
- { \boldsymbol{\rm H}}_2 = \begin{pmatrix} 1 &1 &0 &1 &1 &0 &0 &0\\ 0 &1 &1 &1 &0 &1 &0 &0\\ 1 &0 &1 &1 &0 &0 &1 &0\\ 1 &1 &1 &1 &1 &1 &1 &1 \end{pmatrix} \hspace{0.05cm}.
- Correct are therefore the statements 1, 2 and 4. The rows of this parity-check matrix represent the four parity-check equations in this order:
- x_1\oplus x_2 \oplus x_4 \oplus x_5 = 0 \hspace{0.05cm},
- x_2 \oplus x_3 \oplus x_4 \oplus x_6 = 0 \hspace{0.05cm},
- x_1 \oplus x_3 \oplus x_4 \oplus x_7 = 0 \hspace{0.05cm},
- x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5 \oplus x_6 \oplus x_7 \oplus x_8 = 0 \hspace{0.05cm}.
(6) Correct is answer 2:
- This result is obtained by replacing the last row with the modulo 2 sum over all four rows, which is allowed.
- Proposition 1 does not represent a parity-check equation.
- Proposal 3 represents the parity-check equation x_{3}⊕x_{5} = 0, which also does not correspond to the facts.
According to the correct solution suggestion 2, on the other hand, the parity-check equation becomes
- x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5 \oplus x_6 \oplus x_7 \oplus x_8 = 0
- is replaced by the following new parity-check equation:
- x_1 \oplus x_2 \oplus x_3 \oplus x_8 = 0 \hspace{0.05cm}.
- The modified parity-check matrix is now:
- { \boldsymbol{\rm H}}_2 = \begin{pmatrix} 1 &1 &0 &1 &1 &0 &0 &0\\ 0 &1 &1 &1 &0 &1 &0 &0\\ 1 &0 &1 &1 &0 &0 &1 &0\\ 1 &1 &1 &0 &0 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.
(7) After this matrix manipulation, { \boldsymbol{\rm H}}_{2} is in the form typical for systematic codes:
- { \boldsymbol{\rm H}}_2 =\left({ \boldsymbol{\rm P}}^{\rm T} \: ; \: { \boldsymbol{\rm I}}_m \right)\hspace{0.3cm} \Rightarrow\hspace{0.3cm} m = 4 {\rm :}\hspace{0.3cm}{ \boldsymbol{\rm H}}_2 =\left({ \boldsymbol{\rm P}}^{\rm T} \: ; \: { \boldsymbol{\rm I}}_4 \right) \hspace{0.05cm}.
- Thus, the generator matrix is:
- { \boldsymbol{\rm G_{2}}} =\left({ \boldsymbol{\rm I}}_4 \: ; \: { \boldsymbol{\rm P}}\right) = \begin{pmatrix} 1 &0 &0 &0 &1 &0 &1 &1\\ 0 &1 &0 &0 &1 &1 &0 &1\\ 0 &0 &1 &0 &0 &1 &1 &1\\ 0 &0 &0 &1 &1 &1 &1 &0 \end{pmatrix} \hspace{0.05cm}.
So the statements 2 and 3 are correct:
- { \boldsymbol{\rm G}}_{2} starts like { \boldsymbol{\rm G}}_{1} (see specification sheet) with a diagonal matrix { \boldsymbol{\rm I}}_{4}, but unlike { \boldsymbol{\rm G}}_{1} now has 8 columns.
- In the present case n = 8, k = 4 \ ⇒ \ m = 4 both { \boldsymbol{\rm G}}_{2} and { \boldsymbol{\rm H}}_{2} are 4×8 matrices respectively.