Difference between revisions of "Aufgaben:Exercise 2.10Z: Code Rate and Minimum Distance"

From LNTwww
 
(27 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Definition und Eigenschaften von Reed–Solomon–Codes}}
+
{{quiz-Header|Buchseite=Channel_Coding/Definition_and_Properties_of_Reed-Solomon_Codes}}
  
[[File:P_ID2526__KC_Z_2_10.png|right|frame|Die Erfinder der Reed–Solomon–Codes]]
+
[[File:P_ID2526__KC_Z_2_10.png|right|frame|The inventors of the Reed-Solomon codes]]
Die von [https://de.wikipedia.org/wiki/Irving_Stoy_Reed Irving Story Reed] und [https://de.wikipedia.org/wiki/Gustave_Solomon Gustav Solomon] Anfang der 1960er Jahre entwickelten Codes werden in diesem Tutorial wie folgt:
+
The codes developed by  [https://en.wikipedia.org/wiki/Irving_S._Reed Irving Stoy Reed]  and  [https://en.wikipedia.org/wiki/Gustave_Solomon Gustave Solomon]  in the early 1960s are referred to in this tutorial as follows:  
<font size="4"><span style="color: rgb(204, 0, 0);">:$${\rm RSC} \, (n, \, k, \, d_{\rm min}) _q.\\$$</span></font> Die Codeparameter haben folgende Bedeutungen:
+
:$${\rm RSC} \, (n, \, k, \, d_{\rm min}) _q.$$
* $q = 2^m$ ist ein Hinweis auf die Größe des Galoisfeldes &nbsp;&#8658;&nbsp; ${\rm GF}(q)$,
 
* $n = q - 1$ ist die Codelänge (Symbolanzahl eines Codewortes),
 
* $k$ gibt die Dimension an (Symbolanzahl eines Informationsblocks),
 
* $d_{\rm min}$ bezeichnet die minimale Distanz zwischen zwei Codeworten. Bei RS&ndash;Codes erreicht $d_{\rm min} = n - k + 1$ seinen größten Wert.
 
  
 +
The code parameters have the following meanings:
 +
* $q = 2^m$&nbsp; is an indication of the&nbsp; "size"&nbsp; of the Galois field &nbsp; &#8658; &nbsp; ${\rm GF}(q)$,
  
''Hinweise:''
+
* $n = q - 1$&nbsp; is the&nbsp; "code length"&nbsp; $($symbol number of a code word$)$,
* Die Aufgabe gehört zum Kapitel [[Kanalcodierung/Definition_und_Eigenschaften_von_Reed%E2%80%93Solomon%E2%80%93Codes| Definition und Eigenschaften von Reed&ndash;Solomon&ndash;Codes]].
+
* Die für diese Aufgabe relevanten Informationen finden Sie am Ende des Theorieteils, nämlich auf der Seite [[Kanalcodierung/Definition_und_Eigenschaften_von_Reed%E2%80%93Solomon%E2%80%93Codes#Codebezeichnung_und_Coderate|Codebezeichnung und Coderate]].
+
* $k$&nbsp; indicates the&nbsp; "dimension"&nbsp; $($symbol number of an information block$)$,
  
 +
* $d_{\rm min}$&nbsp; denotes the&nbsp; "minimum distance"&nbsp; between two code words.&nbsp;
  
 +
*For any Reed-Solomon code:
 +
:$$d_{\rm min} = n - k + 1.$$
  
 +
'''No other code with the same&nbsp; $k$&nbsp; and&nbsp; $n$&nbsp; yields a larger value'''.
  
===Fragebogen===
+
 
 +
 
 +
 
 +
Hints:
 +
* The exercise belongs to the chapter&nbsp; [[Channel_Coding/Definition_and_Properties_of_Reed-Solomon_Codes| "Definition and Properties of Reed&ndash;Solomon Codes"]].
 +
 
 +
* Information relevant to this exercise can be found on the&nbsp; [[Channel_Coding/Definition_and_Properties_of_Reed-Solomon_Codes#Code_name_and_code_rate|"Code name and code rate"]] page.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice
+
{Specify the characteristics of the &nbsp; ${\rm RSC} \, (255, \, 223, \, d_{\rm min})_q$.
|type="[]"}
+
|type="{}"}
+ correct
+
$q \hspace{0.2cm} = \ ${ 256 }
- false
+
$e \hspace{0.2cm}  = \ ${ 32 }
 +
$t \hspace{0.2cm}  = \ ${ 16 }
 +
$R \hspace{0.2cm}  = \ ${ 0.8745 3% }
 +
$d_{\rm min} \ = \ ${ 33 }
 +
 
 +
{Specify the characteristics of the &nbsp; $\rm RSC \, (2040, \, 1784, \, d_{\rm min})_2$&nbsp;.
 +
|type="{}"}
 +
$R \hspace{0.2cm} = \ ${ 0.8745 3% }
 +
$d_{\rm min} \ = \ ${ 33 }
  
{Input-Box Frage
+
{How many bit errors&nbsp; $(N_3)$&nbsp; may a received word&nbsp; $\underline{y}$&nbsp; have at most,&nbsp; so that it is&nbsp; <u>certainly decoded correctly</u>?
 
|type="{}"}
 
|type="{}"}
$xyz \ = \ ${ 5.4 3% } $ab$
+
$N_{3} \ = \ $ { 16 }
 +
 
 +
{How many bit errors&nbsp; $(N_4)$&nbsp; may a received word&nbsp; $\underline{y}$&nbsp; have&nbsp; <u>in the best case</u>&nbsp; so that it could still be&nbsp; <u>correctly decoded</u>?
 +
|type="{}"}
 +
$N_{4} \ = \ $ { 128 }
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  
+
'''(1)'''&nbsp; From the code length&nbsp; $n = 255$&nbsp; follows&nbsp; $q \ \underline{= 256}$.
'''(2)'''&nbsp;  
+
 
'''(3)'''&nbsp;  
+
*The code rate is given by&nbsp; $R = {223}/{255} \hspace{0.15cm}\underline {=0.8745}\hspace{0.05cm}.$
'''(4)'''&nbsp;  
+
 
'''(5)'''&nbsp;  
+
*The minimum distance is&nbsp; $d_{\rm min} = n - k +1 = 255 - 223 +1
 +
\hspace{0.15cm}\underline {=33}\hspace{0.05cm}.$
 +
 
 +
*This allows:
 +
:* $e = d_{\rm min} - 1 \ \underline{= 32}$&nbsp; symbol errors can be detected, and
 +
 +
:* $t = e/2$&nbsp; $($rounded down$)$.&nbsp; So&nbsp; $\underline{t = 16}$&nbsp; symbol errors can be corrected.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; The code&nbsp; $\rm RSC \, (2040, \, 1784, \, d_{\rm min})_2$&nbsp; is the binary representation of the&nbsp; ${\rm RSC} \, (255, \, 223, \, d_{\rm min})_{256}$&nbsp; discussed in&nbsp; '''(1)'''&nbsp;
 +
*with exactly the same code rate&nbsp; $R \ \underline{= 0.8745}$&nbsp; and
 +
 
 +
*also the same minimum distance&nbsp; $d_{\rm min} \ \underline{= 33}$&nbsp; as this one.&nbsp;
 +
 
 +
 
 +
Here&nbsp; $8$&nbsp; bits&nbsp; (1 byte)&nbsp; are used per code symbol.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; From&nbsp; $d_{\rm min} = 33$&nbsp; follows again&nbsp; $t = 16 \ \Rightarrow \ N_{3} \ \underline{= 16}$.
 +
*If exactly one bit is falsified in each code symbol,&nbsp; this also means&nbsp; $16$&nbsp; symbol errors.
 +
 +
*This is the maximum value that the Reed&ndash;Solomon decoder can still handle.
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; The Reed&ndash;Solomon decoder can correct&nbsp; $16$&nbsp; falsified code symbols.
 +
*It does not matter whether in a code symbol only one bit or all&nbsp; $m = 8$&nbsp; bits have been falsified.
 +
 +
*Therefore,&nbsp; with the most favorable error distribution,&nbsp; up to&nbsp; $N_4 = 8 \cdot 16 \ \underline{= 128}$&nbsp; bits can be falsified without the code word being incorrectly decoded.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu  Kanalcodierung|^2.3 Definition und Eigenschaften von Reed–Solomon–Codes^]]
+
[[Category:Channel Coding: Exercises|^2.3 Reed–Solomon Codes^]]

Latest revision as of 16:28, 23 January 2023

The inventors of the Reed-Solomon codes

The codes developed by  Irving Stoy Reed  and  Gustave Solomon  in the early 1960s are referred to in this tutorial as follows:

$${\rm RSC} \, (n, \, k, \, d_{\rm min}) _q.$$

The code parameters have the following meanings:

  • $q = 2^m$  is an indication of the  "size"  of the Galois field   ⇒   ${\rm GF}(q)$,
  • $n = q - 1$  is the  "code length"  $($symbol number of a code word$)$,
  • $k$  indicates the  "dimension"  $($symbol number of an information block$)$,
  • $d_{\rm min}$  denotes the  "minimum distance"  between two code words. 
  • For any Reed-Solomon code:
$$d_{\rm min} = n - k + 1.$$

No other code with the same  $k$  and  $n$  yields a larger value.



Hints:



Questions

1

Specify the characteristics of the   ${\rm RSC} \, (255, \, 223, \, d_{\rm min})_q$.

$q \hspace{0.2cm} = \ $

$e \hspace{0.2cm} = \ $

$t \hspace{0.2cm} = \ $

$R \hspace{0.2cm} = \ $

$d_{\rm min} \ = \ $

2

Specify the characteristics of the   $\rm RSC \, (2040, \, 1784, \, d_{\rm min})_2$ .

$R \hspace{0.2cm} = \ $

$d_{\rm min} \ = \ $

3

How many bit errors  $(N_3)$  may a received word  $\underline{y}$  have at most,  so that it is  certainly decoded correctly?

$N_{3} \ = \ $

4

How many bit errors  $(N_4)$  may a received word  $\underline{y}$  have  in the best case  so that it could still be  correctly decoded?

$N_{4} \ = \ $


Solution

(1)  From the code length  $n = 255$  follows  $q \ \underline{= 256}$.

  • The code rate is given by  $R = {223}/{255} \hspace{0.15cm}\underline {=0.8745}\hspace{0.05cm}.$
  • The minimum distance is  $d_{\rm min} = n - k +1 = 255 - 223 +1 \hspace{0.15cm}\underline {=33}\hspace{0.05cm}.$
  • This allows:
  • $e = d_{\rm min} - 1 \ \underline{= 32}$  symbol errors can be detected, and
  • $t = e/2$  $($rounded down$)$.  So  $\underline{t = 16}$  symbol errors can be corrected.


(2)  The code  $\rm RSC \, (2040, \, 1784, \, d_{\rm min})_2$  is the binary representation of the  ${\rm RSC} \, (255, \, 223, \, d_{\rm min})_{256}$  discussed in  (1) 

  • with exactly the same code rate  $R \ \underline{= 0.8745}$  and
  • also the same minimum distance  $d_{\rm min} \ \underline{= 33}$  as this one. 


Here  $8$  bits  (1 byte)  are used per code symbol.


(3)  From  $d_{\rm min} = 33$  follows again  $t = 16 \ \Rightarrow \ N_{3} \ \underline{= 16}$.

  • If exactly one bit is falsified in each code symbol,  this also means  $16$  symbol errors.
  • This is the maximum value that the Reed–Solomon decoder can still handle.


(4)  The Reed–Solomon decoder can correct  $16$  falsified code symbols.

  • It does not matter whether in a code symbol only one bit or all  $m = 8$  bits have been falsified.
  • Therefore,  with the most favorable error distribution,  up to  $N_4 = 8 \cdot 16 \ \underline{= 128}$  bits can be falsified without the code word being incorrectly decoded.