Difference between revisions of "Aufgaben:Exercise 4.5Z: Tangent Hyperbolic and Inverse"

From LNTwww
 
(22 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Soft–in Soft–out Decoder}}
+
{{quiz-Header|Buchseite=Channel_Coding/Soft-in_Soft-Out_Decoder}}
  
[[File:P_ID3025__KC_Z_4_5_v1.png|right|frame|Tabelle $y = \tanh {(x)}$]]
+
[[File:P_ID3025__KC_Z_4_5_v1.png|right|frame|$y = \tanh {(x)}$  tabularly]]
Im [[Kanalcodierung/Soft%E2%80%93in_Soft%E2%80%93out_Decoder#Zur_Berechnung_der_extrinsischen_L.E2.80.93Werte|Theorieteil]] wurde am Beispiel des <i>Single Parity&ndash;check Codes</i> gezeigt, dass der extrinsische $L$&ndash;Wert bezüglich des $i$&ndash;ten Symbols wie folgt definiert ist:
+
In the&nbsp; [[Channel_Coding/Soft-in_Soft-Out_Decoder#Calculation_of_extrinsic_LLRs|"Theory Part"]]&nbsp; it was shown,&nbsp; using the example of a&nbsp; "single parity&ndash;check code"&nbsp; that the extrinsic&nbsp; $L$ value with respect to the&nbsp; $i^{th}$&nbsp; symbol is defined as follows:
:$$L_{\rm E}(i) = {\rm ln} \hspace{0.2cm}\frac{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]}{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]}
+
:$$L_{\rm E}(i) = {\rm ln} \hspace{0.2cm}\frac{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm is \hspace{0.15cm} even} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]}{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm is \hspace{0.15cm} odd} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Diese Gleichung ist auch bei vielen anderen Kanalcodes anwendbar. Das Codewort $\underline{x}^{(-i)}$ in dieser Definition beinhaltet alle Symbole mit Ausnahme von $x_i$ und hat somit die Länge $n-1$.
+
*This equation is also applicable to many other channel codes.  
  
In der [[Aufgaben:4.4_Extrinsische_L%E2%80%93Werte_beim_SPC|Aufgabe A4.4]] wurde gezeigt, dass der extrinsische $L$&ndash;Wert auch wie folgt geschrieben werden kann:
+
*The code word&nbsp; $\underline{x}^{(-i)}$&nbsp; in this definition includes all symbols except&nbsp; $x_i$&nbsp; and has thus only length&nbsp; $n-1$.
 +
 
 +
 
 +
In the&nbsp; [[Aufgaben:Exercise_4.4:_Extrinsic_L-values_at_SPC|$\text{Exercise 4.4}$]]&nbsp; it was shown that the extrinsic&nbsp; $L$ value can also be written as follows:
 
:$$L_{\rm E}(i) = {\rm ln} \hspace{0.2cm}  \frac{1 + \pi}{1 - \pi}\hspace{0.05cm}, \hspace{0.3cm}
 
:$$L_{\rm E}(i) = {\rm ln} \hspace{0.2cm}  \frac{1 + \pi}{1 - \pi}\hspace{0.05cm}, \hspace{0.3cm}
{\rm mit} \hspace{0.3cm} \pi = \prod\limits_{j \ne i}^{n} \hspace{0.15cm}{\rm tanh}(L_j/2)
+
{\rm with} \hspace{0.3cm} \pi = \prod\limits_{j \ne i}^{n} \hspace{0.15cm}{\rm tanh}(L_j/2)
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
In dieser Aufgabe soll nun nach einer weiteren Berechnungsmöglichkeit gesucht werden.
+
In this exercise,&nbsp; we will now look for another calculation possibility.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
Hints:
 +
*This exercise belongs to the chapter&nbsp; [[Channel_Coding/Soft-in_Soft-Out_Decoder|"Soft&ndash;in Soft&ndash;out Decoder"]].
  
''Hinweise:''
+
*Reference is made in particular to the&nbsp; [[Channel_Coding/Soft-in_Soft-Out_Decoder#Calculation_of_extrinsic_log_likelihood_ratios|"Calculations of extrinsic log likelihood ratios"]] section.
* Die Aufgabe gehört zum Themengebiet von [[Kanalcodierung/Soft%E2%80%93in_Soft%E2%80%93out_Decoder#Hard_Decision_vs._Soft_Decision|Kapitel 4.1]].  
+
* Rechts oben sehen Sie eine Tabelle mit den Zahlenwerten der Funktion $y = \tanh {(x)}$ &nbsp;&#8658;&nbsp; <i>Tangens Hyperbolikus</i>. Mit den rot hinterlegten Zeilen kann man die Werte der inversen Funktion $x = \tanh^{-1}{(y)}$ ablesen, die für die Teilaufgabe (5) benötigt werden.
+
* Above you can see a table with the numerical values of the function&nbsp; $y = \tanh(x)$ &nbsp; &#8658; &nbsp; "hyperbolic tangent".
 +
 +
*With the rows highlighted in red you can read the values of the inverse function&nbsp; $x = \tanh^{-1}(y)$&nbsp; needed for subtask&nbsp; '''(5)'''.
 +
  
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Es gelte $\underline{L}_{\rm APP} = (+1.0, +0.4, -1.0)$. Berechnen Sie die extrinsischen $L$&ndash;Werte &nbsp;&#8658;&nbsp; $\underline{L}_E = (L_{\rm E}(1), \ L_{\rm E}(2), \ L_{\rm E}(3))$ nach der vorne angegebenen Gleichung:
+
{It holds &nbsp; $\underline{L}_{\rm APP} = (+1.0, +0.4, -1.0)$. &nbsp; Calculate the extrinsic&nbsp; $L$ values &nbsp; &#8658; &nbsp; $\underline{L}_{\rm E} = \big (L_{\rm E}(1), \ L_{\rm E}(2), \ L_{\rm E}(3) \big)$ &nbsp; according to the second equation given:
 
|type="{}"}
 
|type="{}"}
 
$L_{\rm E}(1) \ = \ ${ -0.188387--0.177413 }
 
$L_{\rm E}(1) \ = \ ${ -0.188387--0.177413 }
Line 29: Line 45:
 
$L_{\rm E}(3) \ = \ ${ 0.1829 3% }
 
$L_{\rm E}(3) \ = \ ${ 0.1829 3% }
  
{Welche der Eigenschaften weist die Funktion $y = \tanh {(x)}$ auf?
+
{Which of the properties does the function &nbsp; $y = \tanh\hspace{-0.05cm}{(x)}$ &nbsp; exhibit?
 
|type="[]"}
 
|type="[]"}
+ Es gilt $\tanh {(x)} = (e^x - e^{-x}) \ / \ (e^x + e^{-x})$.
+
+ $\tanh\hspace{-0.05cm} {(x)} = ({\rm e}^x - {\rm e}^{-x}) \ / \ ({\rm e}^x + {\rm e}^{-x})$&nbsp; is valid.
+ Es gilt $\tanh {(x)} = (1 - e^{-2x}) \ / \ (1 + e^{-2x})$.
+
+ $\tanh\hspace{-0.05cm} {(x)} = (1 - {\rm e}^{-2x}) \ / \ (1 + {\rm e}^{-2x})$&nbsp; is valid.
+ Die Funktion $y = \tanh {(x)}$ ist für alle $x$&ndash;Werte definiert.
+
+ The function &nbsp; $y = \tanh\hspace{-0.05cm} {(x)}$ &nbsp; is defined for all&nbsp; $x$ values.
- Es gilt $y_{\rm min} = 0$ und $y_{\rm max} &#8594; &#8734;$
+
- $y_{\rm min} = 0$ &nbsp;and &nbsp; $y_{\rm max} &#8594; &#8734;$&nbsp; is valid.
+ Es gilt $y_{\rm min} = -1$ und $y_{\rm max} = +1$.
+
+ $y_{\rm min} = -1$ &nbsp;and &nbsp; $y_{\rm max} = +1$ &nbsp; is valid.
  
{Welche Eigenschaften weist die inverse Funktion $x = \tanh^{(-1)}{(y)}$ auf?
+
{What are the properties of the inverse function&nbsp; $x = \tanh^{-1}\hspace{-0.08cm} {(y)}$?
 
|type="[]"}
 
|type="[]"}
- Die Funktion $x = \tanh^{-1}{(y)}$ ist für alle $y$&ndash;Werte definiert.
+
- The function &nbsp; $x = \tanh^{-1}\hspace{-0.05cm} (y)$ &nbsp; is defined for all&nbsp; $y$&nbsp; values.
+ Es gilt $x = \tanh^{-1}{(y)} = 1/2 \cdot \ln {[(1 + y) \ / \ (1 - y)]}$.
+
+ $x = \tanh^{-1}\hspace{-0.08cm} {(y)} = 1/2 \cdot \ln {[(1 + y) \ / \ (1 - y)]}$&nbsp; is valid.
- Es gilt $x_{\rm min} = -1$ und $x_{\rm max} = +1$.
+
- $x_{\rm min} = -1$ &nbsp;and &nbsp; $x_{\rm max} = +1$&nbsp; is valid.
+ Es gilt $x_{\rm min} &#8594; -&#8734;$ und $x_{\rm max} &#8594; +&#8734;$.
+
+ $x_{\rm min} &#8594; -&#8734;$ &nbsp;and &nbsp; $x_{\rm max} &#8594; +&#8734;$&nbsp; is valid.
  
{Wie lässt sich $L_{\rm E}(i)$ auch darstellen? Es sei $\pi$ wie auf der Angabenseite definiert.
+
{How can&nbsp; $L_{\rm E}(i)$&nbsp; also be represented?&nbsp; Let&nbsp; $\pi$&nbsp; be defined as in the specification section.
 
|type="[]"}
 
|type="[]"}
- Es gilt $L_{\rm E}(i) = \tanh^{-1}{(\pi)}$.
+
- $L_{\rm E}(i) = \tanh^{-1}\hspace{-0.08cm} {(\pi)}$&nbsp; is valid.
+ Es gilt $L_{\rm E}(i) = 2 \cdot \tanh^{-1}{(\pi)}$.
+
+ $L_{\rm E}(i) = 2 \cdot \tanh^{-1}\hspace{-0.08cm} {(\pi)}$&nbsp; is valid.
- Es gilt $L_{\rm E}(i) = 2 \cdot \tanh^{-1}{\ln {[(1 + \pi) \ / \ (1 - \pi)]}}$.
+
- $L_{\rm E}(i) = 2 \cdot \tanh^{-1}\hspace{-0.05cm}\big [ {\ln {[(1 + \pi) \ / \ (1 - \pi)]}}\big ]$&nbsp; is valid.
  
{Berechnen Sie die extrinsischen $L$&ndash;Werte mit der Gleichung gemäß Aufgabe (4). Verwenden Sie hierzu die Tabelle auf der Angabenseite.
+
{Calculate the extrinsic&nbsp; $L$ values using the equation given in exercise&nbsp; '''(4)'''.&nbsp; Use the table in the information section for this purpose.
 
|type="{}"}
 
|type="{}"}
 
$L_{\rm E}(1) \ = \ ${ -0.18849--0.17751 }
 
$L_{\rm E}(1) \ = \ ${ -0.18849--0.17751 }
Line 57: Line 73:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Entsprechend der Angabe gilt:
+
'''(1)'''&nbsp; According to the specification applies:
 
:$$L_{\rm E}(i) = {\rm ln} \hspace{0.2cm}  \frac{1 + \pi}{1 - \pi}\hspace{0.05cm}, \hspace{0.3cm}
 
:$$L_{\rm E}(i) = {\rm ln} \hspace{0.2cm}  \frac{1 + \pi}{1 - \pi}\hspace{0.05cm}, \hspace{0.3cm}
{\rm mit} \hspace{0.3cm} \pi = \prod\limits_{j \ne i}^{3} \hspace{0.15cm}{\rm tanh}(L_j/2)
+
{\rm with} \hspace{0.3cm} \pi = \prod\limits_{j \ne i}^{3} \hspace{0.15cm}{\rm tanh}(L_j/2)
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Aus der Tabelle auf der Angabenseite kann abgelesen werden:
+
*From the table on the specification section can be read:
 
:$$\tanh {(L_1/2)} = \tanh {(0.5)} = 0.4621,$$
 
:$$\tanh {(L_1/2)} = \tanh {(0.5)} = 0.4621,$$
 
:$$\tanh {(L_2/2)} = \tanh {(0.2)} = 0.1974.$$
 
:$$\tanh {(L_2/2)} = \tanh {(0.2)} = 0.1974.$$
  
Da der Tangens Hyperbolikus eine ungerade Funktion ist, gilt weiter
+
*Since the hyperbolic tangent is an odd function,&nbsp; the following applies further
 
:$$\tanh {(L_3/2)} = -\tanh {(0.5)} = -0.4621.$$
 
:$$\tanh {(L_3/2)} = -\tanh {(0.5)} = -0.4621.$$
  
* Berechnung von $L_{\rm E}(1)$:
+
* Calculation of&nbsp; $L_{\rm E}(1)$:
:$$\pi = {\rm tanh}(L_2/2) \cdot {\rm tanh}(L_3/2) = (+0.1974) \cdot (-0.4621) = - 0.0912$$
+
:$$\pi = {\rm tanh}(L_2/2) \cdot {\rm tanh}(L_3/2) = (+0.1974) \cdot (-0.4621) = - 0.0912\hspace{0.3cm}
:$$\Rightarrow \hspace{0.3cm} L_{\rm E}(1) = {\rm ln} \hspace{0.2cm}  \frac{1 -0.0912}{1 +0.0912}\hspace{0.15cm}\underline{=-0.1829}
+
\Rightarrow \hspace{0.3cm} L_{\rm E}(1) = {\rm ln} \hspace{0.2cm}  \frac{1 -0.0912}{1 +0.0912}\hspace{0.15cm}\underline{=-0.1829}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
* Berechnung von $L_{\rm E}(2)$:
+
* Calculation of&nbsp; $L_{\rm E}(2)$:
:$$\pi = {\rm tanh}(L_1/2) \cdot {\rm tanh}(L_3/2) = (+0.4621) \cdot (-0.4621) = - 0.2135$$
+
:$$\pi = {\rm tanh}(L_1/2) \cdot {\rm tanh}(L_3/2) = (+0.4621) \cdot (-0.4621) = - 0.2135\hspace{0.3cm}
:$$\Rightarrow \hspace{0.3cm} L_{\rm E}(2) = {\rm ln} \hspace{0.2cm}  \frac{1 -0.2135}{1 +0.2135}\hspace{0.15cm}\underline{=-0.4337}
+
\Rightarrow \hspace{0.3cm} L_{\rm E}(2) = {\rm ln} \hspace{0.2cm}  \frac{1 -0.2135}{1 +0.2135}\hspace{0.15cm}\underline{=-0.4337}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
* Berechnung von $L_{\rm E}(3)$:
+
* Calculation of&nbsp; $L_{\rm E}(3)$:
:$$\pi = {\rm tanh}(L_1/2) \cdot {\rm tanh}(L_2/2) = (+0.4621) \cdot (+0.1974) = + 0.0912$$
+
:$$\pi = {\rm tanh}(L_1/2) \cdot {\rm tanh}(L_2/2) = (+0.4621) \cdot (+0.1974) = + 0.0912\hspace{0.3cm}
:$$\Rightarrow \hspace{0.3cm} L_{\rm E}(3) = {\rm ln} \hspace{0.2cm}  \frac{1 +0.0912}{1 -0.0912}\hspace{0.15cm}\underline{=+0.1829}= - L_{\rm E}(1)  
+
\Rightarrow \hspace{0.3cm} L_{\rm E}(3) = {\rm ln} \hspace{0.2cm}  \frac{1 +0.0912}{1 -0.0912}\hspace{0.15cm}\underline{=+0.1829}= - L_{\rm E}(1)  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; <u>Richtig sind die Lösungsvorschläge 1, 2, 3 und 5</u>: Die Funktion
+
 
 +
'''(2)'''&nbsp;Correct are the&nbsp; <u>solutions 1, 2, 3, and 5</u>:&nbsp; The function
 
:$$y ={\rm tanh}(x) = \frac{{\rm e}^{x}-{\rm e}^{-x}}{{\rm e}^{x}+{\rm e}^{-x}}
 
:$$y ={\rm tanh}(x) = \frac{{\rm e}^{x}-{\rm e}^{-x}}{{\rm e}^{x}+{\rm e}^{-x}}
 
  = \frac{1-{\rm e}^{-2x}}{1+{\rm e}^{-2x}}$$
 
  = \frac{1-{\rm e}^{-2x}}{1+{\rm e}^{-2x}}$$
 +
is computable for all&nbsp; $x$&nbsp; values and &nbsp; $\tanh(-x) = -\tanh(x)$&nbsp; holds.
 +
 +
*For large values of&nbsp; $x$: &nbsp; &nbsp;  ${\rm e}^{-2x}$&nbsp; becomes very small,&nbsp; so that in the limiting case &nbsp; $x &#8594; &#8734;$&nbsp; the limit&nbsp; $y = 1$&nbsp; is obtained.
  
ist für alle $x$&ndash;Werte berechenbar und es gilt $\tanh{(-x)} = -\tanh{(x)}$. Für große Werte von $x$ wird $e^{-x}$ sehr klein, so dass man im Grenzfall $x &#8594; &#8734;$ den Grenzwert $y = 1$ erhält.
 
  
  
'''(3)'''&nbsp; Da der Tangens Hyperbolikus nur Werte zwischen $&plusmn;1$ liefert, ist die Umkehrfunktion $x = \tanh^{-1}{(y)}$ auch nur für $|y| &#8804; 1$ auswertbar. Durch Umstellen der angegebenen Gleichung
+
'''(3)'''&nbsp; Since the&nbsp; "hyperbolic tangent"&nbsp; only yields values between&nbsp; $&plusmn;1$,&nbsp; the inverse function &nbsp; $x = \tanh^{-1}(y)$ &nbsp; can also only be evaluated for&nbsp; $|y| &#8804; 1$.  
 +
 
 +
*By rearranging the given equation
 
:$$x ={\rm tanh}^{-1}(y) = 1/2 \cdot {\rm ln} \hspace{0.2cm} \frac{1+y}{1-y}$$
 
:$$x ={\rm tanh}^{-1}(y) = 1/2 \cdot {\rm ln} \hspace{0.2cm} \frac{1+y}{1-y}$$
  
erhält man:
+
:one obtains:
 
:$${\rm e}^{2x} =  \frac{1+y}{1-y} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
:$${\rm e}^{2x} =  \frac{1+y}{1-y} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
{\rm e}^{-2x} =  \frac{1-y}{1+y} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
{\rm e}^{-2x} =  \frac{1-y}{1+y} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
(1+y) \cdot {\rm e}^{-2x} =  1-y $$
+
(1+y) \cdot {\rm e}^{-2x} =  1-y \hspace{0.3cm}
:$$\Rightarrow \hspace{0.3cm}y = \frac{1-{\rm e}^{-2x}}{1+{\rm e}^{-2x}} =  
+
\Rightarrow \hspace{0.3cm}y = \frac{1-{\rm e}^{-2x}}{1+{\rm e}^{-2x}} =  
 
{\rm tanh}(x) \hspace{0.05cm}.$$
 
{\rm tanh}(x) \hspace{0.05cm}.$$
  
Das bedeutet:
+
*This means:
* Die im Lösungsvorschlag 2 angegebene Gleichung ist richtig.
+
# The equation given in the&nbsp; <u>proposed solution 2</u>&nbsp; is correct.
* Im Grenzfall $y &#8594; 1$ gilt $x = \tanh^{-1}{(y)} &#8594; &#8734;$.
+
# In the limiting case&nbsp; $y &#8594; 1$, &nbsp; $x = \tanh^{-1}(y) &#8594; &#8734;$&nbsp; holds.
* Auch die Umkehrfunktion ist ungerade &nbsp;&#8568;&nbsp; im Grenzfall $y &#8594; -1$ geht $x &#8594; -&#8734;$.
+
# Also the inverse function is odd &nbsp; &#8658; &nbsp; in the limiting case&nbsp; $y &#8594; -1$&nbsp; goes&nbsp; $x &#8594; -&#8734;$.
  
 +
*Accordingly,&nbsp; the&nbsp; <u>proposed solutions 2 and 4</u>&nbsp; are correct.
  
Richtig sind demnach die <u>Lösungsvorschläge 2 und 4</u>.
 
  
  
'''(4)'''&nbsp; Ausgehend von der Gleichung
+
'''(4)'''&nbsp; Starting from the equation.
 
:$$L_{\rm E}(i) = {\rm ln} \hspace{0.2cm}  \frac{1 + \pi}{1 - \pi}$$
 
:$$L_{\rm E}(i) = {\rm ln} \hspace{0.2cm}  \frac{1 + \pi}{1 - \pi}$$
  
kommt man mit dem Ergebnis von (3) zur äquivalenten Gleichung entsprechend dem <u>Lösungsvorschlag 2</u>:
+
one arrives with the result of&nbsp; '''(3)'''&nbsp; at the equivalent equation corresponding to&nbsp; <u>proposed solution 2</u>:
 
:$$L_{\rm E}(i) = 2 \cdot {\rm tanh}^{-1}(\pi)\hspace{0.05cm}.$$
 
:$$L_{\rm E}(i) = 2 \cdot {\rm tanh}^{-1}(\pi)\hspace{0.05cm}.$$
  
  
'''(5)'''&nbsp; Mit dem Ergebnis der Teilaufgabe (1) erhält man
+
 
* für den ersten extrinsischen $L$&ndash;Wert, da $\pi_1 = -0.0912$:
+
'''(5)'''&nbsp; With the result of the subtask&nbsp; '''(1)'''&nbsp; we get
 +
* for the first extrinsic&nbsp; $L$&nbsp; value,&nbsp; since&nbsp; $\pi_1 = -0.0912$:
 
:$$L_{\rm E}(1) = 2 \cdot {\rm tanh}^{-1}(-0.0912)= -2 \cdot {\rm tanh}^{-1}(0.0912)
 
:$$L_{\rm E}(1) = 2 \cdot {\rm tanh}^{-1}(-0.0912)= -2 \cdot {\rm tanh}^{-1}(0.0912)
 
= -2 \cdot 0.0915\hspace{0.15cm}\underline{=-0.1830}
 
= -2 \cdot 0.0915\hspace{0.15cm}\underline{=-0.1830}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
* für den zweiten extrinsischen $L$&ndash;Wert, da $\pi_2 = -0.2135$:
+
* for the second extrinsic&nbsp; $L$&nbsp; value,&nbsp; since&nbsp; $\pi_2 = -0.2135$:
 
:$$L_{\rm E}(2) =  -2 \cdot {\rm tanh}^{-1}(0.2135)
 
:$$L_{\rm E}(2) =  -2 \cdot {\rm tanh}^{-1}(0.2135)
 
= -2 \cdot 0.2168\hspace{0.15cm}\underline{=-0.4336}
 
= -2 \cdot 0.2168\hspace{0.15cm}\underline{=-0.4336}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
* für den dritten extrinsischen $L$&ndash;Wert, da $\pi_3 = +0.0912 = -\pi_1$:
+
* for the third extrinsic&nbsp; $L$ value,&nbsp; since&nbsp; $\pi_3 = +0.0912 = -\pi_1$:
 
:$$L_{\rm E}(3) = -L_{\rm E}(1) \hspace{0.15cm}\underline{=+0.1830}
 
:$$L_{\rm E}(3) = -L_{\rm E}(1) \hspace{0.15cm}\underline{=+0.1830}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Das Ergebnis wurde mit Hilfe der roten Tabelleneinträge auf der Angabenseite ermittelt und stimmt bis auf Rundungsfehler (Multiplikation/Division durch $2$) mit den Ergebnissen der Teilaufgabe (1) überein.
+
<u>Note:</u>
 +
*The result was determined using the red table entries on the information section.
 +
 
 +
* Except for rounding errors&nbsp; $($multiplication/division by&nbsp; $2)$,&nbsp; the result agrees with the results of subtask&nbsp; '''(1)'''.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
[[Category:Aufgaben zu  Kanalcodierung|^4.1 Soft–in Soft–out Decoder^]]
+
[[Category:Channel Coding: Exercises|^4.1 Soft–in Soft–out Decoder^]]

Latest revision as of 16:52, 4 December 2022

$y = \tanh {(x)}$  tabularly

In the  "Theory Part"  it was shown,  using the example of a  "single parity–check code"  that the extrinsic  $L$ value with respect to the  $i^{th}$  symbol is defined as follows:

$$L_{\rm E}(i) = {\rm ln} \hspace{0.2cm}\frac{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm is \hspace{0.15cm} even} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]}{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm is \hspace{0.15cm} odd} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]} \hspace{0.05cm}.$$
  • This equation is also applicable to many other channel codes.
  • The code word  $\underline{x}^{(-i)}$  in this definition includes all symbols except  $x_i$  and has thus only length  $n-1$.


In the  $\text{Exercise 4.4}$  it was shown that the extrinsic  $L$ value can also be written as follows:

$$L_{\rm E}(i) = {\rm ln} \hspace{0.2cm} \frac{1 + \pi}{1 - \pi}\hspace{0.05cm}, \hspace{0.3cm} {\rm with} \hspace{0.3cm} \pi = \prod\limits_{j \ne i}^{n} \hspace{0.15cm}{\rm tanh}(L_j/2) \hspace{0.05cm}.$$

In this exercise,  we will now look for another calculation possibility.





Hints:

  • Above you can see a table with the numerical values of the function  $y = \tanh(x)$   ⇒   "hyperbolic tangent".
  • With the rows highlighted in red you can read the values of the inverse function  $x = \tanh^{-1}(y)$  needed for subtask  (5).



Questions

1

It holds   $\underline{L}_{\rm APP} = (+1.0, +0.4, -1.0)$.   Calculate the extrinsic  $L$ values   ⇒   $\underline{L}_{\rm E} = \big (L_{\rm E}(1), \ L_{\rm E}(2), \ L_{\rm E}(3) \big)$   according to the second equation given:

$L_{\rm E}(1) \ = \ $

$L_{\rm E}(2) \ = \ $

$L_{\rm E}(3) \ = \ $

2

Which of the properties does the function   $y = \tanh\hspace{-0.05cm}{(x)}$   exhibit?

$\tanh\hspace{-0.05cm} {(x)} = ({\rm e}^x - {\rm e}^{-x}) \ / \ ({\rm e}^x + {\rm e}^{-x})$  is valid.
$\tanh\hspace{-0.05cm} {(x)} = (1 - {\rm e}^{-2x}) \ / \ (1 + {\rm e}^{-2x})$  is valid.
The function   $y = \tanh\hspace{-0.05cm} {(x)}$   is defined for all  $x$ values.
$y_{\rm min} = 0$  and   $y_{\rm max} → ∞$  is valid.
$y_{\rm min} = -1$  and   $y_{\rm max} = +1$   is valid.

3

What are the properties of the inverse function  $x = \tanh^{-1}\hspace{-0.08cm} {(y)}$?

The function   $x = \tanh^{-1}\hspace{-0.05cm} (y)$   is defined for all  $y$  values.
$x = \tanh^{-1}\hspace{-0.08cm} {(y)} = 1/2 \cdot \ln {[(1 + y) \ / \ (1 - y)]}$  is valid.
$x_{\rm min} = -1$  and   $x_{\rm max} = +1$  is valid.
$x_{\rm min} → -∞$  and   $x_{\rm max} → +∞$  is valid.

4

How can  $L_{\rm E}(i)$  also be represented?  Let  $\pi$  be defined as in the specification section.

$L_{\rm E}(i) = \tanh^{-1}\hspace{-0.08cm} {(\pi)}$  is valid.
$L_{\rm E}(i) = 2 \cdot \tanh^{-1}\hspace{-0.08cm} {(\pi)}$  is valid.
$L_{\rm E}(i) = 2 \cdot \tanh^{-1}\hspace{-0.05cm}\big [ {\ln {[(1 + \pi) \ / \ (1 - \pi)]}}\big ]$  is valid.

5

Calculate the extrinsic  $L$ values using the equation given in exercise  (4).  Use the table in the information section for this purpose.

$L_{\rm E}(1) \ = \ $

$L_{\rm E}(2) \ = \ $

$L_{\rm E}(3) \ = \ $


Solution

(1)  According to the specification applies:

$$L_{\rm E}(i) = {\rm ln} \hspace{0.2cm} \frac{1 + \pi}{1 - \pi}\hspace{0.05cm}, \hspace{0.3cm} {\rm with} \hspace{0.3cm} \pi = \prod\limits_{j \ne i}^{3} \hspace{0.15cm}{\rm tanh}(L_j/2) \hspace{0.05cm}.$$
  • From the table on the specification section can be read:
$$\tanh {(L_1/2)} = \tanh {(0.5)} = 0.4621,$$
$$\tanh {(L_2/2)} = \tanh {(0.2)} = 0.1974.$$
  • Since the hyperbolic tangent is an odd function,  the following applies further
$$\tanh {(L_3/2)} = -\tanh {(0.5)} = -0.4621.$$
  • Calculation of  $L_{\rm E}(1)$:
$$\pi = {\rm tanh}(L_2/2) \cdot {\rm tanh}(L_3/2) = (+0.1974) \cdot (-0.4621) = - 0.0912\hspace{0.3cm} \Rightarrow \hspace{0.3cm} L_{\rm E}(1) = {\rm ln} \hspace{0.2cm} \frac{1 -0.0912}{1 +0.0912}\hspace{0.15cm}\underline{=-0.1829} \hspace{0.05cm}.$$
  • Calculation of  $L_{\rm E}(2)$:
$$\pi = {\rm tanh}(L_1/2) \cdot {\rm tanh}(L_3/2) = (+0.4621) \cdot (-0.4621) = - 0.2135\hspace{0.3cm} \Rightarrow \hspace{0.3cm} L_{\rm E}(2) = {\rm ln} \hspace{0.2cm} \frac{1 -0.2135}{1 +0.2135}\hspace{0.15cm}\underline{=-0.4337} \hspace{0.05cm}.$$
  • Calculation of  $L_{\rm E}(3)$:
$$\pi = {\rm tanh}(L_1/2) \cdot {\rm tanh}(L_2/2) = (+0.4621) \cdot (+0.1974) = + 0.0912\hspace{0.3cm} \Rightarrow \hspace{0.3cm} L_{\rm E}(3) = {\rm ln} \hspace{0.2cm} \frac{1 +0.0912}{1 -0.0912}\hspace{0.15cm}\underline{=+0.1829}= - L_{\rm E}(1) \hspace{0.05cm}.$$


(2) Correct are the  solutions 1, 2, 3, and 5:  The function

$$y ={\rm tanh}(x) = \frac{{\rm e}^{x}-{\rm e}^{-x}}{{\rm e}^{x}+{\rm e}^{-x}} = \frac{1-{\rm e}^{-2x}}{1+{\rm e}^{-2x}}$$

is computable for all  $x$  values and   $\tanh(-x) = -\tanh(x)$  holds.

  • For large values of  $x$:     ${\rm e}^{-2x}$  becomes very small,  so that in the limiting case   $x → ∞$  the limit  $y = 1$  is obtained.


(3)  Since the  "hyperbolic tangent"  only yields values between  $±1$,  the inverse function   $x = \tanh^{-1}(y)$   can also only be evaluated for  $|y| ≤ 1$.

  • By rearranging the given equation
$$x ={\rm tanh}^{-1}(y) = 1/2 \cdot {\rm ln} \hspace{0.2cm} \frac{1+y}{1-y}$$
one obtains:
$${\rm e}^{2x} = \frac{1+y}{1-y} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} {\rm e}^{-2x} = \frac{1-y}{1+y} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} (1+y) \cdot {\rm e}^{-2x} = 1-y \hspace{0.3cm} \Rightarrow \hspace{0.3cm}y = \frac{1-{\rm e}^{-2x}}{1+{\rm e}^{-2x}} = {\rm tanh}(x) \hspace{0.05cm}.$$
  • This means:
  1. The equation given in the  proposed solution 2  is correct.
  2. In the limiting case  $y → 1$,   $x = \tanh^{-1}(y) → ∞$  holds.
  3. Also the inverse function is odd   ⇒   in the limiting case  $y → -1$  goes  $x → -∞$.
  • Accordingly,  the  proposed solutions 2 and 4  are correct.


(4)  Starting from the equation.

$$L_{\rm E}(i) = {\rm ln} \hspace{0.2cm} \frac{1 + \pi}{1 - \pi}$$

one arrives with the result of  (3)  at the equivalent equation corresponding to  proposed solution 2:

$$L_{\rm E}(i) = 2 \cdot {\rm tanh}^{-1}(\pi)\hspace{0.05cm}.$$


(5)  With the result of the subtask  (1)  we get

  • for the first extrinsic  $L$  value,  since  $\pi_1 = -0.0912$:
$$L_{\rm E}(1) = 2 \cdot {\rm tanh}^{-1}(-0.0912)= -2 \cdot {\rm tanh}^{-1}(0.0912) = -2 \cdot 0.0915\hspace{0.15cm}\underline{=-0.1830} \hspace{0.05cm}.$$
  • for the second extrinsic  $L$  value,  since  $\pi_2 = -0.2135$:
$$L_{\rm E}(2) = -2 \cdot {\rm tanh}^{-1}(0.2135) = -2 \cdot 0.2168\hspace{0.15cm}\underline{=-0.4336} \hspace{0.05cm}.$$
  • for the third extrinsic  $L$ value,  since  $\pi_3 = +0.0912 = -\pi_1$:
$$L_{\rm E}(3) = -L_{\rm E}(1) \hspace{0.15cm}\underline{=+0.1830} \hspace{0.05cm}.$$

Note:

  • The result was determined using the red table entries on the information section.
  • Except for rounding errors  $($multiplication/division by  $2)$,  the result agrees with the results of subtask  (1).