Difference between revisions of "Aufgaben:Exercise 1.16: Block Error Probability Bounds for AWGN"

From LNTwww
 
(30 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Schranken für die Blockfehlerwahrscheinlichkeit}}
+
{{quiz-Header|Buchseite=Channel_Coding/Limits_for_Block_Error_Probability}}
  
[[File:P_ID2414__KC_A_1_15.png|right|frame|Funktion Q(x) und Näherungen ]]
+
[[File:P_ID2414__KC_A_1_15.png|right|frame|Function&nbsp; Q(x)&nbsp; and approximations;<br>it holds:&nbsp; Qu(x)Q(x)Qo(x) ]]
  
Wir gehen von der folgenden Konstellation aus:
+
We assume the following constellation:
*ein linearer Blockcode mit der Coderate R=k/n und dem Distanzspektrum {Wi}, i=1, ... ,n,
+
*A linear block code with code rate&nbsp; R=k/n&nbsp; and distance spectrum&nbsp; $\{W_i\}, \ i = 1, \ \text{...} \ , n$,
*ein AWGN–Kanal, gekennzeichnet durch „EB/N0” &nbsp;⇒&nbsp; umrechenbar in die Rauschleistung σ2,
 
*ein Empfänger, basierend auf ''Soft Decision'' sowie dem ''Maximum–Likelihood–Kriterium''.
 
  
 +
*an AWGN channel characterized by&nbsp; EB/N0 &nbsp; ⇒ &nbsp; convertible to noise power&nbsp; σ2,
  
Unter der für die gesamte Aufgabe gültigen Annahme, dass stets das Nullwort x_1=(0,0,...,0) gesendet wird, gilt für die [[Kanalcodierung/Schranken_für_die_Blockfehlerwahrscheinlichkeit#Union_Bound_der_Blockfehlerwahrscheinlichkeit|„paarweise Fehlerwahrscheinlichkeit”]] mit einem anderen Codewort $\underline{x}_{l} (l = 2, ... , 2^k):$
+
*a receiver based on&nbsp; "soft decision"&nbsp; as well as the&nbsp; "maximum likelihood criterion".
 +
 
 +
 
 +
Under the assumption valid for the entire exercise that always the zero-word&nbsp; $\underline{x}_{1} = (0, 0, \text{... } \ , 0)$&nbsp; is sent, the&nbsp; [[Channel_Coding/Limits_for_Block_Error_Probability#Union_Bound_of_the_block_error_probability|"pairwise error probability"]]&nbsp; with a different code word&nbsp; $\underline{x}_{l} (l = 2,\ \text{...} \ , 2^k)$:
  
 
:Pr[x_1x_l]=Q(wH(x_l)/σ2).
 
:Pr[x_1x_l]=Q(wH(x_l)/σ2).
 
   
 
   
Die Herleitung dieser Beziehung finden Sie in [Liv10]. In dieser Gleichung wurden verwendet:
+
The derivation of this relation can be found in&nbsp; [Liv10].&nbsp; Used in this equation are:
*die komplementäre Gaußsche Fehlerfunktion Q(x),
+
*the&nbsp; [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables#Exceedance_probability|"complementary Gaussian error function"]]&nbsp; ${\rm Q}(x)$,
*das [[Kanalcodierung/Zielsetzung_der_Kanalcodierung#Einige_wichtige_Definitionen_zur_Blockcodierung|Hamming–Gewicht]] $w_{\rm H}(\underline{x}_{l})desCodewortes\underline{x}_{l}$,
 
*die AWGN–Rauschleistung σ2=(2·R·EB/N0)1.
 
  
 +
*the&nbsp; [[Channel_Coding/Objective_of_Channel_Coding#Important_definitions_for_block_coding|"Hamming weight"]]&nbsp; wH(x_l)&nbsp; of the code word&nbsp; x_l,
  
Damit lassen sich verschiedene Schranken für die Blockfehlerwahrscheinlichkeit angeben:
+
*the&nbsp; [[Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems#System_optimization_with_power_limitation|"AWGN noise power"]]&nbsp; σ2=(2REB/N0)1.
  
*die sogenannte [[Kanalcodierung/Schranken_für_die_Blockfehlerwahrscheinlichkeit#Union_Bound_der_Blockfehlerwahrscheinlichkeit|Union Bound]]:
+
 
 +
This allows various bounds to be specified for the block error probability:
 +
 
 +
*the so called&nbsp; [[Channel_Coding/Limits_for_Block_Error_Probability#Union_Bound_of_the_block_error_probability|"Union Bound"]]&nbsp; (UB):
 
   
 
   
:p1=2kl=2Pr[x_1x_l]=2kl=2Q(wH(x_l)/σ2),
+
:$$p_1 = \sum_{l = 2}^{2^k}\hspace{0.05cm}{\rm Pr}[\hspace{0.05cm}\underline{x}_{\hspace{0.02cm}1} \hspace{-0.02cm}\mapsto \hspace{-0.02cm}\underline{x}_{\hspace{0.02cm}l}\hspace{0.05cm}] = \sum_{l \hspace{0.05cm}= \hspace{0.05cm}2}^{2^k}\hspace{0.05cm}{\rm Q}\left ( \sqrt{w_{\rm H}(\underline{x}_{\hspace{0.02cm}l})/\sigma^2} \right ) \hspace{0.05cm},$$
  
*die so genannte [http://www.eit.lth.se/fileadmin/eit/courses/ett051/Laborationer/Lab2ManualHt12009.pdf Truncated Union Bound] (TUB):
+
*the so called&nbsp; [[Channel_Coding/Limits_for_Block_Error_Probability#Bounds_for_the_.287.2C_4.2C_3.29_Hamming_code_at_the_AWGN_channel|"Truncated Union Bound"]]&nbsp; $\rm  (TUB)$:
 
   
 
   
 
:p2=WdminQ(dmin/σ2),
 
:p2=WdminQ(dmin/σ2),
  
*die [[Kanalcodierung/Schranken_für_die_Blockfehlerwahrscheinlichkeit#Die_obere_Schranke_nach_Bhattacharyya|Bhattacharyya–Schranke:]]
+
*the&nbsp; [[Channel_Coding/Limits_for_Block_Error_Probability#The_upper_bound_according_to_Bhattacharyya|"Bhattacharyya Bound"]]:
 
   
 
   
:$$p_3 = W(\beta) - 1\hspace{0.05cm},\hspace{0.2cm} {\rm mit}\hspace{0.15cm} \beta = {\rm exp}\left [ - 1/(2\sigma^2) \right ] \hspace{0.05cm}.$$
+
:$$p_3 = W(\beta) - 1\hspace{0.05cm},\hspace{0.2cm} {\rm with}\hspace{0.15cm} \beta = {\rm e}^{ - 1/(2\sigma^2) } \hspace{0.05cm}.$$
  
In diesem Fall ist das Distanzspektrum {Wi} durch die Gewichtsfunktion zu ersetzen:
+
:In this case,&nbsp; replace the distance spectrum&nbsp; {Wi}&nbsp; with the weight enumerator function:
  
 
:{Wi}W(X)=ni=0WiXi=W0+W1X+W2X2+...+WnXn.
 
:{Wi}W(X)=ni=0WiXi=W0+W1X+W2X2+...+WnXn.
 
   
 
   
Beim Übergang von der ''Union Bound'' p1 zur Schranke p3 wird unter Anderem die Funktion Q(x) durch die ''Chernoff–Rubin–Schranke'' QCR(x) ersetzt. Beide Funktionen sind in obigerer Grafik dargestellt (rote bzw. grüne Kurve).
+
In the transition from the&nbsp; "Union Bound"&nbsp; p1&nbsp; to the more imprecise bound&nbsp; p3&nbsp; among others
 +
*the function&nbsp; Q(x)&nbsp; is replaced by the&nbsp; [https://en.wikipedia.org/wiki/Chernoff_bound "Chernoff-Rubin bound"]&nbsp; QCR(x).  
 +
 
 +
*Both functions are shown in the above graph&nbsp; (red and green curve, resp.).
 +
 
  
In der [[Aufgaben:1.16Z_Schranken_für_Q(x)|Aufgabe 1.16Z]] wird der Zusammenhang zwischen diesen Funktionen numerisch ausgewertet und Bezug genommen zu den Schranken Qo(x) und Qu(x), die in obiger Grafik ebenfalls eingezeichnet sind.
+
In the&nbsp; [[Aufgaben:Exercise_1.16Z:_Bounds_for_the_Gaussian_Error_Function|"Exercise 1.16Z"]]&nbsp; the relationship between these functions is evaluated numerically and referenced to the bounds&nbsp; ${\rm Q}_{\rm o}(x)$ and ${\rm Q}_{\rm u}(x)$&nbsp; which are also drawn in the above graph.
  
''Hinweise:''
 
* Die Aufgabe gehört zum Kapitel [[Kanalcodierung/Schranken_für_die_Blockfehlerwahrscheinlichkeit|Schranken für die Blockfehlerwahrscheinlichkeit]]
 
* Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
 
* Weiter verweisen wir auf folgendes Flash–Modul:
 
# Komplimentäre Gaußsche Fehlerfunktion (Dateigröße: 235 kB)
 
  
  
  
 +
Hints:
 +
* This exercise belongs to the chapter&nbsp; [[Channel_Coding/Bounds_for_Block_Error_Probability|"Bounds for block error probability"]].
  
===Fragebogen===
+
* The above cited reference&nbsp; "[Liv10]"&nbsp; refers to the lecture manuscript "Liva, G.:&nbsp; Channel Coding.&nbsp;  Chair of Communications Engineering, TU Munich and DLR Oberpfaffenhofen, 2010."
 +
 
 +
* Further we refer to the interactive HTML5/JavaScript applet&nbsp; [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen| "Complementary Gaussian error functions"]].
 +
 
 +
 
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Gleichung gilt für die ''Union Bound''?
+
{Which equation applies to the&nbsp; "Union Bound"?
 
|type="[]"}
 
|type="[]"}
- p1=2kl=2Wl·Q[(l/σ2)0.5],
+
- $p_{1} = \sum_{l\hspace{0.05cm}=\hspace{0.05cm}2}^{2^k} W_{l} · {\rm Q}\big[(l/\sigma^2)^{0.5}\big],$
+ $p_{1} = \sum_{i=1}^{n} W_{i} · {\rm Q}[(i/\sigma^2)^{0.5}],$
+
+ $p_{1} = \sum_{i\hspace{0.05cm}=\hspace{0.05cm}1}^{n} W_{i} · {\rm Q}\big[(i/\sigma^2)^{0.5}\big].$
  
{Geben Sie die Union Bound für den (8,4,4)–Code und $\sigma = 1, \ \sigma = 0.5$ an.
+
{Specify the Union Bound for the&nbsp; (8,4,4)&nbsp; code and various&nbsp; σ.
 
|type="{}"}
 
|type="{}"}
$(8, 4, 4)–{\rm Code}, \ \sigma = 1 \text{:} \hspace{0.2cm} p_{1} \ = \ $ { 0.3215 3% }
+
$\sigma = 1.0 \text{:} \hspace{0.4cm} p_{1} \ = \ $ { 32.15 3% }  %
$\sigma = 0.5 \text{:} \hspace{0.2cm} p_{1} \ = \ $ { 0.444 3% } $\ \cdot 10^{-3} $
+
$\sigma = 0.5 \text{:} \hspace{0.4cm} p_{1} \ = \ $ { 0.0444 3% } $\ \%$
  
{Was liefert die ''Truncated Union Bound'' bei gleichen Randbedingungen?
+
{Given the same boundary conditions, what does the&nbsp; "Truncated Union Bound"&nbsp; provide?
 
|type="{}"}
 
|type="{}"}
$(8, 4, 4)–{\rm Code}, \ \sigma = 1 \text{:} \hspace{0.2cm} p_{2} \ = \ $ { 0.3192 3% }
+
$\sigma = 1.0 \text{:} \hspace{0.4cm} p_{2} \ = \ $ { 31.92 3% }  %
$\sigma = 0.5 \text{:} \hspace{0.2cm} p_{2} \ = \ $ { 0.444 3% } $\ \cdot 10^{-3} $
+
$\sigma = 0.5 \text{:} \hspace{0.4cm} p_{2} \ = \ $ { 0.044 3% } $\ \%$
  
{Welche Aussage gilt immer (für alle Konstellationen)?
+
{Which statement is always true&nbsp; (for all constellations)?
 
|type="[]"}
 
|type="[]"}
+ Die Blockfehlerwahrscheinlichkeit ist nie größer als p1.
+
+ The block error probability is never greater than&nbsp; p1.
- Die Blockfehlerwahrscheinlichkeit ist nie größer als p2.
+
- The block error probability is never greater than&nbsp; p2.
  
{Wie kommt man von p1 zur Bhattacharyya–Schranke p3? Dadurch, dass man
+
{How do you get from&nbsp; p1&nbsp; to the&nbsp; "Bhattacharyya Bound"&nbsp; p3?&nbsp;
 
|type="[]"}
 
|type="[]"}
+ die Fehlerfunktion Q(x) durch die Funktion QCR(x) ersetzt,
+
+ Replace the error function&nbsp; Q(x)&nbsp; with the function&nbsp; QCR(x).
- den Bhattacharyya–Parameter β=1/σ setzt,
+
- Set the Bhattacharyya parameter&nbsp; β=1/σ.
+ statt {Wi} die Gewichtsfunktion W(X) verwendet.
+
+ Instead of&nbsp; {Wi}&nbsp; uses the weight enumerator function&nbsp; W(X).
  
  
{Geben Sie die Bhattacharyya–Schranke für σ=1 und σ=0.5 an.
+
{Specify the Bhattacharyya Bound for&nbsp; σ=1&nbsp; and&nbsp; σ=0.5&nbsp;.
 
|type="{}"}
 
|type="{}"}
$(8, 4, 4)–{\rm Code}, \ \sigma = 1 \text{:} \hspace{0.2cm} p_{3} \ = \ $ { 1.913 3% }
+
$\sigma = 1.0 \text{:} \hspace{0.4cm} p_{3} \ = \ $ { 191.3 3% }  %
$\sigma = 0.5 \text{:} \hspace{0.2cm} p_{3} \ = \ { 0.47 3% }\ \cdot 10^{-2} $
+
$\sigma = 0.5 \text{:} \hspace{0.4cm} p_{3} \ = \ { 0.47 3% }\ \%$
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig ist <u>Antwort 2</u>. Das Distanzspektrum {Wi} ist definiert für i=0, ... , n:
+
'''(1)'''&nbsp; The correct solution is <u>suggestion 2</u>:  
  
*$W_{1}$ gibt an, wie oft das Hamming–Gewicht $w_{\rm H}(\underline{x}_{i}) = 1$ auftritt.
+
*The distance spectrum&nbsp; $\{W_i\}$&nbsp; is defined for&nbsp; $i = 0, \ \text{...} \ , \ n$:
*$W_{n}$ gibt an, wie oft das Hamming–Gewicht $w_{\rm H}(\underline{x}_{i}) = n$ auftritt.
 
  
 +
#W1&nbsp; indicates how often the Hamming weight&nbsp; wH(x_i)=1&nbsp; occurs.
 +
#Wn&nbsp; indicates how often the Hamming weight&nbsp; wH(x_i)=n&nbsp; occurs.
  
Damit lautet die ''Union Bound'':
+
 
 +
*With that,&nbsp; the&nbsp; "Union Bound"&nbsp; is:
  
 
:p1=Pr(UnionBound)=ni=1WiQ(i/σ2).
 
:p1=Pr(UnionBound)=ni=1WiQ(i/σ2).
 
   
 
   
  
'''(2)'''&nbsp; Das Distanzspektrum des (8,4,4)–Codes wurde mit W0=1, W4=14, W8=1 angegeben. Somit erhält man für $\boldsymbol{\sigma = 1}$:
+
'''(2)'''&nbsp; The distance spectrum of the&nbsp; (8,4,4)&nbsp; code was given as&nbsp; W0=1, W4=14, W8=1.&nbsp;
 +
*Thus,&nbsp; one obtains for σ=1:
 
:$$p_1 =  W_4 \cdot {\rm Q}\left ( 2 \right ) + W_8 \cdot {\rm Q}\left ( 2 \cdot \sqrt{2} \right )
 
:$$p_1 =  W_4 \cdot {\rm Q}\left ( 2 \right ) + W_8 \cdot {\rm Q}\left ( 2 \cdot \sqrt{2} \right )
= 14 \cdot 2.28 \cdot 10^{-2}+ 1 \cdot 0.23 \cdot 10^{-2} \hspace{0.15cm}\underline{\approx 0.3215}\hspace{0.05cm},$$
+
= 14 \cdot 2.28 \cdot 10^{-2}+ 1 \cdot 0.23 \cdot 10^{-2} \hspace{0.15cm}\underline{\approx 32.15\%}\hspace{0.05cm},$$
  
bzw. für $\boldsymbol{\sigma = 0.5}$:
+
*For&nbsp; σ=0.5:
 
:$$p_1 =  14 \cdot {\rm Q}\left ( 4 \right ) + {\rm Q}\left ( 4 \cdot \sqrt{2} \right )
 
:$$p_1 =  14 \cdot {\rm Q}\left ( 4 \right ) + {\rm Q}\left ( 4 \cdot \sqrt{2} \right )
= 14 \cdot 3.17 \cdot 10^{-5}+ 1.1 \cdot 10^{-8} \hspace{0.15cm}\underline{\approx 0.444 \cdot 10^{-3}}\hspace{0.05cm}.$$
+
= 14 \cdot 3.17 \cdot 10^{-5}+ 1.1 \cdot 10^{-8} \hspace{0.15cm}\underline{\approx 0.0444 \%}\hspace{0.05cm}.$$
 
   
 
   
  
'''(3)'''&nbsp; Mit der Minimaldistanz dmin=4 erhält man:
+
'''(3)'''&nbsp; With the minimum distance&nbsp; dmin=4&nbsp; we get:
 
   
 
   
:$$\sigma = 1.0: \hspace{0.2cm} p_2 \hspace{-0.15cm}\ = \ \hspace{-0.15cm} W_4 \cdot {\rm Q}\left ( 2 \right ) \hspace{0.15cm}\underline{= 0.3192}\hspace{0.05cm},$$
+
:$$\sigma = 1.0\text{:} \hspace{0.4cm} p_2 \hspace{-0.15cm}\ = \ \hspace{-0.15cm} W_4 \cdot {\rm Q}\left ( 2 \right ) \hspace{0.15cm}\underline{= 31.92\%}\hspace{0.05cm},$$
:$$\sigma = 0.5: \hspace{0.2cm} p_2 \hspace{-0.15cm}\ = \ \hspace{-0.15cm}W_4 \cdot {\rm Q}\left ( 4 \right ) \approx p_1 \hspace{0.15cm}\underline{ = 0.444 \cdot 10^{-3}}\hspace{0.05cm}.$$
+
:$$\sigma = 0.5\text{:} \hspace{0.4cm} p_2 \hspace{-0.15cm}\ = \ \hspace{-0.15cm}W_4 \cdot {\rm Q}\left ( 4 \right ) \approx p_1 \hspace{0.15cm}\underline{ = 0.0444 \%}\hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; Richtig ist <u>Antwort 1</u>. Die ''Union Bound'' – hier mit p1 bezeichnet – ist in jedem Fall eine obere Schranke für die Blockfehlerwahrscheinlichkeit. Für die Schranke p2 (''Truncated Union Bound'') trifft das nicht immer zu. Beispielsweise erhält man beim (7,4,3)–Hamming–Code  &nbsp;⇒&nbsp; W3=W4=7, W7=1 und der Streuung σ=1:
+
'''(4)'''&nbsp; The correct solution is&nbsp; <u>suggestion 1</u>:
 +
*The&nbsp; "Union Bound"&nbsp; - denoted here by&nbsp; p1 - is an upper bound on the block error probability in all cases.
 +
 +
*For the bound&nbsp; p2&nbsp; ("Truncated Union Bound")&nbsp; this is not always true.
 +
 +
*For example,&nbsp; in the&nbsp; (7,4,3)&nbsp; Hamming code &nbsp; ⇒ &nbsp; W3=W4=7, W7=1&nbsp; is obtained with standard deviation&nbsp; σ=1:
 
   
 
   
 
:p2 = 7Q(3)=74.181020.293,
 
:p2 = 7Q(3)=74.181020.293,
 
:p1 = p2+7Q(4)+1Q(7)0.455.
 
:p1 = p2+7Q(4)+1Q(7)0.455.
  
Die tatsächliche Blockfehlerwahrscheinlichkeit wird wahrscheinlich zwischen $p_{2} = 0.293$ und $p_{1} = 0.455$ liegen (wurde nicht nachgeprüft). Das heißt: p2 ist keine obere Schranke.
+
*The actual block error probability is likely to be between&nbsp; $p_{2} = 29.3\%$&nbsp; and&nbsp; $p_{1} = 45.5\%$&nbsp; (but this has not been verified). <br>That is, &nbsp; p2 is not an upper bound.
  
  
'''(5)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 3</u>, wie die folgende Rechnung für den (8,4,4)–Code zeigt:
+
'''(5)'''&nbsp; Correct are&nbsp; <u>suggested solutions 1 and 3</u>,&nbsp; as the following calculation for the&nbsp; (8,4,4)&nbsp; code shows:
  
*Es gilt ${\rm Q}(x) ≤ {\rm QCR}(x) = \exp{(-x^2/2)}$. Damit kann für die Union Bound
+
*It holds&nbsp; ${\rm Q}(x) ≤ {\rm Q_{CR}}(x) = {\rm e}^{-x^2/2}$.&nbsp; Thus,&nbsp; for the Union Bound
 
   
 
   
 
:p1=W4Q(4/σ2)+W8Q(8/σ2)
 
:p1=W4Q(4/σ2)+W8Q(8/σ2)
  
eine weitere obere Schranke angegeben werden:
+
:another upper bound can be specified:
 
   
 
   
:$$p_1 \le W_4 \cdot {\rm exp}\left [ - {4}/(2 \sigma^2) \right ] +W_8 \cdot {\rm exp}\left [ - {8}/(2 \sigma^2) \right ] \hspace{0.05cm}.$$
+
:$$p_1 \le W_4 \cdot {\rm e}^{ - {4}/(2 \sigma^2) } +W_8 \cdot {\rm e}^{ - {8}/(2 \sigma^2) } \hspace{0.05cm}.$$
  
*Mit $\beta = {\rm exp}[–1/(2\sigma^2)]$ kann hierfür auch geschrieben werden (das vorgegebene β=1/σ ist also falsch):
+
*With&nbsp; $\beta = {\rm e}^{-1/(2\sigma^2)}$&nbsp; can be written for this also&nbsp; (so the given&nbsp; β=1/σ&nbsp; is wrong):
 
   
 
   
 
:p1W4β4+W8β8.
 
:p1W4β4+W8β8.
  
*Die Gewichtsfunktion des (8,4,4)–Codes lautet:
+
*The weight function of the&nbsp; (8,4,4)&nbsp; code is:
 
    
 
    
:W(X)=1+W4X4+W8X8W(β)1=W4β4+W8β8
+
:$$W(X) = 1 + W_4 \cdot X^4 + W_8 \cdot X^8 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} W(\beta) - 1 = W_4 \cdot \beta^4 + W_8 \cdot \beta^8\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm} p_3 = W(\beta) - 1 \ge p_1\hspace{0.05cm}.$$
  
:p3=W(β)1p1.
 
  
 +
'''(6)'''&nbsp; With&nbsp; σ=1,&nbsp; the Bhattacharyya parameter is&nbsp; β=e0.5=0.6065,&nbsp; and thus one obtains for the Bhattacharyya Bound:
 +
 +
:p3=14β4+β8=140.135+0.018=1.913=191.3_.
 +
 +
*Considering that&nbsp; p3&nbsp; is a bound for a probability,&nbsp; p3=1.913&nbsp; is only a trivial bound.
  
'''(6)'''&nbsp; Mit $\sigma = 1$ lautet der Bhattacharyya–Parameter $\beta = \exp{(–0.5)} = 0.6065$ und man erhält damit für die Bhattacharyya–Schranke:
+
*For&nbsp; $\sigma = 0.5$,&nbsp; on the other hand,&nbsp; $\beta = {\rm e}^{-2} \approx 0.135.$&nbsp; Then holds:
 
   
 
   
:$$p_3 = 14 \cdot \beta^4 + \beta^8 = 14 \cdot 0.135 + 0.018 \hspace{0.15cm}\underline{= 1.913}\hspace{0.05cm}.$$
+
:$$p_3 = 14 \cdot \beta^4 + \beta^8 = 14 \cdot 3.35 \cdot 10^{-4} + 1.1 \cdot 10^{-7} \hspace{0.15cm}\underline{= 0.47 \%}\hspace{0.05cm}.$$
  
Berücksichtigt man, dass p3(eine Schranke für) eine Wahrscheinlichkeit angibt, so ist $p_{3} = 1.913$ nur eine triviale Schranke. Für $\sigma = 0.5ergibtsichdagegen\beta = \exp{(–2)} \approx 0.135.$ Dann gilt:
+
A comparison with subtask&nbsp; '''(2)'''&nbsp; shows that in the present example the Bhattacharyya Bound&nbsp; p3&nbsp; is above the&nbsp; "Union Bound"&nbsp; $p_{1}$&nbsp; by a factor&nbsp;
 +
:$$(0.47 - 10^{-2})/(0.044 - 10^{-2}) > 10.$$
 +
 +
*The reason for this large deviation is the Chernoff-Rubin bound,&nbsp; which is well above the&nbsp; Q function.
 
   
 
   
:p3=14β4+β8=143.35104+1.1107=4.7103_.
+
*In&nbsp; [[Aufgaben:Exercise_1.16Z:_Bounds_for_the_Gaussian_Error_Function|"Exercise 1.16Z"]],&nbsp; the deviation between&nbsp; QCR&nbsp; and&nbsp; Q(x)&nbsp; is also calculated quantitatively:
 
 
Ein Vergleich mit der Teilaufgabe (2) zeigt, dass im vorliegenden Beispiel die Bhattacharyya–Schranke p3 um den Faktor (4.7·103)/(0.44·103)>10 oberhalb der ''Union Bound'' p1 liegt. Der Grund für diese große Abweichung ist die Chernoff–Rubin–Schranke, die deutlich oberhalb der Q–Funktion liegt. In der [[Aufgaben:1.16Z_Schranken_für_Q(x)|Aufgabe 1.16Z]] wird die Abweichung zwischen QCR und Q(x) auch quantitativ berechnet:
 
 
   
 
   
 
:QCR(x)/Q(x)2.5xQCR(x=4)/Q(x=4)10.
 
:QCR(x)/Q(x)2.5xQCR(x=4)/Q(x=4)10.
Line 158: Line 185:
  
  
[[Category:Aufgaben zu  Kanalcodierung|^1.6 Schranken für die Blockfehlerwahrscheinlichkeit^]]
+
[[Category:Channel Coding: Exercises|^1.6 Error Probability Bounds^]]

Latest revision as of 17:17, 5 August 2022

Function  Q(x)  and approximations;
it holds:  Qu(x)Q(x)Qo(x)

We assume the following constellation:

  • A linear block code with code rate  R=k/n  and distance spectrum  {Wi}, i=1, ... ,n,
  • an AWGN channel characterized by  EB/N0   ⇒   convertible to noise power  σ2,
  • a receiver based on  "soft decision"  as well as the  "maximum likelihood criterion".


Under the assumption valid for the entire exercise that always the zero-word  x_1=(0,0,...  ,0)  is sent, the  "pairwise error probability"  with a different code word  x_l(l=2, ... ,2k):

Pr[x_1x_l]=Q(wH(x_l)/σ2).

The derivation of this relation can be found in  [Liv10].  Used in this equation are:

  • the  "Hamming weight"  wH(x_l)  of the code word  x_l,
  • the  "AWGN noise power"  σ2=(2REB/N0)1.


This allows various bounds to be specified for the block error probability:

p1=2kl=2Pr[x_1x_l]=2kl=2Q(wH(x_l)/σ2),
p2=WdminQ(dmin/σ2),
p3=W(β)1,withβ=e1/(2σ2).
In this case,  replace the distance spectrum  {Wi}  with the weight enumerator function:
{Wi}W(X)=ni=0WiXi=W0+W1X+W2X2+...+WnXn.

In the transition from the  "Union Bound"  p1  to the more imprecise bound  p3  among others

  • Both functions are shown in the above graph  (red and green curve, resp.).


In the  "Exercise 1.16Z"  the relationship between these functions is evaluated numerically and referenced to the bounds  Qo(x) and Qu(x)  which are also drawn in the above graph.



Hints:

  • The above cited reference  "[Liv10]"  refers to the lecture manuscript "Liva, G.:  Channel Coding.  Chair of Communications Engineering, TU Munich and DLR Oberpfaffenhofen, 2010."



Questions

1

Which equation applies to the  "Union Bound"?

p1=2kl=2Wl·Q[(l/σ2)0.5],
p1=ni=1Wi·Q[(i/σ2)0.5].

2

Specify the Union Bound for the  (8,4,4)  code and various  σ.

σ=1.0:p1 = 

 %
σ=0.5:p1 = 

 %

3

Given the same boundary conditions, what does the  "Truncated Union Bound"  provide?

σ=1.0:p2 = 

 %
σ=0.5:p2 = 

 %

4

Which statement is always true  (for all constellations)?

The block error probability is never greater than  p1.
The block error probability is never greater than  p2.

5

How do you get from  p1  to the  "Bhattacharyya Bound"  p3

Replace the error function  Q(x)  with the function  QCR(x).
Set the Bhattacharyya parameter  β=1/σ.
Instead of  {Wi}  uses the weight enumerator function  W(X).

6

Specify the Bhattacharyya Bound for  σ=1  and  σ=0.5 .

σ=1.0:p3 = 

 %
σ=0.5:p3 = 

 %


Solution

(1)  The correct solution is suggestion 2:

  • The distance spectrum  {Wi}  is defined for  i=0, ... , n:
  1. W1  indicates how often the Hamming weight  wH(x_i)=1  occurs.
  2. Wn  indicates how often the Hamming weight  wH(x_i)=n  occurs.


  • With that,  the  "Union Bound"  is:
p1=Pr(UnionBound)=ni=1WiQ(i/σ2).


(2)  The distance spectrum of the  (8,4,4)  code was given as  W0=1, W4=14, W8=1

  • Thus,  one obtains for σ=1:
p1=W4Q(2)+W8Q(22)=142.28102+10.2310232.15%_,
  • For  σ=0.5:
p1=14Q(4)+Q(42)=143.17105+1.11080.0444%_.


(3)  With the minimum distance  dmin=4  we get:

σ=1.0:p2 = W4Q(2)=31.92%_,
σ=0.5:p2 = W4Q(4)p1=0.0444%_.


(4)  The correct solution is  suggestion 1:

  • The  "Union Bound"  - denoted here by  p1 - is an upper bound on the block error probability in all cases.
  • For the bound  p2  ("Truncated Union Bound")  this is not always true.
  • For example,  in the  (7,4,3)  Hamming code   ⇒   W3=W4=7, W7=1  is obtained with standard deviation  σ=1:
p2 = 7Q(3)=74.181020.293,
p1 = p2+7Q(4)+1Q(7)0.455.
  • The actual block error probability is likely to be between  p2=29.3%  and  p1=45.5%  (but this has not been verified).
    That is,   p2 is not an upper bound.


(5)  Correct are  suggested solutions 1 and 3,  as the following calculation for the  (8,4,4)  code shows:

  • It holds  Q(x)QCR(x)=ex2/2.  Thus,  for the Union Bound
p1=W4Q(4/σ2)+W8Q(8/σ2)
another upper bound can be specified:
p1W4e4/(2σ2)+W8e8/(2σ2).
  • With  β=e1/(2σ2)  can be written for this also  (so the given  β=1/σ  is wrong):
p1W4β4+W8β8.
  • The weight function of the  (8,4,4)  code is:
W(X)=1+W4X4+W8X8W(β)1=W4β4+W8β8p3=W(β)1p1.


(6)  With  σ=1,  the Bhattacharyya parameter is  β=e0.5=0.6065,  and thus one obtains for the Bhattacharyya Bound:

p3=14β4+β8=140.135+0.018=1.913=191.3_.
  • Considering that  p3  is a bound for a probability,  p3=1.913  is only a trivial bound.
  • For  σ=0.5,  on the other hand,  β=e20.135.  Then holds:
p3=14β4+β8=143.35104+1.1107=0.47%_.

A comparison with subtask  (2)  shows that in the present example the Bhattacharyya Bound  p3  is above the  "Union Bound"  p1  by a factor 

(0.47102)/(0.044102)>10.
  • The reason for this large deviation is the Chernoff-Rubin bound,  which is well above the  Q function.
  • In  "Exercise 1.16Z",  the deviation between  QCR  and  Q(x)  is also calculated quantitatively:
QCR(x)/Q(x)2.5xQCR(x=4)/Q(x=4)10.