Difference between revisions of "Aufgaben:Exercise 1.6: (7, 4) Hamming Code"

From LNTwww
 
(20 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Beispiele binärer Blockcodes
+
{{quiz-Header|Buchseite=Channel_Coding/Examples_of_Binary_Block_Codes
  
 
}}
 
}}
  
[[File:P_ID2388__KC_A_1_6_neu.png|right|frame|Tabelle des (7, 4)–Hamming–Codes]]
+
[[File:P_ID2388__KC_A_1_6_neu.png|right|frame|Code table of the  $\text{HC (7, 4)}$]]
  
1962 hat [https://de.wikipedia.org/wiki/Richard_Hamming Richard Wesley Hamming] eine Klasse binärer Blockcodes angegeben, die sich durch die Anzahl $m$ der zugeführten Prüfbits unterscheiden. Die Codewortlänge ist bei diesen Codes stets $n = 2^m 1$ und das Informationswort besteht aus $k = n m$ Bit:
+
In 1962,  [https://en.wikipedia.org/wiki/Richard_Hamming Richard Wesley Hamming]  specified a class of binary block codes that differ in the number  $m$  of check bits supplied. The code word length is always  $n = 2^m - 1$. The information word consists of  $k = n - m$  bits:
  
*$m = 2$:   (3, 1) Hamming–Code,  identisch mit  [[Kanalcodierung/Beispiele_binärer_Blockcodes#Wiederholungscodes|'''RC (3, 1)''',]]
+
*$m = 2$:   $\text{(3, 1)}$ Hamming code     identical to  [[Channel_Coding/Examples_of_Binary_Block_Codes#Repetition_Codes|$\text{RC (3, 1)}$]],
*$m = 3$:   (7, 4) Hamming–Code,
+
*$m = 3$:   $\text{(7, 4)}$ Hamming code,
*$m = 4$:   (15, 11) Hamming–Code,
+
*$m = 4$:   $\text{(15, 11)}$ Hamming code,
*$m = 5$:   (31, 26) Hamming–Code, usw.
+
*$m = 5$:   $\text{(31, 26)}$ Hamming code, etc.
  
  
Im Verlaufe dieser Aufgabe gibt es Fragen
+
In the course of this exercise there are questions
*zum Codeumfang $ |\mathcal{C}|$,
+
*to the code size  $ |\hspace{0.05cm}\mathcal{C}\hspace{0.05cm}|$,
*zur Coderate $R$, und
+
*to the code rate  $R$,  and
*zur minimalen Distanz $d_{\rm min}$
+
*to the minimum distance  $d_{\rm min}$.
  
  
dieser Codeklasse. Weiterhin soll geklärt werden, ob der für diese Aufgabe durch seine Codetabelle $\underline{u}_{i} \underline{x}_{i}$ gegebene (7, 4)–Hamming–Code systematisch ist, und ob es sich um einen so genannten „perfekten Code” handelt. Der Laufindex kann hierbei die Werte $i = 1, \text{...}\hspace{0.05cm} , 2^k =16$ annehmen.
+
Furthermore,  we want to clarify whether the  $\text{(7, 4)}$  Hamming code  given for this task by its code table  $\underline{u}_{i} ⇒ \underline{x}_{i}$  is systematic,  and whether it is a so called  "perfect code".  The control index can take the values  $i = 1, \text{...}\hspace{0.05cm} , 2^k =16$ .
  
Man spricht von einem ''perfekten Code'', wenn folgende Bedingung erfüllt ist:
+
One speaks of a  "perfect code"  if the following condition is satisfied:
 
:$$2^k = \frac{2^n} {\sum_{f=0}^t {n \choose f}}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} 2^m = {\sum_{f=0}^t {n \choose f}} \hspace{0.05cm}.$$
 
:$$2^k = \frac{2^n} {\sum_{f=0}^t {n \choose f}}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} 2^m = {\sum_{f=0}^t {n \choose f}} \hspace{0.05cm}.$$
  
Hierbei bezeichnet $t$ die Anzahl der korrigierbaren Fehler. Bei ungerader Minimaldistanz $d_{\rm min}$ gilt:
+
Here  $t$  denotes the number of correctable errors.  For odd minimum distance  $d_{\rm min}$  holds:
 
:$$ t = \frac{d_{\rm min}-1 } {2} \hspace{0.05cm}.$$
 
:$$ t = \frac{d_{\rm min}-1 } {2} \hspace{0.05cm}.$$
  
Die Interpretation zu dieser Bedingung finden Sie in der Musterlösung zu dieser Aufgabe.
+
The interpretation to this condition can be found in the sample solution.
  
  
''Hinweise:''
 
*Die Aufgabe gehört zum Kapitel [[Kanalcodierung/Beispiele_binärer_Blockcodes|Beispiele binärer Blockcodes]].
 
*Bezug genommen wird insbesondere auf die Seite [[Kanalcodierung/Beispiele_binärer_Blockcodes#Hamming.E2.80.93Codes|Hamming–Codes]].
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
*Für diesen Hamming–Code wurden andere Prüfgleichungen herangezogen als im [[Kanalcodierung/Beispiele_binärer_Blockcodes#Hamming.E2.80.93Codes|Theorieteil]]. Deshalb unterscheiden sich auch die Codetabellen.
 
*In der [[Aufgaben:1.07_H_und_G_des_(7,_4)–Hamming–Codes|Aufgabe 1.7]], bei der der gleiche Code verwendet wird, ist das Schaubild der Prüfgleichungen angegeben.
 
  
  
  
===Fragebogen===
+
Hints:
 +
*This exercise belongs to the chapter  [[Channel_Coding/Examples_of_Binary_Block_Codes|"Examples of Binary Block Codes"]].
 +
 
 +
*Reference is made to the section  [[Channel_Coding/Examples_of_Binary_Block_Codes#Hamming_Codes|"Hamming Codes"]].
 +
 +
*For this Hamming code,  different parity-check equations were used than in the  [[Channel_Coding/Examples_of_Binary_Block_Codes#Hamming_Codes|theory section]].  Therefore,  the code tables also differ.
 +
 +
*In the  [[Aufgaben:Exercise_1.07:_Check_and_Generator_Matrix_of_the_HC_(7,_4,_3)|Exercise 1.7]],  where the same code is used,  the chart of the parity-check equations is given.
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Geben Sie die Kenngrößen des gegebenen Codes $\mathcal{C}$ an:
+
{Specify the characteristics of the given code&nbsp; $\mathcal{C}$:
 
|type="{}"}
 
|type="{}"}
$ |\mathcal{C}| \ = \ $ { 16 }
+
$ |\hspace{0.05cm}\mathcal{C}\hspace{0.05cm}| \ = \ $ { 16 }
$ k \hspace{0.35cm} = \ $ { 4 }
+
$ k \hspace{0.46cm} = \ $ { 4 }
$ n \hspace{0.33cm} = \ $ { 7 }
+
$ n \hspace{0.44cm} = \ $ { 7 }
$ R\hspace{0.25cm} = \ $ { 0.571 3% }
+
$ R \hspace{0.40cm} = \ $ { 0.571 3% }
  
  
{Handelt es sich um einen systematischen Code?
+
{Is this a systematic code?
 
|type="()"}
 
|type="()"}
+ Ja,
+
+ Yes,
- Nein.
+
- No.
  
{Wie groß ist die minimale Distanz zwischen zwei beliebigen Codeworten?
+
{What is the minimum distance between any two code words?
 
|type="{}"}
 
|type="{}"}
 
$ \ d_{\rm min} \ = \ $ { 3 }
 
$ \ d_{\rm min} \ = \ $ { 3 }
  
{Wieviele Übertragungsfehler können erkannt $(e)$ bzw. korrigiert $(t)$ werden?
+
{How many transmission errors can be detected&nbsp; $(e)$&nbsp; or corrected&nbsp; $(t)$&nbsp; respectively?
 
|type="{}"}
 
|type="{}"}
 
$e\hspace{0.22cm} = \ $ { 2 }
 
$e\hspace{0.22cm} = \ $ { 2 }
 
$t\hspace{0.28cm} = \ $ { 1 }
 
$t\hspace{0.28cm} = \ $ { 1 }
  
{Ist der hier betrachtete Hamming–Code perfekt?
+
{Is the Hamming code considered here&nbsp; "perfect"?
 
|type="()"}
 
|type="()"}
+ Ja,
+
+ Yes,
- Nein.
+
- No.
  
{Welche Aussagen gelten hinsichtlich eines perfekten Codes?
+
{Which statements are true regarding a&nbsp; "perfect code"?
 
|type="[]"}
 
|type="[]"}
- Ein perfekter Code führt stets zur Blockfehlerwahrscheinlichkeit Null.
+
- A perfect code always results in zero block error probability.
+ Alle Empfangsworte $\underline{y}$ sind einem gültigen Codewort zuordbar.
+
+ All receive words&nbsp; $\underline{y}$&nbsp; are assignable to a valid code word.
+ Bei perfekten Codes ist die minimale Hamming&ndash;Distanz ungerade.
+
+ For perfect codes,&nbsp; the minimum Hamming distance is odd.
  
{Welche der nachfolgend aufgeführten Codes sind perfekt?
+
{Which of the codes listed below are perfect?
 
|type="[]"}
 
|type="[]"}
+ Der (15,11)–Hamming–Code,
+
+ The &nbsp;$\text{(15, 11)}$ Hamming code,
+ der (63,57)–Hamming–Code,
+
+ the &nbsp;$\text{(63, 57)}$ Hamming code,
+ der (3,1)–Repetition Code,
+
+ the &nbsp;$\text{(3, 1)}$ repetition code,
- der (4,1)–Repetition Code,
+
- the &nbsp;$\text{(4, 1)}$ repetition Code,
+ der (5,1)–Repetition Code.
+
+ the &nbsp;$\text{(5, 1)}$ repetition code.
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die Codetabelle hat 16 Einträge: $\underline{|C| = 16}$.  
+
'''(1)'''&nbsp; The code table has sixteen entries: $\underline{|C| = 16}$.  
*Aus der Gleichung $|C| = 2^k$ folgt damit $\underline{k = 4}$.  
+
*From the equation&nbsp; $|C| = 2^k$&nbsp; it follows that&nbsp; $\underline{k = 4}$.  
*Die Länge eines jeden Codewortes ist $\underline{n = 7}$.  
+
*The length of each code word is&nbsp; $\underline{n = 7}$.  
*Damit ist die Coderate $\underline{R = 4/7} = 0.571$.
+
*Thus,&nbsp; the code rate is $\underline{R = 4/7} = 0.571$.
  
  
'''(2)'''&nbsp; Richtig ist <u>JA</u>:
+
 
*Jedes Codewort $\underline{x}$ beinhaltet zunächst die $k = 4$ Bit des Informationswortes $\underline{u}$. Danach folgen $m = 3$ Prüfbits:
+
'''(2)'''&nbsp; Correct&nbsp; <u>YES</u>:
 +
*Each code word&nbsp; $\underline{x}$&nbsp; first contains the&nbsp; $k = 4$&nbsp; bits of the information word&nbsp; $\underline{u}$.&nbsp; This is followed by&nbsp; $m = 3$&nbsp; check bits:
 
:$$\underline{x} = ( x_1, x_2, x_3, x_4, x_5, x_5,x_7) = ( u_1, u_2, u_3, u_4, p_1, p_2, p_3) \hspace{0.05cm}.$$
 
:$$\underline{x} = ( x_1, x_2, x_3, x_4, x_5, x_5,x_7) = ( u_1, u_2, u_3, u_4, p_1, p_2, p_3) \hspace{0.05cm}.$$
*Dies entspricht genau der Definition eines [[Kanalcodierung/Allgemeine_Beschreibung_linearer_Blockcodes|systematischen Codes]] .
+
*This corresponds exactly to the definition of a&nbsp; [[Channel_Coding/General_Description_of_Linear_Block_Codes|"systematic code"]] .
 +
 
 +
 
  
 +
'''(3)'''&nbsp; For any Hamming code,&nbsp; the minimum distance $d_{\rm min} \underline{= 3}$.
 +
*From the table,&nbsp; you can see that the minimum&nbsp; [[Channel_Coding/Objective_of_Channel_Coding#Some_Important_Definitions_of_Block_Coding|Hamming weight]]&nbsp; (the number of ones in a code word)&nbsp; is equal to 3.
 +
*A linear code,&nbsp; in fact,&nbsp; also includes the zero word,&nbsp; so that holds:
 +
:$$d_{\rm min}(\mathcal{C}) = \min_{\substack{\underline{x},\hspace{0.05cm}\underline{x}' \hspace{0.05cm}\in \hspace{0.05cm} \mathcal{C} \ {\underline{x}} \hspace{0.05cm}\ne \hspace{0.05cm} \underline{x}'}}\hspace{0.1cm}d_{\rm H}(\underline{x}, \hspace{0.05cm}\underline{x}') = \min_{\underline{x} \hspace{0.05cm}\in \hspace{0.05cm} \mathcal{C} }\hspace{0.1cm}w_{\rm H}(\underline{x}) = 3 \hspace{0.05cm}.$$
  
'''(3)'''&nbsp; Bei jedem Hamming–Code beträgt die minimale Distanz $d_{\rm min} \underline{= 3}$.
 
*Aus der Tabelle erkennt man dies daran, dass das minimale [[Kanalcodierung/Zielsetzung_der_Kanalcodierung#Einige_wichtige_Definitionen_zur_Blockcodierung|Hamming–Gewicht]] (die Anzahl der Einsen in einem Codewort) gleich 3 ist. Ein linearer Code beinhaltet nämlich auch das Nullwort, so dass gilt:
 
:$$d_{\rm min}(\mathcal{C}) = \min_{\substack{\underline{x},\hspace{0.05cm}\underline{x}' \hspace{0.05cm}\in \hspace{0.05cm} \mathcal{C} \\ {\underline{x}} \hspace{0.05cm}\ne \hspace{0.05cm} \underline{x}'}}\hspace{0.1cm}d_{\rm H}(\underline{x}, \hspace{0.05cm}\underline{x}') = \min_{\underline{x} \hspace{0.05cm}\in \hspace{0.05cm} \mathcal{C} }\hspace{0.1cm}w_{\rm H}(\underline{x}) = 3 \hspace{0.05cm}.$$
 
  
'''(4)'''&nbsp; Die Angabe $d_{\rm min} = 3$ bedeutet, dass $\underline{e = 2}$ Fehler erkannt und $\underline{t = 1}$ Fehler korrigiert werden können.
+
'''(4)'''&nbsp; The specification&nbsp; $d_{\rm min} = 3$&nbsp; means that&nbsp; $\underline{e = 2}$&nbsp; errors can be detected and&nbsp; $\underline{t = 1}$&nbsp; errors can be corrected.
  
  
'''(5)'''&nbsp; Richtig ist <u>JA</u>:
+
 
*Die Bedingung für einen perfekten Code lautet entsprechend der Angabe:
+
'''(5)'''&nbsp; Correct is&nbsp; <u>YES</u>:
 +
*The condition for a perfect code is according to the specification:
  
 
:$$ 2^m = {\sum_{f=0}^t {n \choose f}} \hspace{0.05cm}.$$
 
:$$ 2^m = {\sum_{f=0}^t {n \choose f}} \hspace{0.05cm}.$$
  
*Beim hier betrachteten (7, 4)–Hamming–Code gilt $n = 7$, $m = 3$ und $t = 1$, so dass sich auf beiden Seiten der Gleichung der Wert 8 ergibt:
+
*In the&nbsp; $\text{(7, 4) Hamming code}$&nbsp; considered here,&nbsp; $n = 7$,&nbsp; $m = 3$,&nbsp; and&nbsp; $t = 1$,&nbsp; giving a value of&nbsp; $8$&nbsp; on both sides of the equation:
  
 
:$$ 2^3 = 8\hspace{0.05cm}, \hspace{0.35cm} {\sum_{f=0}^1 {7 \choose f}} = {7 \choose 0} + {7 \choose 1} = 1 + 7 = 8 \hspace{0.05cm}.$$
 
:$$ 2^3 = 8\hspace{0.05cm}, \hspace{0.35cm} {\sum_{f=0}^1 {7 \choose f}} = {7 \choose 0} + {7 \choose 1} = 1 + 7 = 8 \hspace{0.05cm}.$$
  
  
'''(6)'''&nbsp; Richtig sind die <u>Aussagen 2 und 3 </u>:
 
*Gäbe es einen Kanalcode mit endlicher Codewortlänge $n$, der für alle Kanäle die Blockfehlerwahrscheinlichkeit zu Null macht, so wäre dieser nicht nur perfekt, sondern ein Wunder.
 
*Aufgrund des Kanalcodierungstheorems ist aber ${\rm Pr(Blockfehler)} = 0$ bei endlichem $n$  gar nicht möglich.
 
  
[[File:P_ID2389__KC_A_1_6_ML.png|center|frame|Verdeutlichung eines perfekten Codes]]
+
'''(6)'''&nbsp; Correct&nbsp; <u>statements 2 and 3</u>:
 +
*If there were a channel code with finite code word length&nbsp; $n$&nbsp; that made the block error probability zero for all channels,&nbsp; it would not only be perfect,&nbsp; but a&nbsp; "miracle".
 +
*But due to the channel coding theorem,&nbsp; ${\rm Pr(block error)} = 0$&nbsp; is not even possible with finite&nbsp; $n$.
 +
 
 +
 
 +
[[File:P_ID2389__KC_A_1_6_ML.png|right|frame|Illustration of a&nbsp; "perfect code"]]
  
Veranschaulichen wir uns die Aussage 2 durch die obige Grafik. Der hochdimensionale Raum ist hierbei stark vereinfacht (in 2D) dargestellt. Wir gehen dabei von den Zahlenwerten $k = 4$, $n = 7$, $m = 3$ und $t = 1$ des (7, 4, 3)–Hamming–Codes aus:
+
Let's illustrate statement 2 with a graph.&nbsp; Here,&nbsp; the high-dimensional space is shown in a highly simplified way&nbsp; ("2D").&nbsp; We assume the numerical values&nbsp; $k = 4$,&nbsp; $n = 7$,&nbsp; $m = 3$&nbsp; and&nbsp; $t = 1$&nbsp; of the&nbsp; $\text{(7, 4, 3)}$&nbsp; Hamming code:
  
*Für das Empfangswort sind $2^7 = 128$ Punkte im 7–dimensionalen Raum möglich. Die roten Punkte markieren die $2^4 = 16$ gültigen Codeworte.
+
*For the receive word,&nbsp; $2^7 = 128$&nbsp; points are possible in seven-dimensional space.&nbsp; The red dots mark the&nbsp; $2^4 = 16$&nbsp; valid code words.
  
*Die Kreise umfassen jeweils 8 Punkte, nämlich ein gültiges Codewort und $n = 7$ Empfangsworte nach nur einem Fehler, die man bei der Decodierung genau diesem Codewort zuordnet.
+
*The circles include&nbsp; $8$&nbsp; points each,&nbsp; namely a valid code word and&nbsp; $n = 7$&nbsp; receive words after only one error,&nbsp; which are assigned to exactly this code word during decoding.
  
*Insgesamt gibt es $2^4 = 16$ solcher Kreise. Wegen $128 = 16 · 8$ liegt deshalb kein einziges Empfangswort $\underline{y}$ außerhalb eines solchen Zuordnungskreises.
+
*Total there are&nbsp; $2^4 = 16$&nbsp; such circles.&nbsp; Therefore,&nbsp; because of $128 = 16 \cdot 8$,&nbsp; not a single receive word&nbsp; $\underline{y}$&nbsp; lies outside such an assignment circle.
  
  
Auch die <u>letzte Aussage</u> ist zutreffend, was beispielhaft für $d_{\rm min} = 4$ gezeigt werden soll:  
+
Also the&nbsp; <u>last statement</u>&nbsp; is true,&nbsp; which shall be shown exemplarily for&nbsp; $d_{\rm min} = 4$:  
*Hiermit kann ebenfalls nur $t = 1$ Fehler korrigiert werden.  
+
*Hereby also only&nbsp; $t = 1$&nbsp; error can be corrected.  
*Unterscheidet sich ein Empfangswort $\underline{y}$ von zulässigen Codeworten in zwei Bit, so ist dieser Punkt keinem Kreis zuzuordnen. Es liegen dann auch Punkte außerhalb der Kreise und die Bedingung eines perfekten Codes ist nicht mehr erfüllt.
+
*If a receive word&nbsp; $\underline{y}$&nbsp; differs from permissible code words in two bits,&nbsp; this point is not to be assigned to any circle.&nbsp; Then there are also points outside the circles and the condition of a&nbsp; "perfect code"&nbsp; is no longer fulfilled.
  
  
'''(7)'''&nbsp; Richtig sind die <u>Aussagen 1, 2, 3 und 5</u>:  
+
 
*Alle Hamming–Codes haben die minimale Hamming–Distanz $d_{\rm min} = 3$ &nbsp; &rArr; &nbsp; $t = 1$. Gleichzeitig lässt sich jeder $(n, k)$–Hamming–Code auch als $(2^m 1, 2^m 1 m)$ Code schreiben, wobei $m = n k$ die Anzahl der Prüfbits angibt. Damit wird die Gleichung eines perfekten Codes stets erfüllt:
+
'''(7)'''&nbsp; Correct are&nbsp; <u>statements 1, 2, 3&nbsp; and&nbsp; 5</u>:  
 +
*All Hamming codes have the minimum Hamming distance&nbsp; $d_{\rm min} = 3$ &nbsp; &rArr; &nbsp; $t = 1$.  
 +
*At the same time,&nbsp; any&nbsp; $(n, k)$&nbsp; Hamming code can also be written as a&nbsp; $(2^m - 1, 2^m - 1 - m)$&nbsp; code,&nbsp; where $m = n - k$&nbsp; indicates the number of parity bits.  
 +
*Thus,&nbsp; the equation of a&nbsp; "perfect code"&nbsp; is always satisfied:
  
 
:$${\sum_{f=0}^1 {n \choose f}} = 1 + n = 2^m \hspace{0.05cm}.$$
 
:$${\sum_{f=0}^1 {n \choose f}} = 1 + n = 2^m \hspace{0.05cm}.$$
  
Hierbei bedeuten:
+
Where:
*$m = 2$:   (3, 1) Hamming–Code, identisch mit  [[Kanalcodierung/Beispiele_binärer_Blockcodes#Wiederholungscodes|'''RC (3, 1)''',]]
+
*$m = 2$:&nbsp;  $\rm  (3, 1)$&nbsp; Hamming code, ⇒ identical to&nbsp; [[Channel_Coding/Examples_of_Binary_Block_Codes#RepetitionCodes|$\text{RC (3, 1)}$]],
*$m = 3$:  (7, 4) Hamming–Code,
+
 
*$m = 4$:  (15, 11) Hamming–Code,
+
*$m = 3$:&nbsp;   $\rm (7, 4)$&nbsp; Hamming code,
*$m = 5$:  (31, 26) Hamming–Code,
+
*$m = 4$:&nbsp;   $\rm (15, 11)$&nbsp; Hamming code,
*$m = 6$:  (63, 57) Hamming–Code,   
+
*$m = 5$:&nbsp;   $\rm (31, 26)$&nbsp; Hamming code,
 +
*$m = 6$:&nbsp;   $\rm (63, 57)$&nbsp; Hamming code,   
 
          
 
          
  
Auch der Wiederholungscode mit $n = 5$ erfüllt die Bedingung. Mit $d_{\rm min} = 5$, $t = 2$ und $m = 4$ erhält man:
+
The repetition code with&nbsp; $n = 5$&nbsp; also satisfies the condition.&nbsp; With&nbsp; $d_{\rm min} = 5$,&nbsp; $t = 2$&nbsp; and&nbsp; $m = 4$&nbsp; we obtain:
 
:$${\sum_{f=0}^2 {5 \choose f}} = 1 + 5 + 10 = 16 = 2^m \hspace{0.05cm}.$$
 
:$${\sum_{f=0}^2 {5 \choose f}} = 1 + 5 + 10 = 16 = 2^m \hspace{0.05cm}.$$
  
Die anderen Wiederholungscodes (RC) mit ungeradem $n$ sind ebenfalls perfekt, nicht jedoch mit geradem $n$: RC (4, 1), RC (6, 1), usw. Dies wurde bereits in der Musterlösung zur Teilaufgabe (6) begründet.
+
The other repetition codes&nbsp; $\rm (RC)$&nbsp; with odd&nbsp; $n$&nbsp; are also perfect,&nbsp; but not with even&nbsp; $n$:&nbsp; $\text{RC (4, 1)}$,&nbsp; $\text{RC (6, 1)}$,&nbsp; etc. This has already been justified in the solution to the subtask&nbsp; '''(6)'''.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu  Kanalcodierung|^1.3 Beispiele binärer Blockcodes
+
[[Category:Channel Coding: Exercises|^1.3 Examples of Binary Block Codes^]]
^]]
 

Latest revision as of 17:56, 1 November 2022

Code table of the  $\text{HC (7, 4)}$

In 1962,  Richard Wesley Hamming  specified a class of binary block codes that differ in the number  $m$  of check bits supplied. The code word length is always  $n = 2^m - 1$. The information word consists of  $k = n - m$  bits:

  • $m = 2$:   $\text{(3, 1)}$ Hamming code   ⇒   identical to  $\text{RC (3, 1)}$,
  • $m = 3$:   $\text{(7, 4)}$ Hamming code,
  • $m = 4$:   $\text{(15, 11)}$ Hamming code,
  • $m = 5$:   $\text{(31, 26)}$ Hamming code, etc.


In the course of this exercise there are questions

  • to the code size  $ |\hspace{0.05cm}\mathcal{C}\hspace{0.05cm}|$,
  • to the code rate  $R$,  and
  • to the minimum distance  $d_{\rm min}$.


Furthermore,  we want to clarify whether the  $\text{(7, 4)}$  Hamming code given for this task by its code table  $\underline{u}_{i} ⇒ \underline{x}_{i}$  is systematic,  and whether it is a so called  "perfect code".  The control index can take the values  $i = 1, \text{...}\hspace{0.05cm} , 2^k =16$ .

One speaks of a  "perfect code"  if the following condition is satisfied:

$$2^k = \frac{2^n} {\sum_{f=0}^t {n \choose f}}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} 2^m = {\sum_{f=0}^t {n \choose f}} \hspace{0.05cm}.$$

Here  $t$  denotes the number of correctable errors.  For odd minimum distance  $d_{\rm min}$  holds:

$$ t = \frac{d_{\rm min}-1 } {2} \hspace{0.05cm}.$$

The interpretation to this condition can be found in the sample solution.



Hints:

  • For this Hamming code,  different parity-check equations were used than in the  theory section.  Therefore,  the code tables also differ.
  • In the  Exercise 1.7,  where the same code is used,  the chart of the parity-check equations is given.


Questions

1

Specify the characteristics of the given code  $\mathcal{C}$:

$ |\hspace{0.05cm}\mathcal{C}\hspace{0.05cm}| \ = \ $

$ k \hspace{0.46cm} = \ $

$ n \hspace{0.44cm} = \ $

$ R \hspace{0.40cm} = \ $

2

Is this a systematic code?

Yes,
No.

3

What is the minimum distance between any two code words?

$ \ d_{\rm min} \ = \ $

4

How many transmission errors can be detected  $(e)$  or corrected  $(t)$  respectively?

$e\hspace{0.22cm} = \ $

$t\hspace{0.28cm} = \ $

5

Is the Hamming code considered here  "perfect"?

Yes,
No.

6

Which statements are true regarding a  "perfect code"?

A perfect code always results in zero block error probability.
All receive words  $\underline{y}$  are assignable to a valid code word.
For perfect codes,  the minimum Hamming distance is odd.

7

Which of the codes listed below are perfect?

The  $\text{(15, 11)}$ Hamming code,
the  $\text{(63, 57)}$ Hamming code,
the  $\text{(3, 1)}$ repetition code,
the  $\text{(4, 1)}$ repetition Code,
the  $\text{(5, 1)}$ repetition code.


Solution

(1)  The code table has sixteen entries: $\underline{|C| = 16}$.

  • From the equation  $|C| = 2^k$  it follows that  $\underline{k = 4}$.
  • The length of each code word is  $\underline{n = 7}$.
  • Thus,  the code rate is $\underline{R = 4/7} = 0.571$.


(2)  Correct  YES:

  • Each code word  $\underline{x}$  first contains the  $k = 4$  bits of the information word  $\underline{u}$.  This is followed by  $m = 3$  check bits:
$$\underline{x} = ( x_1, x_2, x_3, x_4, x_5, x_5,x_7) = ( u_1, u_2, u_3, u_4, p_1, p_2, p_3) \hspace{0.05cm}.$$


(3)  For any Hamming code,  the minimum distance $d_{\rm min} \underline{= 3}$.

  • From the table,  you can see that the minimum  Hamming weight  (the number of ones in a code word)  is equal to 3.
  • A linear code,  in fact,  also includes the zero word,  so that holds:
$$d_{\rm min}(\mathcal{C}) = \min_{\substack{\underline{x},\hspace{0.05cm}\underline{x}' \hspace{0.05cm}\in \hspace{0.05cm} \mathcal{C} \ {\underline{x}} \hspace{0.05cm}\ne \hspace{0.05cm} \underline{x}'}}\hspace{0.1cm}d_{\rm H}(\underline{x}, \hspace{0.05cm}\underline{x}') = \min_{\underline{x} \hspace{0.05cm}\in \hspace{0.05cm} \mathcal{C} }\hspace{0.1cm}w_{\rm H}(\underline{x}) = 3 \hspace{0.05cm}.$$


(4)  The specification  $d_{\rm min} = 3$  means that  $\underline{e = 2}$  errors can be detected and  $\underline{t = 1}$  errors can be corrected.


(5)  Correct is  YES:

  • The condition for a perfect code is according to the specification:
$$ 2^m = {\sum_{f=0}^t {n \choose f}} \hspace{0.05cm}.$$
  • In the  $\text{(7, 4) Hamming code}$  considered here,  $n = 7$,  $m = 3$,  and  $t = 1$,  giving a value of  $8$  on both sides of the equation:
$$ 2^3 = 8\hspace{0.05cm}, \hspace{0.35cm} {\sum_{f=0}^1 {7 \choose f}} = {7 \choose 0} + {7 \choose 1} = 1 + 7 = 8 \hspace{0.05cm}.$$


(6)  Correct  statements 2 and 3:

  • If there were a channel code with finite code word length  $n$  that made the block error probability zero for all channels,  it would not only be perfect,  but a  "miracle".
  • But due to the channel coding theorem,  ${\rm Pr(block error)} = 0$  is not even possible with finite  $n$.


Illustration of a  "perfect code"

Let's illustrate statement 2 with a graph.  Here,  the high-dimensional space is shown in a highly simplified way  ("2D").  We assume the numerical values  $k = 4$,  $n = 7$,  $m = 3$  and  $t = 1$  of the  $\text{(7, 4, 3)}$  Hamming code:

  • For the receive word,  $2^7 = 128$  points are possible in seven-dimensional space.  The red dots mark the  $2^4 = 16$  valid code words.
  • The circles include  $8$  points each,  namely a valid code word and  $n = 7$  receive words after only one error,  which are assigned to exactly this code word during decoding.
  • Total there are  $2^4 = 16$  such circles.  Therefore,  because of $128 = 16 \cdot 8$,  not a single receive word  $\underline{y}$  lies outside such an assignment circle.


Also the  last statement  is true,  which shall be shown exemplarily for  $d_{\rm min} = 4$:

  • Hereby also only  $t = 1$  error can be corrected.
  • If a receive word  $\underline{y}$  differs from permissible code words in two bits,  this point is not to be assigned to any circle.  Then there are also points outside the circles and the condition of a  "perfect code"  is no longer fulfilled.


(7)  Correct are  statements 1, 2, 3  and  5:

  • All Hamming codes have the minimum Hamming distance  $d_{\rm min} = 3$   ⇒   $t = 1$.
  • At the same time,  any  $(n, k)$  Hamming code can also be written as a  $(2^m - 1, 2^m - 1 - m)$  code,  where $m = n - k$  indicates the number of parity bits.
  • Thus,  the equation of a  "perfect code"  is always satisfied:
$${\sum_{f=0}^1 {n \choose f}} = 1 + n = 2^m \hspace{0.05cm}.$$

Where:

  • $m = 3$:  $\rm (7, 4)$  Hamming code,
  • $m = 4$:  $\rm (15, 11)$  Hamming code,
  • $m = 5$:  $\rm (31, 26)$  Hamming code,
  • $m = 6$:  $\rm (63, 57)$  Hamming code,


The repetition code with  $n = 5$  also satisfies the condition.  With  $d_{\rm min} = 5$,  $t = 2$  and  $m = 4$  we obtain:

$${\sum_{f=0}^2 {5 \choose f}} = 1 + 5 + 10 = 16 = 2^m \hspace{0.05cm}.$$

The other repetition codes  $\rm (RC)$  with odd  $n$  are also perfect,  but not with even  $n$:  $\text{RC (4, 1)}$,  $\text{RC (6, 1)}$,  etc. This has already been justified in the solution to the subtask  (6).