Difference between revisions of "Aufgaben:Exercise 1.12: Hard Decision vs. Soft Decision"
From LNTwww
(23 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
{{quiz-Header|Buchseite=Kanalcodierung/Decodierung linearer Blockcodes}} | {{quiz-Header|Buchseite=Kanalcodierung/Decodierung linearer Blockcodes}} | ||
− | [[File: | + | [[File:EN_KC_A_1_12.png|right|frame|Block error rate of the $\rm HC(7, \, 4, \, 3)$ for <br>"Hard Decision" and "Soft Decision"]] |
− | + | The figure shows the block error probability for the [[Channel_Coding/General_Description_of_Linear_Block_Codes#Some_properties_of_the_.287.2C_4.2C_3.29_Hamming_code|"$(7, \, 4, \, 3)$ Hamming code"]], where two variants are considered for the receiver: | |
− | * | + | *Maximum likelihood decoding with hard decisions $($"Hard Decision", $\rm HD)$, which in the present case $($perfect code$)$ can also be realized by syndrome decoding, yields the red curve $($with circle marker$)$. |
− | * | + | *The channel can be replaced by the BSC model in a simplified way for "Hard Decision". The relationship between the BSC parameter $\varepsilon$ and the AWGN quotient $E_{\rm B}/N_{0}$ $($used in the graph$)$ is given as follows: |
:$$\varepsilon = {\rm Q}\left ( \sqrt{2 \cdot R \cdot E_{\rm B}/N_0} \right ) \hspace{0.05cm}.$$ | :$$\varepsilon = {\rm Q}\left ( \sqrt{2 \cdot R \cdot E_{\rm B}/N_0} \right ) \hspace{0.05cm}.$$ | ||
− | + | :Here ${\rm Q}(x)$ denotes the "complementary Gaussian error function" and $R$ the code rate. | |
− | * | + | *The green curve $($with crosses$)$ shows the block error probability for soft decisions $($"Soft Decision", $\rm SD)$. This curve cannot be given in closed-mathematical form. The curve drawn in the graph is an upper bound given in [Fri96]: |
− | :$$ {\rm Pr( | + | :$$ {\rm Pr(block\:error)} \hspace{-0.15cm}\ \le \ \hspace{-0.15cm} 7 \cdot {\rm Q}\left ( \sqrt{ 3 \cdot \frac{2 \cdot R \cdot E_{\rm B}}{N_0}} \right )+7 \cdot {\rm Q}\left ( \sqrt{ 4 \cdot \frac{2 \cdot R \cdot E_{\rm B}}{N_0}} \right ) + {\rm Q}\left ( \sqrt{ 7 \cdot \frac{2 \cdot R \cdot E_{\rm B}}{N_0}} \right ) \hspace{0.05cm}.$$ |
− | + | :#The respective first factor in the arguments of the $\rm Q$–function indicates Hamming distances ⇒ $i = 3, \, 4, \, 7$. | |
+ | :#The prefactors take into account "multiplicities" $W_{3} = W_{4} = 7$ and $W_{7} = 1$. | ||
+ | :#$R = 4/7$ describes the code rate. | ||
+ | :#For $10 · \lg {E_{\rm B}/N_0} > 8 \ \rm dB$ ⇒ $\rm Pr(block\:error) < 10^{–5}$. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | Hints: | ||
+ | * This exercise refers to the chapter [[Channel_Coding/Decoding_of_Linear_Block_Codes|"Decoding of Linear Block Codes"]]. | ||
+ | |||
+ | * The above cited bibliography [Fri96] refers to the book <br>"Friedrichs, B.: Kanalcodierung - Grundlagen und Anwendungen in modernen Kommunikationssystemen. Berlin - Heidelberg: Springer, 1996". | ||
− | === | + | *For numerical results, use our calculation applet [[Applets:Complementary_Gaussian_Error_Functions|"Complementary Gaussian Error Functions"]]. |
+ | |||
+ | *For the subtasks '''(1)''' to '''(4)''', "Hard Decision" is always assumed. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ===Questions=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {What is the block error probability of the $(7, \, 4, \, 3)$ Hamming code in "Hard Decision"? |
|type="{}"} | |type="{}"} | ||
− | $\varepsilon = | + | $\varepsilon = 10^{-2} \text{:} \hspace{0.4cm} {\rm Pr(block\:error)} \ = \ $ { 2.03 3% } $\ \cdot 10^{-3} $ |
− | $\varepsilon = | + | $\varepsilon = 10^{-3} \text{:} \hspace{0.4cm} {\rm Pr(block\:error)} \ = \ $ { 0.021 3% } $\ \cdot 10^{-3} $ |
− | { | + | {How can we approximate the block error probability of a Hamming code, assuming "Hard Decision"? |
− | |type=" | + | |type="()"} |
− | + ${\rm Pr( | + | + ${\rm Pr(block\:error)} = n · (n–1)/2 · \varepsilon^2.$ |
− | - ${\rm Pr( | + | - ${\rm Pr(block\:error)} = n · \varepsilon^2.$ |
− | - ${\rm Pr( | + | - ${\rm Pr(block\:error)} = n · \varepsilon^n.$ |
− | { | + | {Which Hamming code has the smallest block error probability with constant BSC parameter $\varepsilon$? |
− | |type=" | + | |type="()"} |
− | + | + | + the Hamming code $(3, \, 1, \, 3)$, identical to the "repetition code" $\rm RC \ (3, \, 1, \, 3)$, |
− | - | + | - the Hamming code $(7, \, 4, \, 3)$, |
− | - | + | - the Hamming code $(15, \, 11, \, 3)$. |
− | { | + | {What is the numerical relationship between the BSC parameter $\varepsilon$ and the AWGN quotient $E_{\rm B}/N_{0}$? |
|type="{}"} | |type="{}"} | ||
− | $\varepsilon = | + | $\varepsilon = 10^{-2}\text{:} \hspace{0.4cm} 10 · \lg {E_{\rm B}/N_0} \ = \ $ { 6.77 3% } $\ \rm dB$ |
− | $\varepsilon = | + | $\varepsilon = 10^{-3} \text{:} \hspace{0.4cm} 10 · \lg {E_{\rm B}/N_0} \ = \ $ { 9.22 3% } $\ \rm dB$ |
− | { | + | {What is the gain $($in dB$)$ to be achieved by "Soft Decision" if the block error probability is not to exceed $10^{-5}$ ? |
|type="{}"} | |type="{}"} | ||
− | $\ 10 · \lg {G_{\rm SD}} \ = \ $ { | + | $\ 10 · \lg \, {G_{\rm SD}} \ = \ $ { 1.52 3% } $ \ \rm dB$ |
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' Every Hamming code is perfect and has the minimum distance $d_{\rm min} = 3$. |
+ | *Therefore, one bit error in the code word can be corrected, while two bit errors will always cause the code word to fail ⇒ parameter $t = 1$. | ||
+ | *Thus, for the block error probability: | ||
− | :$${\rm Pr( | + | :$${\rm Pr(block\:error)} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - {\rm Pr(no\hspace{0.15cm} block\:error)} - {\rm Pr(one\hspace{0.15cm} block\:error)} = 1 - (1 - \varepsilon)^7 - 7 \cdot \varepsilon \cdot (1 - \varepsilon)^6 \hspace{0.05cm}.$$ |
− | + | :$$\varepsilon = 10^{-2} \text{:} \hspace{0.4cm}{\rm Pr(block\:error)} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - 0.99^7 - 7 \cdot 0.01 \cdot 0.99^6= 1 - 0.932065 - 0.065904\hspace{0.15cm}\underline{\approx 2.03 \cdot 10^{-3}}\hspace{0.05cm},$$ | |
− | :$$\varepsilon = | + | :$$\varepsilon = 10^{-3} \text{:} \hspace{0.4cm} {\rm Pr(block\:error)} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - 0.999^7 - 7 \cdot 0.001 \cdot 0.999^6= 1 - 0.993021 - 0.006958\hspace{0.15cm}\underline{\approx 0.0209 \cdot 10^{-3}}\hspace{0.05cm}.$$ |
− | |||
− | :$$\varepsilon = | ||
− | |||
− | '''(2)''' | + | '''(2)''' Each $(n, \, k, \, 3)$ Hamming code can correct only one bit error. Thus, for the BSC channel, the general rule is with code word length $n$: |
− | :$${\rm Pr( | + | :$${\rm Pr(block\:error)} = 1 - \text{Pr(no bit error)} - \text{Pr(one bit error)} = 1 - (1 - \varepsilon)^n - n \cdot \varepsilon \cdot (1 - \varepsilon)^{n-1}.$$ |
− | + | *After series expansion of "$(1 - \varepsilon)^n$" or of "$n \cdot \varepsilon \cdot (1 - \varepsilon)^{n-1}$" we obtain from this: | |
− | + | :$${\rm Pr(block\:error)} = 1 - \left [ 1 - {n \choose 1}\cdot \varepsilon + {n \choose 2}\cdot \varepsilon^2 - \hspace{0.05cm}\text{...} \hspace{0.05cm} \right ] -\left [ n \cdot \varepsilon \cdot \left ( 1 - {{n-1} \choose 1}\cdot \varepsilon + {{n-1} \choose 2}\cdot \varepsilon^2 - \hspace{0.05cm}\text{...} \hspace{0.05cm}\right ) \right ] \hspace{0.05cm}.$$ | |
− | + | *If we neglect all terms with $\varepsilon^3, \ \varepsilon^4, \ \text{...}$ we finally get: | |
− | :$${\rm Pr( | + | :$${\rm Pr(block\:error)} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} n \cdot \varepsilon - {n \choose 2}\cdot \varepsilon^2 - n \cdot \varepsilon + n \cdot \varepsilon {{n-1} \choose 1}\cdot \varepsilon + \hspace{0.05cm}\text{...}\hspace{0.05cm} = -n/2 \cdot (n-1)\cdot \varepsilon^2 + n \cdot (n-1)\cdot \varepsilon^2 = n \cdot (n-1)/2 \cdot \varepsilon^2 \hspace{0.05cm}.$$ |
− | |||
− | + | The correct solution is <u>suggestion 1</u>. | |
− | + | For the $(7, \, 4, \, 3)$ Hamming code, it follows: | |
− | + | :$${\rm Pr(block\:error)} \le \left\{ \begin{array}{c} 2.03 \cdot 10^{-3}\\ 2.09 \cdot 10^{-5} \end{array} \right.\quad \begin{array}{*{1}c} {\rm for}\hspace{0.15cm} \varepsilon = 10^{-2} \\ {\rm for}\hspace{0.15cm} \varepsilon = 10^{-3} \\ \end{array} \hspace{0.05cm}.$$ | |
+ | *By comparison with the result of the subtask '''(1)''' one recognizes the validity of this approximation. The smaller the BSC falsification probability $\varepsilon$, the better it is. | ||
− | |||
− | |||
− | + | '''(3)''' The results of subtask '''(2)''' can be summarized as follows: | |
− | + | :$${\rm Pr(block\:error)} = \left\{ \begin{array}{l} 3 \cdot \varepsilon^2 \\ 21 \cdot \varepsilon^2\\ 105 \cdot \varepsilon^2\\ \end{array} \right.\quad \begin{array}{*{1}l} {\rm for}\hspace{0.15cm} n = 3 \\ {\rm for}\hspace{0.15cm} n = 7 \\ {\rm for}\hspace{0.15cm} n = 15 \\ \end{array} \hspace{0.05cm}.$$ | |
− | + | *Right is <u>answer 1</u>. Of course, the Hamming code with the lowest rate $R = 1/3$, i.e. with the greatest relative redundancy, has the lowest block error probability. | |
− | |||
− | + | '''(4)''' At Hard Decision, with the complementary Gaussian error function ${\rm Q}(x)$: | |
+ | |||
+ | :$$\varepsilon = {\rm Q}\left ( \sqrt{2 \cdot R \cdot E_{\rm B}/N_0} \right )\hspace{0.3cm} \Rightarrow \hspace{0.3cm} E_{\rm B}/N_0 = \frac{[{\rm Q}^{-1}(\varepsilon)]^2}{2R}\hspace{0.3cm} | ||
+ | \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 20 \cdot {\rm lg} \hspace{0.1cm}[{\rm Q}^{-1}(\varepsilon)] - 10 \cdot {\rm lg} \hspace{0.1cm} (2R) \hspace{0.05cm}.$$ | ||
+ | |||
+ | *From this we obtain with $\varepsilon = 0.01 \ ⇒ \ {\rm Q}^{–1}(\varepsilon) = 2.33$: | ||
:$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 20 \cdot {\rm lg} \hspace{0.1cm}(2.33) - 10 \cdot {\rm lg} \hspace{0.1cm} (8/7) = 7.35\,{\rm dB} - 0.58\,{\rm dB}\hspace{0.15cm}\underline{\approx 6.77\,{\rm dB}}\hspace{0.05cm}.$$ | :$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 20 \cdot {\rm lg} \hspace{0.1cm}(2.33) - 10 \cdot {\rm lg} \hspace{0.1cm} (8/7) = 7.35\,{\rm dB} - 0.58\,{\rm dB}\hspace{0.15cm}\underline{\approx 6.77\,{\rm dB}}\hspace{0.05cm}.$$ | ||
+ | * Analogously, for $\varepsilon = 0.001 \ ⇒ \ {\rm Q}^{-1}(\varepsilon) = 3.09$: | ||
− | + | :$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 20 \cdot {\rm lg} \hspace{0.1cm}(3.09) - 0.58\,{\rm dB}\hspace{0.15cm}\underline{\approx 9.22\,{\rm dB}}\hspace{0.05cm}.$$ | |
− | |||
+ | '''(5)''' Here we refer to the block error probability $10^{–5}$. | ||
− | '''( | + | *According to the result of subtask '''(2)''', the BSC falsification probability must then not be greater than |
− | :$$\varepsilon = \sqrt{ | + | :$$\varepsilon = \sqrt{{10^{-5}}/{21}} = 6.9 \cdot 10^{-4} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Q}^{-1}(\varepsilon) = 3.2 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 9.52\,{\rm dB}\hspace{0.05cm}.$$ |
− | + | *For "Soft Decision" according to the specification graph: $10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 8\,{\rm dB}\hspace{0.05cm}$ ⇒ $10 · \lg {G_{\rm SD}} \ \underline{= 1.52 \ {\rm dB}}$. | |
{{ML-Fuß}} | {{ML-Fuß}} | ||
− | [[Category: | + | [[Category:Channel Coding: Exercises|^1.5 Linear Block Code Decoding |
^]] | ^]] |
Latest revision as of 16:00, 30 September 2022
The figure shows the block error probability for the "$(7, \, 4, \, 3)$ Hamming code", where two variants are considered for the receiver:
- Maximum likelihood decoding with hard decisions $($"Hard Decision", $\rm HD)$, which in the present case $($perfect code$)$ can also be realized by syndrome decoding, yields the red curve $($with circle marker$)$.
- The channel can be replaced by the BSC model in a simplified way for "Hard Decision". The relationship between the BSC parameter $\varepsilon$ and the AWGN quotient $E_{\rm B}/N_{0}$ $($used in the graph$)$ is given as follows:
- $$\varepsilon = {\rm Q}\left ( \sqrt{2 \cdot R \cdot E_{\rm B}/N_0} \right ) \hspace{0.05cm}.$$
- Here ${\rm Q}(x)$ denotes the "complementary Gaussian error function" and $R$ the code rate.
- The green curve $($with crosses$)$ shows the block error probability for soft decisions $($"Soft Decision", $\rm SD)$. This curve cannot be given in closed-mathematical form. The curve drawn in the graph is an upper bound given in [Fri96]:
- $$ {\rm Pr(block\:error)} \hspace{-0.15cm}\ \le \ \hspace{-0.15cm} 7 \cdot {\rm Q}\left ( \sqrt{ 3 \cdot \frac{2 \cdot R \cdot E_{\rm B}}{N_0}} \right )+7 \cdot {\rm Q}\left ( \sqrt{ 4 \cdot \frac{2 \cdot R \cdot E_{\rm B}}{N_0}} \right ) + {\rm Q}\left ( \sqrt{ 7 \cdot \frac{2 \cdot R \cdot E_{\rm B}}{N_0}} \right ) \hspace{0.05cm}.$$
- The respective first factor in the arguments of the $\rm Q$–function indicates Hamming distances ⇒ $i = 3, \, 4, \, 7$.
- The prefactors take into account "multiplicities" $W_{3} = W_{4} = 7$ and $W_{7} = 1$.
- $R = 4/7$ describes the code rate.
- For $10 · \lg {E_{\rm B}/N_0} > 8 \ \rm dB$ ⇒ $\rm Pr(block\:error) < 10^{–5}$.
Hints:
- This exercise refers to the chapter "Decoding of Linear Block Codes".
- The above cited bibliography [Fri96] refers to the book
"Friedrichs, B.: Kanalcodierung - Grundlagen und Anwendungen in modernen Kommunikationssystemen. Berlin - Heidelberg: Springer, 1996".
- For numerical results, use our calculation applet "Complementary Gaussian Error Functions".
- For the subtasks (1) to (4), "Hard Decision" is always assumed.
Questions
Solution
(1) Every Hamming code is perfect and has the minimum distance $d_{\rm min} = 3$.
- Therefore, one bit error in the code word can be corrected, while two bit errors will always cause the code word to fail ⇒ parameter $t = 1$.
- Thus, for the block error probability:
- $${\rm Pr(block\:error)} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - {\rm Pr(no\hspace{0.15cm} block\:error)} - {\rm Pr(one\hspace{0.15cm} block\:error)} = 1 - (1 - \varepsilon)^7 - 7 \cdot \varepsilon \cdot (1 - \varepsilon)^6 \hspace{0.05cm}.$$
- $$\varepsilon = 10^{-2} \text{:} \hspace{0.4cm}{\rm Pr(block\:error)} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - 0.99^7 - 7 \cdot 0.01 \cdot 0.99^6= 1 - 0.932065 - 0.065904\hspace{0.15cm}\underline{\approx 2.03 \cdot 10^{-3}}\hspace{0.05cm},$$
- $$\varepsilon = 10^{-3} \text{:} \hspace{0.4cm} {\rm Pr(block\:error)} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - 0.999^7 - 7 \cdot 0.001 \cdot 0.999^6= 1 - 0.993021 - 0.006958\hspace{0.15cm}\underline{\approx 0.0209 \cdot 10^{-3}}\hspace{0.05cm}.$$
(2) Each $(n, \, k, \, 3)$ Hamming code can correct only one bit error. Thus, for the BSC channel, the general rule is with code word length $n$:
- $${\rm Pr(block\:error)} = 1 - \text{Pr(no bit error)} - \text{Pr(one bit error)} = 1 - (1 - \varepsilon)^n - n \cdot \varepsilon \cdot (1 - \varepsilon)^{n-1}.$$
- After series expansion of "$(1 - \varepsilon)^n$" or of "$n \cdot \varepsilon \cdot (1 - \varepsilon)^{n-1}$" we obtain from this:
- $${\rm Pr(block\:error)} = 1 - \left [ 1 - {n \choose 1}\cdot \varepsilon + {n \choose 2}\cdot \varepsilon^2 - \hspace{0.05cm}\text{...} \hspace{0.05cm} \right ] -\left [ n \cdot \varepsilon \cdot \left ( 1 - {{n-1} \choose 1}\cdot \varepsilon + {{n-1} \choose 2}\cdot \varepsilon^2 - \hspace{0.05cm}\text{...} \hspace{0.05cm}\right ) \right ] \hspace{0.05cm}.$$
- If we neglect all terms with $\varepsilon^3, \ \varepsilon^4, \ \text{...}$ we finally get:
- $${\rm Pr(block\:error)} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} n \cdot \varepsilon - {n \choose 2}\cdot \varepsilon^2 - n \cdot \varepsilon + n \cdot \varepsilon {{n-1} \choose 1}\cdot \varepsilon + \hspace{0.05cm}\text{...}\hspace{0.05cm} = -n/2 \cdot (n-1)\cdot \varepsilon^2 + n \cdot (n-1)\cdot \varepsilon^2 = n \cdot (n-1)/2 \cdot \varepsilon^2 \hspace{0.05cm}.$$
The correct solution is suggestion 1.
For the $(7, \, 4, \, 3)$ Hamming code, it follows:
- $${\rm Pr(block\:error)} \le \left\{ \begin{array}{c} 2.03 \cdot 10^{-3}\\ 2.09 \cdot 10^{-5} \end{array} \right.\quad \begin{array}{*{1}c} {\rm for}\hspace{0.15cm} \varepsilon = 10^{-2} \\ {\rm for}\hspace{0.15cm} \varepsilon = 10^{-3} \\ \end{array} \hspace{0.05cm}.$$
- By comparison with the result of the subtask (1) one recognizes the validity of this approximation. The smaller the BSC falsification probability $\varepsilon$, the better it is.
(3) The results of subtask (2) can be summarized as follows:
- $${\rm Pr(block\:error)} = \left\{ \begin{array}{l} 3 \cdot \varepsilon^2 \\ 21 \cdot \varepsilon^2\\ 105 \cdot \varepsilon^2\\ \end{array} \right.\quad \begin{array}{*{1}l} {\rm for}\hspace{0.15cm} n = 3 \\ {\rm for}\hspace{0.15cm} n = 7 \\ {\rm for}\hspace{0.15cm} n = 15 \\ \end{array} \hspace{0.05cm}.$$
- Right is answer 1. Of course, the Hamming code with the lowest rate $R = 1/3$, i.e. with the greatest relative redundancy, has the lowest block error probability.
(4) At Hard Decision, with the complementary Gaussian error function ${\rm Q}(x)$:
- $$\varepsilon = {\rm Q}\left ( \sqrt{2 \cdot R \cdot E_{\rm B}/N_0} \right )\hspace{0.3cm} \Rightarrow \hspace{0.3cm} E_{\rm B}/N_0 = \frac{[{\rm Q}^{-1}(\varepsilon)]^2}{2R}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 20 \cdot {\rm lg} \hspace{0.1cm}[{\rm Q}^{-1}(\varepsilon)] - 10 \cdot {\rm lg} \hspace{0.1cm} (2R) \hspace{0.05cm}.$$
- From this we obtain with $\varepsilon = 0.01 \ ⇒ \ {\rm Q}^{–1}(\varepsilon) = 2.33$:
- $$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 20 \cdot {\rm lg} \hspace{0.1cm}(2.33) - 10 \cdot {\rm lg} \hspace{0.1cm} (8/7) = 7.35\,{\rm dB} - 0.58\,{\rm dB}\hspace{0.15cm}\underline{\approx 6.77\,{\rm dB}}\hspace{0.05cm}.$$
- Analogously, for $\varepsilon = 0.001 \ ⇒ \ {\rm Q}^{-1}(\varepsilon) = 3.09$:
- $$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 20 \cdot {\rm lg} \hspace{0.1cm}(3.09) - 0.58\,{\rm dB}\hspace{0.15cm}\underline{\approx 9.22\,{\rm dB}}\hspace{0.05cm}.$$
(5) Here we refer to the block error probability $10^{–5}$.
- According to the result of subtask (2), the BSC falsification probability must then not be greater than
- $$\varepsilon = \sqrt{{10^{-5}}/{21}} = 6.9 \cdot 10^{-4} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Q}^{-1}(\varepsilon) = 3.2 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 9.52\,{\rm dB}\hspace{0.05cm}.$$
- For "Soft Decision" according to the specification graph: $10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 8\,{\rm dB}\hspace{0.05cm}$ ⇒ $10 · \lg {G_{\rm SD}} \ \underline{= 1.52 \ {\rm dB}}$.