Difference between revisions of "Aufgaben:Exercise 1.16: Block Error Probability Bounds for AWGN"

From LNTwww
 
(42 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Schranken für die Blockfehlerwahrscheinlichkeit}}
+
{{quiz-Header|Buchseite=Channel_Coding/Limits_for_Block_Error_Probability}}
  
[[File:P_ID2414__KC_A_1_15.png|right|frame|Funktion ${\rm Q}(x)$ und Näherungen ]]
+
[[File:P_ID2414__KC_A_1_15.png|right|frame|Function&nbsp; ${\rm Q}(x)$&nbsp; and approximations;<br>it holds:&nbsp; ${\rm Q_u}(x)\le{\rm Q}(x)\le{\rm Q_o}(x)$ ]]
  
Wir gehen von der folgenden Konstellation aus:
+
We assume the following constellation:
*ein linearer Blockcode mit der Coderate $R = k/n$ und dem Distanzspektrum $\{W_i\}, \ i = 1, \ ... \ , n$,
+
*A linear block code with code rate&nbsp; $R = k/n$&nbsp; and distance spectrum&nbsp; $\{W_i\}, \ i = 1, \ \text{...} \ , n$,
*ein AWGN–Kanal, gekennzeichnet durch „$E_{\rm B}/N_{0}$” &nbsp;⇒&nbsp; umrechenbar in die Rauschleistung $\sigma^2$,
 
*ein Empfänger, basierend auf ''Soft Decision'' sowie dem ''Maximum–Likelihood–Kriterium''.
 
  
 +
*an AWGN channel characterized by&nbsp; $E_{\rm B}/N_{0}$ &nbsp; ⇒ &nbsp; convertible to noise power&nbsp; $\sigma^2$,
  
Unter der für die gesamte Aufgabe gültigen Annahme, dass stets das Nullwort $\underline{x}_{1} = (0, 0, ... , 0)$ gesendet wird, gilt für die [[Kanalcodierung/Schranken_für_die_Blockfehlerwahrscheinlichkeit#Union_Bound_der_Blockfehlerwahrscheinlichkeit|„paarweise Fehlerwahrscheinlichkeit”]] mit einem anderen Codewort $\underline{x}_{l} (l = 2, ... , 2^k):$
+
*a receiver based on&nbsp; "soft decision"&nbsp; as well as the&nbsp; "maximum likelihood criterion".
 +
 
 +
 
 +
Under the assumption valid for the entire exercise that always the zero-word&nbsp; $\underline{x}_{1} = (0, 0, \text{... } \ , 0)$&nbsp; is sent, the&nbsp; [[Channel_Coding/Limits_for_Block_Error_Probability#Union_Bound_of_the_block_error_probability|"pairwise error probability"]]&nbsp; with a different code word&nbsp; $\underline{x}_{l} (l = 2,\ \text{...} \ , 2^k)$:
  
 
:$$ {\rm Pr}[\hspace{0.05cm}\underline{x}_{\hspace{0.02cm}1} \hspace{-0.02cm}\mapsto \hspace{-0.02cm}\underline{x}_{\hspace{0.02cm}l}\hspace{0.05cm}] = {\rm Q}\left ( \sqrt{w_{\rm H}(\underline{x}_{\hspace{0.02cm}l})/\sigma^2} \right ) \hspace{0.05cm}.$$
 
:$$ {\rm Pr}[\hspace{0.05cm}\underline{x}_{\hspace{0.02cm}1} \hspace{-0.02cm}\mapsto \hspace{-0.02cm}\underline{x}_{\hspace{0.02cm}l}\hspace{0.05cm}] = {\rm Q}\left ( \sqrt{w_{\rm H}(\underline{x}_{\hspace{0.02cm}l})/\sigma^2} \right ) \hspace{0.05cm}.$$
 
   
 
   
Die Herleitung dieser Beziehung finden Sie in [Liv10]. In dieser Gleichung wurden verwendet:
+
The derivation of this relation can be found in&nbsp; [Liv10].&nbsp; Used in this equation are:
*die komplementäre Gaußsche Fehlerfunktion ${\rm Q}(x)$,
+
*the&nbsp; [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables#Exceedance_probability|"complementary Gaussian error function"]]&nbsp; ${\rm Q}(x)$,
*das [[Kanalcodierung/Zielsetzung_der_Kanalcodierung#Einige_wichtige_Definitionen_zur_Blockcodierung|Hamming–Gewicht]] $w_{\rm H}(\underline{x}_{l})$ des Codewortes $\underline{x}_{l}$,
+
 
*die AWGN–Rauschleistung $\sigma^2 = (2 · R · E_{\rm B}/N_{0})^{–1}.$  
+
*the&nbsp; [[Channel_Coding/Objective_of_Channel_Coding#Important_definitions_for_block_coding|"Hamming weight"]]&nbsp; $w_{\rm H}(\underline{x}_{l})$&nbsp; of the code word&nbsp; $\underline{x}_{l}$,
 +
 
 +
*the&nbsp; [[Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems#System_optimization_with_power_limitation|"AWGN noise power"]]&nbsp; $\sigma^2 = (2 \cdot R \cdot E_{\rm B}/N_{0})^{-1}.$  
  
  
Damit lassen sich verschiedene Schranken für die Blockfehlerwahrscheinlichkeit angeben:
+
This allows various bounds to be specified for the block error probability:
  
*die sogenannte [[Kanalcodierung/Schranken_für_die_Blockfehlerwahrscheinlichkeit#Union_Bound_der_Blockfehlerwahrscheinlichkeit|Union Bound]]:
+
*the so called&nbsp; [[Channel_Coding/Limits_for_Block_Error_Probability#Union_Bound_of_the_block_error_probability|"Union Bound"]]&nbsp; $\rm (UB)$:
 
   
 
   
:$$p_1 = \sum_{l = 2}^{2^k}\hspace{0.05cm}{\rm Pr}[\hspace{0.05cm}\underline{x}_{\hspace{0.02cm}1} \hspace{-0.02cm}\mapsto \hspace{-0.02cm}\underline{x}_{\hspace{0.02cm}l}\hspace{0.05cm}] = \sum_{l = 2}^{2^k}\hspace{0.05cm}{\rm Q}\left ( \sqrt{w_{\rm H}(\underline{x}_{\hspace{0.02cm}l})/\sigma^2} \right ) \hspace{0.05cm},$$
+
:$$p_1 = \sum_{l = 2}^{2^k}\hspace{0.05cm}{\rm Pr}[\hspace{0.05cm}\underline{x}_{\hspace{0.02cm}1} \hspace{-0.02cm}\mapsto \hspace{-0.02cm}\underline{x}_{\hspace{0.02cm}l}\hspace{0.05cm}] = \sum_{l \hspace{0.05cm}= \hspace{0.05cm}2}^{2^k}\hspace{0.05cm}{\rm Q}\left ( \sqrt{w_{\rm H}(\underline{x}_{\hspace{0.02cm}l})/\sigma^2} \right ) \hspace{0.05cm},$$
  
*die so genannte [http://www.eit.lth.se/fileadmin/eit/courses/ett051/Laborationer/Lab2ManualHt12009.pdf Truncated Union Bound] (TUB):
+
*the so called&nbsp; [[Channel_Coding/Limits_for_Block_Error_Probability#Bounds_for_the_.287.2C_4.2C_3.29_Hamming_code_at_the_AWGN_channel|"Truncated Union Bound"]]&nbsp; $\rm  (TUB)$:
 
   
 
   
 
:$$p_2 = W_{d_{\rm min}} \cdot {\rm Q}\left ( \sqrt{d_{\rm min}/\sigma^2} \right ) \hspace{0.05cm},$$
 
:$$p_2 = W_{d_{\rm min}} \cdot {\rm Q}\left ( \sqrt{d_{\rm min}/\sigma^2} \right ) \hspace{0.05cm},$$
  
*die [[Kanalcodierung/Schranken_für_die_Blockfehlerwahrscheinlichkeit#Die_obere_Schranke_nach_Bhattacharyya|Bhattacharyya–Schranke:]]
+
*the&nbsp; [[Channel_Coding/Limits_for_Block_Error_Probability#The_upper_bound_according_to_Bhattacharyya|"Bhattacharyya Bound"]]:
 
   
 
   
:$$p_3 = W(\beta) - 1\hspace{0.05cm},\hspace{0.2cm} {\rm mit}\hspace{0.15cm} \beta = {\rm exp}\left [ - 1/(2\sigma^2) \right ] \hspace{0.05cm}.$$
+
:$$p_3 = W(\beta) - 1\hspace{0.05cm},\hspace{0.2cm} {\rm with}\hspace{0.15cm} \beta = {\rm e}^{ - 1/(2\sigma^2) } \hspace{0.05cm}.$$
  
In diesem Fall ist das Distanzspektrum $\{W_i\}$ durch die Gewichtsfunktion zu ersetzen:
+
:In this case,&nbsp; replace the distance spectrum&nbsp; $\{W_i\}$&nbsp; with the weight enumerator function:
  
 
:$$\left \{ \hspace{0.05cm} W_i \hspace{0.05cm} \right \} \hspace{0.3cm} \Leftrightarrow \hspace{0.3cm} W(X) = \sum_{i=0 }^{n} W_i \cdot X^{i} = W_0 + W_1 \cdot X + W_2 \cdot X^{2} + ... \hspace{0.05cm} + W_n \cdot X^{n}\hspace{0.05cm}.$$
 
:$$\left \{ \hspace{0.05cm} W_i \hspace{0.05cm} \right \} \hspace{0.3cm} \Leftrightarrow \hspace{0.3cm} W(X) = \sum_{i=0 }^{n} W_i \cdot X^{i} = W_0 + W_1 \cdot X + W_2 \cdot X^{2} + ... \hspace{0.05cm} + W_n \cdot X^{n}\hspace{0.05cm}.$$
 
   
 
   
Beim Übergang von der ''Union Bound'' $p_{1}$ zur Schranke $p_{3}$ wird unter Anderem die Funktion ${\rm Q}(x)$ durch die ''Chernoff–Rubin–Schranke'' ${\rm Q}_{\rm CR}(x)$ ersetzt. Beide Funktionen sind in obigerer Grafik dargestellt (rote bzw. grüne Kurve).
+
In the transition from the&nbsp; "Union Bound"&nbsp; $p_{1}$&nbsp; to the more imprecise bound&nbsp; $p_{3}$&nbsp; among others
 +
*the function&nbsp; ${\rm Q}(x)$&nbsp; is replaced by the&nbsp; [https://en.wikipedia.org/wiki/Chernoff_bound "Chernoff-Rubin bound"]&nbsp; ${\rm Q}_{\rm CR}(x)$.  
 +
 
 +
*Both functions are shown in the above graph&nbsp; (red and green curve, resp.).
 +
 
 +
 
 +
In the&nbsp; [[Aufgaben:Exercise_1.16Z:_Bounds_for_the_Gaussian_Error_Function|"Exercise 1.16Z"]]&nbsp; the relationship between these functions is evaluated numerically and referenced to the bounds&nbsp; ${\rm Q}_{\rm o}(x)$ and ${\rm Q}_{\rm u}(x)$&nbsp; which are also drawn in the above graph.
  
In der [[Aufgaben:1.16Z_Schranken_für_Q(x)|Aufgabe 1.16Z]] wird der Zusammenhang zwischen diesen Funktionen numerisch ausgewertet und Bezug genommen zu den Schranken ${\rm Q}_{o}(x)$ und ${\rm Q}_{u}(x)$, die in obiger Grafik ebenfalls eingezeichnet sind.
 
  
''Hinweise:''
 
* Die Aufgabe gehört zum Kapitel [[Kanalcodierung/Schranken_für_die_Blockfehlerwahrscheinlichkeit|Schranken für die Blockfehlerwahrscheinlichkeit]]
 
* Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
 
* Weiter verweisen wir auf folgendes Flash–Modul:
 
# Komplimentäre Gaußsche Fehlerfunktion (Dateigröße: 235 kB)
 
  
  
 +
Hints:
 +
* This exercise belongs to the chapter&nbsp; [[Channel_Coding/Bounds_for_Block_Error_Probability|"Bounds for block error probability"]].
  
 +
* The above cited reference&nbsp; "[Liv10]"&nbsp; refers to the lecture manuscript "Liva, G.:&nbsp; Channel Coding.&nbsp;  Chair of Communications Engineering, TU Munich and DLR Oberpfaffenhofen, 2010."
  
===Fragebogen===
+
* Further we refer to the interactive HTML5/JavaScript applet&nbsp; [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen| "Complementary Gaussian error functions"]].
 +
 
 +
 
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Gleichung gilt für die ''Union Bound''?
+
{Which equation applies to the&nbsp; "Union Bound"?
 
|type="[]"}
 
|type="[]"}
- $p_{1} = \sum_{l=2}^{2^k} W_{l} · {\rm Q}[(l/\sigma^2)^{0.5}],$
+
- $p_{1} = \sum_{l\hspace{0.05cm}=\hspace{0.05cm}2}^{2^k} W_{l} · {\rm Q}\big[(l/\sigma^2)^{0.5}\big],$
+ $p_{1} = \sum_{i=1}^{n} W_{i} · {\rm Q}[(i/\sigma^2)^{0.5}],$
+
+ $p_{1} = \sum_{i\hspace{0.05cm}=\hspace{0.05cm}1}^{n} W_{i} · {\rm Q}\big[(i/\sigma^2)^{0.5}\big].$
  
{Geben Sie die Union Bound für den $(8, 4, 4)$–Code und $\sigma = 1, \ \sigma = 0.5$ an.
+
{Specify the Union Bound for the&nbsp; $(8, 4, 4)$&nbsp; code and various&nbsp; $\sigma$.
 
|type="{}"}
 
|type="{}"}
$(8, 4, 4)–{\rm Code}, \ \sigma = 1 \text{:} \hspace{0.2cm} p_{1} \ = \ $ { 0.3215 3% }
+
$\sigma = 1.0 \text{:} \hspace{0.4cm} p_{1} \ = \ $ { 32.15 3% } $\ \%$
$\sigma = 0.5 \text{:} \hspace{0.2cm} p_{1} \ = \ $ { 0.444 3% } $\ \cdot 10^{-3} $
+
$\sigma = 0.5 \text{:} \hspace{0.4cm} p_{1} \ = \ $ { 0.0444 3% } $\ \%$
  
{Was liefert die ''Truncated Union Bound'' bei gleichen Randbedingungen?
+
{Given the same boundary conditions, what does the&nbsp; "Truncated Union Bound"&nbsp; provide?
 
|type="{}"}
 
|type="{}"}
$(8, 4, 4)–{\rm Code}, \ \sigma = 1 \text{:} \hspace{:} p_{2} \ = \ $ {0.3192 3% }
+
$\sigma = 1.0 \text{:} \hspace{0.4cm} p_{2} \ = \ $ { 31.92 3% } $\ \%$
$\sigma = 0.5 \text{:} \hspace{0.2cm} p_{2} \ = \ ${ 0.444 3% }$\ \cdot 10^{-3} $
+
$\sigma = 0.5 \text{:} \hspace{0.4cm} p_{2} \ = \ $ { 0.044 3% } $\ \%$
  
{Welche Aussage gilt immer (für alle Konstellationen)?
+
{Which statement is always true&nbsp; (for all constellations)?
 
|type="[]"}
 
|type="[]"}
+ Die Blockfehlerwahrscheinlichkeit ist nie größer als $p_{1}$.
+
+ The block error probability is never greater than&nbsp; $p_{1}$.
- Die Blockfehlerwahrscheinlichkeit ist nie größer als $p_{2}$.
+
- The block error probability is never greater than&nbsp; $p_{2}$.
  
{Wie kommt man von $p_{1}$ zur Bhattacharyya–Schranke $p_{3}$? Dadurch, dass man
+
{How do you get from&nbsp; $p_{1}$&nbsp; to the&nbsp; "Bhattacharyya Bound"&nbsp; $p_{3}$?&nbsp;
 
|type="[]"}
 
|type="[]"}
+ die Fehlerfunktion ${\rm Q}(x)$ durch die Funktion ${\rm Q}_{\rm CR}(x)$ ersetzt,
+
+ Replace the error function&nbsp; ${\rm Q}(x)$&nbsp; with the function&nbsp; ${\rm Q}_{\rm CR}(x)$.
- den Bhattacharyya–Parameter $\beta = 1/\sigma$ setzt,
+
- Set the Bhattacharyya parameter&nbsp; $\beta = 1/\sigma$.
+ statt { $W_{i}$ } die Gewichtsfunktion $W(X)$ verwendet.
+
+ Instead of&nbsp; $\{W_i\}$&nbsp; uses the weight enumerator function&nbsp; $W(X)$.
  
  
{Geben Sie die Bhattacharyya–Schranke für $\sigma = 1$ und $\sigma = 0.5$ an.
+
{Specify the Bhattacharyya Bound for&nbsp; $\sigma = 1$&nbsp; and&nbsp; $\sigma = 0.5$&nbsp;.
 
|type="{}"}
 
|type="{}"}
$\ (8, 4, 4)–Code, \sigma = 1:   p_{3} \ = \ $ { 1.913 3% }
+
$\sigma = 1.0 \text{:} \hspace{0.4cm} p_{3} \ = \ $ { 191.3 3% } $\ \%$
$\ \sigma = 0.5: \ \ \ p_{3} \ = \ ${ 0.47 3% }$\ \cdot 10^{-2} $
+
$\sigma = 0.5 \text{:} \hspace{0.4cm} p_{3} \ = \ $ { 0.47 3% } $\ \%$
 +
</quiz>
  
 +
===Solution===
 +
{{ML-Kopf}}
 +
'''(1)'''&nbsp; The correct solution is <u>suggestion 2</u>:
  
 +
*The distance spectrum&nbsp; $\{W_i\}$&nbsp; is defined for&nbsp; $i = 0, \ \text{...} \ , \ n$:
 +
 +
#$W_{1}$&nbsp; indicates how often the Hamming weight&nbsp; $w_{\rm H}(\underline{x}_{i}) = 1$&nbsp; occurs.
 +
#$W_{n}$&nbsp; indicates how often the Hamming weight&nbsp; $w_{\rm H}(\underline{x}_{i}) = n$&nbsp; occurs.
  
</quiz>
 
  
===Musterlösung===
+
*With that,&nbsp; the&nbsp; "Union Bound"&nbsp; is:
{{ML-Kopf}}
 
'''(1)'''&nbsp; Richtig ist <u>Antwort 2</u>. Das Distanzspektrum { $W_{i}$ } ist definiert für $i = 0, ... , n$:
 
  
*$W_{1}$ gibt an, wie oft das Hamming–Gewicht $w_{\rm H}(\underline{x}_{i}) = 1$ auftritt.
+
:$$p_1 = {\rm Pr(Union \hspace{0.15cm}Bound)}= \sum_{i = 1}^{n}\hspace{0.05cm}W_i \cdot {\rm Q}\left ( \sqrt{i/\sigma^2} \right ) \hspace{0.05cm}.$$
*$W_{n}$ gibt an, wie oft das Hamming–Gewicht $w_{\rm H}(\underline{x}_{i}) = n$ auftritt.
+
  
Damit lautet die ''Union Bound'':
+
'''(2)'''&nbsp; The distance spectrum of the&nbsp; $(8, 4, 4)$&nbsp; code was given as&nbsp; $W_{0} = 1 , \ W_{4} = 14, \ W_{8} = 1$.&nbsp;
 +
*Thus,&nbsp; one obtains for $\sigma = 1$:
 +
:$$p_1 =  W_4 \cdot {\rm Q}\left ( 2 \right ) + W_8 \cdot {\rm Q}\left ( 2 \cdot \sqrt{2} \right )
 +
= 14 \cdot 2.28 \cdot 10^{-2}+ 1 \cdot 0.23 \cdot 10^{-2} \hspace{0.15cm}\underline{\approx 32.15\%}\hspace{0.05cm},$$
  
:$$p_1 = {\rm Pr(Union \hspace{0.15cm}Bound)}= \sum_{i = 1}^{n}\hspace{0.05cm}W_i \cdot {\rm Q}\left ( \sqrt{i/\sigma^2} \right ) \hspace{0.05cm}.$$
+
*For&nbsp; $\sigma = 0.5$:
 +
:$$p_1 = 14 \cdot {\rm Q}\left ( 4 \right ) + {\rm Q}\left ( 4 \cdot \sqrt{2} \right )
 +
= 14 \cdot 3.17 \cdot 10^{-5}+ 1.1 \cdot 10^{-8} \hspace{0.15cm}\underline{\approx 0.0444 \%}\hspace{0.05cm}.$$
 
   
 
   
  
'''(2)'''&nbsp; Das Distanzspektrum des (8, 4, 4)–Codes wurde mit $W_{0} = 1 , W_{4} = 14, W_{8} = 1$ angegeben. Somit erhält man für $\boldsymbol{\sigma = 1}$:
+
'''(3)'''&nbsp; With the minimum distance&nbsp; $d_{\rm min} = 4$&nbsp; we get:
 
   
 
   
bzw. für $\boldsymbol{\sigma = 0.5}$:
+
:$$\sigma = 1.0\text{:} \hspace{0.4cm} p_2 \hspace{-0.15cm}\ = \ \hspace{-0.15cm} W_4 \cdot {\rm Q}\left ( 2 \right ) \hspace{0.15cm}\underline{= 31.92\%}\hspace{0.05cm},$$
 +
:$$\sigma = 0.5\text{:} \hspace{0.4cm} p_2 \hspace{-0.15cm}\ = \ \hspace{-0.15cm}W_4 \cdot {\rm Q}\left ( 4 \right ) \approx p_1 \hspace{0.15cm}\underline{ = 0.0444 \%}\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(4)'''&nbsp; The correct solution is&nbsp; <u>suggestion 1</u>:  
 +
*The&nbsp; "Union Bound"&nbsp; - denoted here by&nbsp; $p_{1}$ - is an upper bound on the block error probability in all cases.
 
   
 
   
'''(3)'''&nbsp; Mit der Minimaldistanz $d_{\rm min} = 4$ erhält man:
+
*For the bound&nbsp; $p_{2}$&nbsp; ("Truncated Union Bound")&nbsp; this is not always true.
 
   
 
   
:$$\sigma = 1.0: \hspace{0.2cm} p_2 \hspace{-0.15cm}\ = \ \hspace{-0.15cm} W_4 \cdot {\rm Q}\left ( 2 \right ) \hspace{0.15cm}\underline{= 0.3192}\hspace{0.05cm},$$
+
*For example,&nbsp; in the&nbsp; $(7, 4, 3)$&nbsp; Hamming code &nbsp; &nbsp; $W_{3} = W_{4} = 7, \ W_{7} = 1$&nbsp; is obtained with standard deviation&nbsp; $\sigma = 1$:
:$$\sigma = 0.5: \hspace{0.2cm} p_2 \hspace{-0.15cm}\ = \ \hspace{-0.15cm}W_4 \cdot {\rm Q}\left ( 4 \right ) \approx p_1 \hspace{0.15cm}\underline{ = 0.444 \cdot 10^{-3}}\hspace{0.05cm}.$$
 
 
 
'''(4)'''&nbsp; Richtig ist <u>Antwort 1</u>. Die ''Union Bound'' – hier mit $p_{1}$ bezeichnet – ist in jedem Fall eine obere Schranke für die Blockfehlerwahrscheinlichkeit. Für die Schranke $p_{2}$ (''Truncated Union Bound'') trifft das nicht immer zu. Beispielsweise erhält man beim (7, 4, 3)–Hamming–Code  $W_{3} = W_{4} = 7, W_{7} = 1$ und der Streuung $\sigma = 1:$
 
 
   
 
   
 
:$$p_2 \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 7 \cdot {\rm Q}\left ( \sqrt{3} \right ) = 7 \cdot 4.18 \cdot 10^{-2} \approx 0.293\hspace{0.05cm},$$
 
:$$p_2 \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 7 \cdot {\rm Q}\left ( \sqrt{3} \right ) = 7 \cdot 4.18 \cdot 10^{-2} \approx 0.293\hspace{0.05cm},$$
 
:$$p_1 \hspace{-0.15cm}\ = \ \hspace{-0.15cm} p_2 + 7 \cdot {\rm Q}\left ( \sqrt{4} \right )+ 1 \cdot {\rm Q}\left ( \sqrt{7} \right ) \approx 0.455 \hspace{0.05cm}.$$
 
:$$p_1 \hspace{-0.15cm}\ = \ \hspace{-0.15cm} p_2 + 7 \cdot {\rm Q}\left ( \sqrt{4} \right )+ 1 \cdot {\rm Q}\left ( \sqrt{7} \right ) \approx 0.455 \hspace{0.05cm}.$$
  
Die tatsächliche Blockfehlerwahrscheinlichkeit wird wahrscheinlich zwischen $p_{2} = 0.293$ und $p_{1} = 0.455$ liegen (wurde nicht nachgeprüft). Das heißt: $p_{2}$ ist keine obere Schranke.
+
*The actual block error probability is likely to be between&nbsp; $p_{2} = 29.3\%$&nbsp; and&nbsp; $p_{1} = 45.5\%$&nbsp; (but this has not been verified). <br>That is, &nbsp; $p_{2}$ is not an upper bound.
  
  
'''(5)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 3</u>, wie die folgende Rechnung für den (8, 4, 4)–Code zeigt:
+
'''(5)'''&nbsp; Correct are&nbsp; <u>suggested solutions 1 and 3</u>,&nbsp; as the following calculation for the&nbsp; $(8, 4, 4)$&nbsp; code shows:
  
*Es gilt Q(x) ≤ QCR(x) = exp(– x2/2). Damit kann für die Union Bound
+
*It holds&nbsp; ${\rm Q}(x) ≤ {\rm Q_{CR}}(x) = {\rm e}^{-x^2/2}$.&nbsp; Thus,&nbsp; for the Union Bound
 
   
 
   
 
:$$p_1 = W_4 \cdot {\rm Q}\left ( \sqrt{4/\sigma^2} \right ) +W_8 \cdot {\rm Q}\left ( \sqrt{8/\sigma^2} \right )$$
 
:$$p_1 = W_4 \cdot {\rm Q}\left ( \sqrt{4/\sigma^2} \right ) +W_8 \cdot {\rm Q}\left ( \sqrt{8/\sigma^2} \right )$$
  
eine weitere obere Schranke angegeben werden:
+
:another upper bound can be specified:
 
   
 
   
:$$p_1 \le W_4 \cdot {\rm exp}\left [ - {4}/(2 \sigma^2) \right ] +W_8 \cdot {\rm exp}\left [ - {8}/(2 \sigma^2) \right ] \hspace{0.05cm}.$$
+
:$$p_1 \le W_4 \cdot {\rm e}^{ - {4}/(2 \sigma^2) } +W_8 \cdot {\rm e}^{ - {8}/(2 \sigma^2) } \hspace{0.05cm}.$$
  
*Mit $\beta = {\rm exp}[–1/(2\sigma^2)]$ kann hierfür auch geschrieben werden (das vorgegebene $\beta = 1/\sigma$ ist also falsch):
+
*With&nbsp; $\beta = {\rm e}^{-1/(2\sigma^2)}$&nbsp; can be written for this also&nbsp; (so the given&nbsp; $\beta = 1/\sigma$&nbsp; is wrong):
 
   
 
   
 
:$$p_1 \le W_4 \cdot \beta^4 + W_8 \cdot \beta^8 \hspace{0.05cm}.$$
 
:$$p_1 \le W_4 \cdot \beta^4 + W_8 \cdot \beta^8 \hspace{0.05cm}.$$
  
*Die Gewichtsfunktion des (8, 4, 4)–Codes lautet:
+
*The weight function of the&nbsp; $(8, 4, 4)$&nbsp; code is:
 
    
 
    
:$$W(X) = 1 + W_4 \cdot X^4 + W_8 \cdot X^8 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} W(\beta) - 1 = W_4 \cdot \beta^4 + W_8 \cdot \beta^8$$
+
:$$W(X) = 1 + W_4 \cdot X^4 + W_8 \cdot X^8 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} W(\beta) - 1 = W_4 \cdot \beta^4 + W_8 \cdot \beta^8\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm} p_3 = W(\beta) - 1 \ge p_1\hspace{0.05cm}.$$
  
:$$\Rightarrow \hspace{0.3cm} p_3 = W(\beta) - 1 \ge p_1\hspace{0.05cm}.$$
 
  
'''(6)'''&nbsp; Mit $\boldsymbol{\sigma = 1}$ lautet der Bhattacharyya–Parameter $\beta = {\rm exp}(–0.5) = 0.6065$ und man erhält damit für die Bhattacharyya–Schranke:
+
'''(6)'''&nbsp; With&nbsp; $\sigma = 1$,&nbsp; the Bhattacharyya parameter is&nbsp; $\beta = {\rm e}^{-0.5} = 0.6065$,&nbsp; and thus one obtains for the Bhattacharyya Bound:
 
   
 
   
:$$p_3 = 14 \cdot \beta^4 + \beta^8 = 14 \cdot 0.135 + 0.018 \hspace{0.15cm}\underline{= 1.913}\hspace{0.05cm}.$$
+
:$$p_3 = 14 \cdot \beta^4 + \beta^8 = 14 \cdot 0.135 + 0.018= 1.913 \hspace{0.15cm}\underline{= 191.3%}\hspace{0.05cm}.$$
 +
 
 +
*Considering that&nbsp; $p_{3}$&nbsp; is a bound for a probability,&nbsp; $p_{3} = 1.913$&nbsp; is only a trivial bound.
  
Berücksichtigt man, dass $p_{3}$(eine Schranke für) eine Wahrscheinlichkeit angibt, so ist $p_{3} = 1.913$ nur eine triviale Schranke. Für $\boldsymbol{\sigma = 0.5}$ ergibt sich dagegen $\beta = {\rm exp}(–2) \approx 0.135.$ Dann gilt:
+
*For&nbsp; $\sigma = 0.5$,&nbsp; on the other hand,&nbsp; $\beta = {\rm e}^{-2} \approx 0.135.$&nbsp; Then holds:
 
   
 
   
:$$p_3 = 14 \cdot \beta^4 + \beta^8 = 14 \cdot 3.35 \cdot 10^{-4} + 1.1 \cdot 10^{-7} \hspace{0.15cm}\underline{= 4.7 \cdot 10^{-3}}\hspace{0.05cm}.$$
+
:$$p_3 = 14 \cdot \beta^4 + \beta^8 = 14 \cdot 3.35 \cdot 10^{-4} + 1.1 \cdot 10^{-7} \hspace{0.15cm}\underline{= 0.47 \%}\hspace{0.05cm}.$$
  
Ein Vergleich mit der Teilaufgabe 2) zeigt, dass im vorliegenden Beispiel die Bhattacharyya–Schranke $p_{3}$ um den Faktor $(4.7 · 10^{–3})/(0.44 · 10^{–3}) > 10$ oberhalb der ''Union Bound'' $p_{1}$ liegt. Der Grund für diese große Abweichung ist die Chernoff–Rubin–Schranke, die deutlich oberhalb der Q–Funktion liegt. In der [[Aufgaben:1.16Z_Schranken_für_Q(x)|Aufgabe 1.16Z]] wird die Abweichung zwischen ${\rm Q}_{\rm CR}$ und ${\rm Q}(x)$ auch quantitativ berechnet:
+
A comparison with subtask&nbsp; '''(2)'''&nbsp; shows that in the present example the Bhattacharyya Bound&nbsp; $p_{3}$&nbsp; is above the&nbsp; "Union Bound"&nbsp; $p_{1}$&nbsp; by a factor&nbsp;
 +
:$$(0.47 - 10^{-2})/(0.044 - 10^{-2}) > 10.$$
 +
 +
*The reason for this large deviation is the Chernoff-Rubin bound,&nbsp; which is well above the&nbsp; ${\rm Q}$ function.
 +
 +
*In&nbsp; [[Aufgaben:Exercise_1.16Z:_Bounds_for_the_Gaussian_Error_Function|"Exercise 1.16Z"]],&nbsp; the deviation between&nbsp; ${\rm Q}_{\rm CR}$&nbsp; and&nbsp; ${\rm Q}(x)$&nbsp; is also calculated quantitatively:
 
   
 
   
 
:$${{\rm Q_{CR}}( x )}/{{\rm Q}( x )} \approx 2.5 \cdot x \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {{\rm Q_{CR}}( x = 4 )}/{{\rm Q}( x = 4)} \approx 10 \hspace{0.05cm}.$$
 
:$${{\rm Q_{CR}}( x )}/{{\rm Q}( x )} \approx 2.5 \cdot x \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {{\rm Q_{CR}}( x = 4 )}/{{\rm Q}( x = 4)} \approx 10 \hspace{0.05cm}.$$
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu  Kanalcodierung|^1.6 Schranken für die Blockfehlerwahrscheinlichkeit
+
[[Category:Channel Coding: Exercises|^1.6 Error Probability Bounds^]]
 
 
 
 
^]]
 

Latest revision as of 16:17, 5 August 2022

Function  ${\rm Q}(x)$  and approximations;
it holds:  ${\rm Q_u}(x)\le{\rm Q}(x)\le{\rm Q_o}(x)$

We assume the following constellation:

  • A linear block code with code rate  $R = k/n$  and distance spectrum  $\{W_i\}, \ i = 1, \ \text{...} \ , n$,
  • an AWGN channel characterized by  $E_{\rm B}/N_{0}$   ⇒   convertible to noise power  $\sigma^2$,
  • a receiver based on  "soft decision"  as well as the  "maximum likelihood criterion".


Under the assumption valid for the entire exercise that always the zero-word  $\underline{x}_{1} = (0, 0, \text{... } \ , 0)$  is sent, the  "pairwise error probability"  with a different code word  $\underline{x}_{l} (l = 2,\ \text{...} \ , 2^k)$:

$$ {\rm Pr}[\hspace{0.05cm}\underline{x}_{\hspace{0.02cm}1} \hspace{-0.02cm}\mapsto \hspace{-0.02cm}\underline{x}_{\hspace{0.02cm}l}\hspace{0.05cm}] = {\rm Q}\left ( \sqrt{w_{\rm H}(\underline{x}_{\hspace{0.02cm}l})/\sigma^2} \right ) \hspace{0.05cm}.$$

The derivation of this relation can be found in  [Liv10].  Used in this equation are:

  • the  "Hamming weight"  $w_{\rm H}(\underline{x}_{l})$  of the code word  $\underline{x}_{l}$,


This allows various bounds to be specified for the block error probability:

$$p_1 = \sum_{l = 2}^{2^k}\hspace{0.05cm}{\rm Pr}[\hspace{0.05cm}\underline{x}_{\hspace{0.02cm}1} \hspace{-0.02cm}\mapsto \hspace{-0.02cm}\underline{x}_{\hspace{0.02cm}l}\hspace{0.05cm}] = \sum_{l \hspace{0.05cm}= \hspace{0.05cm}2}^{2^k}\hspace{0.05cm}{\rm Q}\left ( \sqrt{w_{\rm H}(\underline{x}_{\hspace{0.02cm}l})/\sigma^2} \right ) \hspace{0.05cm},$$
$$p_2 = W_{d_{\rm min}} \cdot {\rm Q}\left ( \sqrt{d_{\rm min}/\sigma^2} \right ) \hspace{0.05cm},$$
$$p_3 = W(\beta) - 1\hspace{0.05cm},\hspace{0.2cm} {\rm with}\hspace{0.15cm} \beta = {\rm e}^{ - 1/(2\sigma^2) } \hspace{0.05cm}.$$
In this case,  replace the distance spectrum  $\{W_i\}$  with the weight enumerator function:
$$\left \{ \hspace{0.05cm} W_i \hspace{0.05cm} \right \} \hspace{0.3cm} \Leftrightarrow \hspace{0.3cm} W(X) = \sum_{i=0 }^{n} W_i \cdot X^{i} = W_0 + W_1 \cdot X + W_2 \cdot X^{2} + ... \hspace{0.05cm} + W_n \cdot X^{n}\hspace{0.05cm}.$$

In the transition from the  "Union Bound"  $p_{1}$  to the more imprecise bound  $p_{3}$  among others

  • Both functions are shown in the above graph  (red and green curve, resp.).


In the  "Exercise 1.16Z"  the relationship between these functions is evaluated numerically and referenced to the bounds  ${\rm Q}_{\rm o}(x)$ and ${\rm Q}_{\rm u}(x)$  which are also drawn in the above graph.



Hints:

  • The above cited reference  "[Liv10]"  refers to the lecture manuscript "Liva, G.:  Channel Coding.  Chair of Communications Engineering, TU Munich and DLR Oberpfaffenhofen, 2010."



Questions

1

Which equation applies to the  "Union Bound"?

$p_{1} = \sum_{l\hspace{0.05cm}=\hspace{0.05cm}2}^{2^k} W_{l} · {\rm Q}\big[(l/\sigma^2)^{0.5}\big],$
$p_{1} = \sum_{i\hspace{0.05cm}=\hspace{0.05cm}1}^{n} W_{i} · {\rm Q}\big[(i/\sigma^2)^{0.5}\big].$

2

Specify the Union Bound for the  $(8, 4, 4)$  code and various  $\sigma$.

$\sigma = 1.0 \text{:} \hspace{0.4cm} p_{1} \ = \ $

$\ \%$
$\sigma = 0.5 \text{:} \hspace{0.4cm} p_{1} \ = \ $

$\ \%$

3

Given the same boundary conditions, what does the  "Truncated Union Bound"  provide?

$\sigma = 1.0 \text{:} \hspace{0.4cm} p_{2} \ = \ $

$\ \%$
$\sigma = 0.5 \text{:} \hspace{0.4cm} p_{2} \ = \ $

$\ \%$

4

Which statement is always true  (for all constellations)?

The block error probability is never greater than  $p_{1}$.
The block error probability is never greater than  $p_{2}$.

5

How do you get from  $p_{1}$  to the  "Bhattacharyya Bound"  $p_{3}$? 

Replace the error function  ${\rm Q}(x)$  with the function  ${\rm Q}_{\rm CR}(x)$.
Set the Bhattacharyya parameter  $\beta = 1/\sigma$.
Instead of  $\{W_i\}$  uses the weight enumerator function  $W(X)$.

6

Specify the Bhattacharyya Bound for  $\sigma = 1$  and  $\sigma = 0.5$ .

$\sigma = 1.0 \text{:} \hspace{0.4cm} p_{3} \ = \ $

$\ \%$
$\sigma = 0.5 \text{:} \hspace{0.4cm} p_{3} \ = \ $

$\ \%$


Solution

(1)  The correct solution is suggestion 2:

  • The distance spectrum  $\{W_i\}$  is defined for  $i = 0, \ \text{...} \ , \ n$:
  1. $W_{1}$  indicates how often the Hamming weight  $w_{\rm H}(\underline{x}_{i}) = 1$  occurs.
  2. $W_{n}$  indicates how often the Hamming weight  $w_{\rm H}(\underline{x}_{i}) = n$  occurs.


  • With that,  the  "Union Bound"  is:
$$p_1 = {\rm Pr(Union \hspace{0.15cm}Bound)}= \sum_{i = 1}^{n}\hspace{0.05cm}W_i \cdot {\rm Q}\left ( \sqrt{i/\sigma^2} \right ) \hspace{0.05cm}.$$


(2)  The distance spectrum of the  $(8, 4, 4)$  code was given as  $W_{0} = 1 , \ W_{4} = 14, \ W_{8} = 1$. 

  • Thus,  one obtains for $\sigma = 1$:
$$p_1 = W_4 \cdot {\rm Q}\left ( 2 \right ) + W_8 \cdot {\rm Q}\left ( 2 \cdot \sqrt{2} \right ) = 14 \cdot 2.28 \cdot 10^{-2}+ 1 \cdot 0.23 \cdot 10^{-2} \hspace{0.15cm}\underline{\approx 32.15\%}\hspace{0.05cm},$$
  • For  $\sigma = 0.5$:
$$p_1 = 14 \cdot {\rm Q}\left ( 4 \right ) + {\rm Q}\left ( 4 \cdot \sqrt{2} \right ) = 14 \cdot 3.17 \cdot 10^{-5}+ 1.1 \cdot 10^{-8} \hspace{0.15cm}\underline{\approx 0.0444 \%}\hspace{0.05cm}.$$


(3)  With the minimum distance  $d_{\rm min} = 4$  we get:

$$\sigma = 1.0\text{:} \hspace{0.4cm} p_2 \hspace{-0.15cm}\ = \ \hspace{-0.15cm} W_4 \cdot {\rm Q}\left ( 2 \right ) \hspace{0.15cm}\underline{= 31.92\%}\hspace{0.05cm},$$
$$\sigma = 0.5\text{:} \hspace{0.4cm} p_2 \hspace{-0.15cm}\ = \ \hspace{-0.15cm}W_4 \cdot {\rm Q}\left ( 4 \right ) \approx p_1 \hspace{0.15cm}\underline{ = 0.0444 \%}\hspace{0.05cm}.$$


(4)  The correct solution is  suggestion 1:

  • The  "Union Bound"  - denoted here by  $p_{1}$ - is an upper bound on the block error probability in all cases.
  • For the bound  $p_{2}$  ("Truncated Union Bound")  this is not always true.
  • For example,  in the  $(7, 4, 3)$  Hamming code   ⇒   $W_{3} = W_{4} = 7, \ W_{7} = 1$  is obtained with standard deviation  $\sigma = 1$:
$$p_2 \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 7 \cdot {\rm Q}\left ( \sqrt{3} \right ) = 7 \cdot 4.18 \cdot 10^{-2} \approx 0.293\hspace{0.05cm},$$
$$p_1 \hspace{-0.15cm}\ = \ \hspace{-0.15cm} p_2 + 7 \cdot {\rm Q}\left ( \sqrt{4} \right )+ 1 \cdot {\rm Q}\left ( \sqrt{7} \right ) \approx 0.455 \hspace{0.05cm}.$$
  • The actual block error probability is likely to be between  $p_{2} = 29.3\%$  and  $p_{1} = 45.5\%$  (but this has not been verified).
    That is,   $p_{2}$ is not an upper bound.


(5)  Correct are  suggested solutions 1 and 3,  as the following calculation for the  $(8, 4, 4)$  code shows:

  • It holds  ${\rm Q}(x) ≤ {\rm Q_{CR}}(x) = {\rm e}^{-x^2/2}$.  Thus,  for the Union Bound
$$p_1 = W_4 \cdot {\rm Q}\left ( \sqrt{4/\sigma^2} \right ) +W_8 \cdot {\rm Q}\left ( \sqrt{8/\sigma^2} \right )$$
another upper bound can be specified:
$$p_1 \le W_4 \cdot {\rm e}^{ - {4}/(2 \sigma^2) } +W_8 \cdot {\rm e}^{ - {8}/(2 \sigma^2) } \hspace{0.05cm}.$$
  • With  $\beta = {\rm e}^{-1/(2\sigma^2)}$  can be written for this also  (so the given  $\beta = 1/\sigma$  is wrong):
$$p_1 \le W_4 \cdot \beta^4 + W_8 \cdot \beta^8 \hspace{0.05cm}.$$
  • The weight function of the  $(8, 4, 4)$  code is:
$$W(X) = 1 + W_4 \cdot X^4 + W_8 \cdot X^8 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} W(\beta) - 1 = W_4 \cdot \beta^4 + W_8 \cdot \beta^8\hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_3 = W(\beta) - 1 \ge p_1\hspace{0.05cm}.$$


(6)  With  $\sigma = 1$,  the Bhattacharyya parameter is  $\beta = {\rm e}^{-0.5} = 0.6065$,  and thus one obtains for the Bhattacharyya Bound:

$$p_3 = 14 \cdot \beta^4 + \beta^8 = 14 \cdot 0.135 + 0.018= 1.913 \hspace{0.15cm}\underline{= 191.3%}\hspace{0.05cm}.$$
  • Considering that  $p_{3}$  is a bound for a probability,  $p_{3} = 1.913$  is only a trivial bound.
  • For  $\sigma = 0.5$,  on the other hand,  $\beta = {\rm e}^{-2} \approx 0.135.$  Then holds:
$$p_3 = 14 \cdot \beta^4 + \beta^8 = 14 \cdot 3.35 \cdot 10^{-4} + 1.1 \cdot 10^{-7} \hspace{0.15cm}\underline{= 0.47 \%}\hspace{0.05cm}.$$

A comparison with subtask  (2)  shows that in the present example the Bhattacharyya Bound  $p_{3}$  is above the  "Union Bound"  $p_{1}$  by a factor 

$$(0.47 - 10^{-2})/(0.044 - 10^{-2}) > 10.$$
  • The reason for this large deviation is the Chernoff-Rubin bound,  which is well above the  ${\rm Q}$ function.
  • In  "Exercise 1.16Z",  the deviation between  ${\rm Q}_{\rm CR}$  and  ${\rm Q}(x)$  is also calculated quantitatively:
$${{\rm Q_{CR}}( x )}/{{\rm Q}( x )} \approx 2.5 \cdot x \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {{\rm Q_{CR}}( x = 4 )}/{{\rm Q}( x = 4)} \approx 10 \hspace{0.05cm}.$$