Difference between revisions of "Aufgaben:Exercise 4.2: Triangle Area again"

From LNTwww
 
(15 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Zweidimensionale Zufallsgrößen
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Two-Dimensional_Random_Variables
 
}}
 
}}
  
[[File:P_ID226__Sto_A_4_2.png|right|Dreieckiges 2D-Gebiet und Randwahrscheinlichkeitsdichten]]
+
[[File:P_ID226__Sto_A_4_2.png|right|frame|Triangular 2D area and the two marginal probability densities]]
Wir betrachten die gleiche Zufallsgröße ($x$, $y$) wie in [[Aufgaben:4.1_Dreieckiges_(x,_y)-Gebiet|Aufgabe 4.1]]:  
+
We consider the same random variable  $(x, \ y)$  as in  [[Aufgaben:Exercise_4.1:_Triangular_(x,_y)_Area|Exercise 4.1]]:  
*In einem durch die Eckpunkte (0,1), (4,3) und (4,5) definierten dreieckförmigen Gebiet $D$ sei die 2D–WDF $f_{xy} (x, y) = 0.25$. *Außerhalb dieses in der Grafik rot markierten Definitionsgebietes $D$ gibt es keine Werte.
+
*In a domain defined by vertices  $(0,\ 1)$,  $(4,\ 3)$,  and $(4,\ 5)$  let the 2D–PDF  $f_{xy} (x, y) = 0.25$.  
 +
*There are no values outside this definition area  $D$  marked in red in the graph.
  
  
Weiterhin sind in der Grafik die beiden Randwahrscheinlichkeitsdichten bezüglich den Größen $x$ und $y$ eingezeichnet, die bereits in der [[Aufgaben:4.1_Dreieckiges_(x,_y)-Gebiet|Aufgabe 4.1]] ermittelt wurden. Daraus lassen sich mit den Gleichungen des Kapitels [[Stochastische_Signaltheorie/Erwartungswerte_und_Momente|Erwartungswerte und Momente]] die Kenngrößen der beiden Zufallsgrößen bestimmen:
+
Furthermore,  the two marginal probability densities with respect to the quantities  $x$  and  $y$  are drawn in the graph,  which have already been determined in Exercise 4.1.  
$$m_x=8/3 ,\hspace{0.5cm} \sigma_x=\sqrt{8/9},$$
 
$$ m_y= 3,\hspace{0.95cm} \sigma_y = \sqrt{\rm 2/3}.$$
 
  
Aufgrund der Tatsache, dass das Definitionsgebiet $D$ durch zwei Gerade $y_1(x)$ und $y_2(x)$ begrenzt ist, kann hier das gemeinsame Moment erster Ordnung wie folgt berechnet werden.
+
From this,  the equations of chapter  [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments|Expected Values and Moments]]  can be used to determine the characteristics of the two random variables:
$$m_{xy}={\rm E}[x\cdot y]=\int_{x_{1}}^{x_{2}}x\cdot \int_{y_{1}(x)}^{y_{2}(x)}y \cdot f_{xy}(x,y) \, \,{\rm d}y\, {\rm d}x.$$
+
:$$m_x=8/3 ,\hspace{0.5cm} \sigma_x=\sqrt{8/9},$$
 +
:$$ m_y= 3,\hspace{0.95cm} \sigma_y = \sqrt{\rm 2/3}.$$
  
 +
Due to the fact that the definition domain  $D$  is bounded by two straight lines  $y_1(x)$  and  $y_2(x)$ , the first order joint moment can be calculated here as follows.
 +
:$$m_{xy}={\rm E}\big[x\cdot y\big]=\int_{x_{1}}^{x_{2}}x\cdot \int_{y_{1}(x)}^{y_{2}(x)}y \cdot f_{xy}(x,y) \, \,{\rm d}y\, {\rm d}x.$$
  
''Hinweise:''
 
*Die Aufgabe gehört zum  Kapitel [[Stochastische_Signaltheorie/Zweidimensionale_Zufallsgrößen|Zweidimensionale Zufallsgrößen]].
 
*Bezug genommen wird auch auf das Kapitel [[Stochastische_Signaltheorie/Erwartungswerte_und_Momente|Erwartungswerte und Momente]].
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
  
  
  
===Fragebogen===
+
 
 +
 
 +
 
 +
 
 +
Hints:
 +
*The Exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Two-Dimensional_Random_Variables|Two-Dimensional Random Variables]].
 +
*Reference is also made to the chapter  [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments|Expected Values and Moments]].
 +
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lauten die Grenzgeraden des inneren Integrals zur <i>m<sub>xy</sub></i>-Berechnung?
+
{What are the limit lines of the inner integral for the&nbsp; $m_{xy}$ calculation?
|type="[]"}
+
|type="()"}
 
- $y_1(x) = x+1, $ &nbsp; &nbsp; $y_2(x) = 2x+1.$
 
- $y_1(x) = x+1, $ &nbsp; &nbsp; $y_2(x) = 2x+1.$
 
+ $y_1(x) = x/2+1, $ &nbsp; &nbsp; $y_2(x) = x+1.$
 
+ $y_1(x) = x/2+1, $ &nbsp; &nbsp; $y_2(x) = x+1.$
Line 33: Line 42:
  
  
{Berechnen Sie das gemeinsame Moment $m_{xy}$ gem&auml;&szlig; dem Doppelintegral auf der Angabenseite. <br><i>Hinweis</i>: Setzen Sie $x_1 = 0$ und $x_2 = 4$ .
+
{Calculate the joint moment&nbsp; $m_{xy}$&nbsp; according to the double integral on the statement page. &nbsp;<i>Note</i>: &nbsp;Set&nbsp; $x_1 = 0$&nbsp; and&nbsp; $x_2 = 4$.
 
|type="{}"}
 
|type="{}"}
$m_{xy} \ =$ { 8.667 3% }
+
$m_{xy} \ = \ $ { 8.667 3% }
  
  
{Welcher Wert ergibt sich f&uuml;r die Kovarianz $\mu_{xy}$ ?
+
{What is the covariance&nbsp; $\mu_{xy}$ ?
 
|type="{}"}
 
|type="{}"}
$\mu_{xy}\ =$ { 0.667 3% }
+
$\mu_{xy}\ = \ $ { 0.667 3% }
  
  
{Wie gro&szlig; ist der Korrelationskoeffizient $\rho_{xy}$?
+
{What is the correlation coefficient $\rho_{xy}$?
 
|type="{}"}
 
|type="{}"}
$\rho_{xy}\ =$ { 0.866 3% }
+
$\rho_{xy}\ = \ $ { 0.866 3% }
  
  
{Wie lautet die Gleichung der Korrelationsgeraden $y = K(x)$? An welcher Stelle $y_0$ schneidet die Gerade die $y$-Achse? <br>Zeigen Sie, dass die Korrelationsgerade auch durch den Punkt $(m_x, m_y)$ geht.
+
{What is the equation of the regression line&nbsp; $y = K(x)$?&nbsp; At what point&nbsp; $y_0$&nbsp; does the straight line intersect the&nbsp; $y$&ndash;axis? <br>Show that the correlation line also passes through the point&nbsp; $(m_x, m_y)$.
 
|type="{}"}
 
|type="{}"}
$y_0\ =$ { 1 3% }
+
$y_0\ = \ $ { 1 3% }
  
  
Line 56: Line 65:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig ist <u>der mittlere Vorschlag</u>:  
+
'''(1)'''&nbsp; Correct is the&nbsp; <u>middle proposition</u>:  
*Sowohl $y_1(x)$ als auch $y_2(x)$ schneiden die $y$-Achse bei $y= 1$.  
+
*Both&nbsp; $y_1(x)$&nbsp; and&nbsp; $y_2(x)$&nbsp; intersect the&nbsp; $y$-axis at&nbsp; $y= 1$.  
*Die untere Begrenzungslinie hat die Steigung $0.5$, die obere die Steigung $1$.
+
*The lower boundary line has slope&nbsp; $0.5$,&nbsp; the upper has slope&nbsp; $1$.
  
  
'''(2)'''&nbsp; Entsprechend den Hinweisen erhalten wir:
 
:$$m_{xy}=\int_{\rm 0}^{\rm 4} x \cdot \int_{\it x/\rm 2 +\rm 1}^{\it x+\rm 1} {1}/{4}\cdot  y \, \,{\rm d}y\,\, \, {\rm d}x = {1}/{8}\cdot \int_{\rm 0}^{\rm 4} x\cdot[( x+ 1)^{\rm 2}- ({ x}/{2}+1)^{\rm 2} ]  \,\, {\rm d}x.$$
 
  
Dies f&uuml;hrt zum Integral bzw. Endergebnis:
+
'''(2)'''&nbsp; According to the clues we get:
:$$m_{xy}={1}/{8}\int_{\rm 0}^{\rm 4}(\rm\frac{3}{4}\it x^{\rm 3}{\rm +}\it x^{\rm 2}\rm )\,{\rm d}x = \rm \frac{1}{8} \cdot (\frac{3}{16}\cdot 4^4+\rm \frac{4^3}{3})=\frac{26}{3}\hspace{0.15cm}\underline{ \approx 8.667}.$$
+
: $$m_{xy}=\int_{\rm 0}^{\rm 4} x \cdot \int_{\it x/\rm 2 +\rm 1}^{\it x+\rm 1} {1}/{4}\cdot y \, \,{\rm d}y\,\, {\rm d}x = {1}/{8}\cdot \int_{\rm 0}^{\rm 4} x\cdot \big[( x+ 1)^{\rm 2}- ({ x}/{2}+1)^{\rm 2} \big] \,\, {\rm d}x. $$
  
'''(3)'''&nbsp; Da beide Zufallsgr&ouml;&szlig;en jeweils einen Mittelwert ungleich $0$ besitzen, folgt f&uuml;r die Kovarianz:
+
*This leads to the integral or final result:
 +
:$$m_{xy}={1}/{8}\int_{\rm 0}^{\rm 4}(\frac{3}{4}\cdot x^{3}{\rm +} x^2\,{\rm d}x = \rm \frac{1}{8} \cdot (\frac{3}{16}\cdot 4^4+\rm \frac{4^3}{3})=\frac{26}{3}\hspace{0.15cm}\underline{ \approx 8.667}.$$
 +
 
 +
'''(3)'''&nbsp; Since both random variables each have a nonzero mean,&nbsp; it follows for the covariance:
 +
[[File:EN_Sto_Z_4_2d.png|right|frame|Regression line]]
 
:$$\it \mu_{xy}=\it m_{xy}-m_{x}\cdot m_{y}=\frac{\rm 26}{\rm 3}-\frac{\rm 8}{\rm 3}\cdot\rm 3={2}/{3} \hspace{0.15cm}\underline{=0.667}.$$
 
:$$\it \mu_{xy}=\it m_{xy}-m_{x}\cdot m_{y}=\frac{\rm 26}{\rm 3}-\frac{\rm 8}{\rm 3}\cdot\rm 3={2}/{3} \hspace{0.15cm}\underline{=0.667}.$$
  
'''(4)'''&nbsp; Mit den angegebenen Streuungen erh&auml;lt man:
+
'''(4)'''&nbsp; With the given standard deviations we obtain:
 
:$$\rho_{xy}=\frac{\mu_{xy}}{\sigma_{x}\cdot\sigma_{y}}=\frac{{\rm 2}/{\rm 3}}{\sqrt{{\rm 8}/{\rm 9}}\cdot\sqrt{{\rm 2}/{\rm 3}}}=\sqrt{0.75}\hspace{0.15cm}\underline{=\rm 0.866}.$$
 
:$$\rho_{xy}=\frac{\mu_{xy}}{\sigma_{x}\cdot\sigma_{y}}=\frac{{\rm 2}/{\rm 3}}{\sqrt{{\rm 8}/{\rm 9}}\cdot\sqrt{{\rm 2}/{\rm 3}}}=\sqrt{0.75}\hspace{0.15cm}\underline{=\rm 0.866}.$$
[[File:P_ID223__Sto_A_4_2_d.png|right|Korrelationsgerade]]
 
  
'''(5)'''&nbsp; F&uuml;r die Korrelationsgerade (KG) gilt allgemein:
+
'''(5)'''&nbsp; For the regression line ("RL"&nbsp; in the graph),&nbsp; in general:
 
:$$ y-m_{y}=\rho_{xy}\cdot\frac{\sigma_{y}}{\sigma_ {x}}\cdot(x-m_{x}).$$
 
:$$ y-m_{y}=\rho_{xy}\cdot\frac{\sigma_{y}}{\sigma_ {x}}\cdot(x-m_{x}).$$
 
+
*Using the numerical values calculated above,&nbsp; we obtain
Mit den oben berechneten Zahlenwerten erh&auml;lt man
+
:$$y={\rm 3}/{\rm 4}\cdot x +\rm 1.$$
$$y={\rm 3}/{\rm 4}\cdot x +\rm 1.$$
+
*The correlation line intersects the&nbsp; $y$-axis at&nbsp; $\underline{y=1}$&nbsp; and also passes through the point&nbsp; $(4, 4)$.&nbsp;  
 
+
*Any other result would be impossible to interpret considering the definition area:  
Die Korrelationsgerade schneidet die $y$-Achse bei $\underline{y=1}$ und geht auch durch den Punkt $(4, 4)$. Jedes andere Ergebnis w&auml;re auch nicht zu interpretieren, wenn man das Definitionsgebiet betrachtet:  
+
::If one sets&nbsp; $m_x = 8/3$,&nbsp; one obtains&nbsp; $y = m_y = 3$.  
*Setzt man $m_x = 8/3$ ein, so erh&auml;lt man $y = m_y = 3$.  
+
*This means: &nbsp; The calculated correlation line actually passes through the point&nbsp; $(m_x, m_y)$,&nbsp; as the theory says.
*Das heißt: Die berechnete Korrelationsgerade geht tats&auml;chlich durch den Punkt $(m_x, m_y)$, wie es die Theorie besagt.
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Stochastische Signaltheorie|^4.1 Zweidimensionale Zufallsgrößen^]]
+
[[Category:Theory of Stochastic Signals: Exercises|^4.1 Two-Dimensional Random Variables^]]

Latest revision as of 16:43, 13 March 2023

Triangular 2D area and the two marginal probability densities

We consider the same random variable  $(x, \ y)$  as in  Exercise 4.1:

  • In a domain defined by vertices  $(0,\ 1)$,  $(4,\ 3)$,  and $(4,\ 5)$  let the 2D–PDF  $f_{xy} (x, y) = 0.25$.
  • There are no values outside this definition area  $D$  marked in red in the graph.


Furthermore,  the two marginal probability densities with respect to the quantities  $x$  and  $y$  are drawn in the graph,  which have already been determined in Exercise 4.1.

From this,  the equations of chapter  Expected Values and Moments  can be used to determine the characteristics of the two random variables:

$$m_x=8/3 ,\hspace{0.5cm} \sigma_x=\sqrt{8/9},$$
$$ m_y= 3,\hspace{0.95cm} \sigma_y = \sqrt{\rm 2/3}.$$

Due to the fact that the definition domain  $D$  is bounded by two straight lines  $y_1(x)$  and  $y_2(x)$ , the first order joint moment can be calculated here as follows.

$$m_{xy}={\rm E}\big[x\cdot y\big]=\int_{x_{1}}^{x_{2}}x\cdot \int_{y_{1}(x)}^{y_{2}(x)}y \cdot f_{xy}(x,y) \, \,{\rm d}y\, {\rm d}x.$$





Hints:



Questions

1

What are the limit lines of the inner integral for the  $m_{xy}$ calculation?

$y_1(x) = x+1, $     $y_2(x) = 2x+1.$
$y_1(x) = x/2+1, $     $y_2(x) = x+1.$
$y_1(x) = x-1, $     $y_2(x) = 2x+1.$

2

Calculate the joint moment  $m_{xy}$  according to the double integral on the statement page.  Note:  Set  $x_1 = 0$  and  $x_2 = 4$.

$m_{xy} \ = \ $

3

What is the covariance  $\mu_{xy}$ ?

$\mu_{xy}\ = \ $

4

What is the correlation coefficient $\rho_{xy}$?

$\rho_{xy}\ = \ $

5

What is the equation of the regression line  $y = K(x)$?  At what point  $y_0$  does the straight line intersect the  $y$–axis?
Show that the correlation line also passes through the point  $(m_x, m_y)$.

$y_0\ = \ $


Solution

(1)  Correct is the  middle proposition:

  • Both  $y_1(x)$  and  $y_2(x)$  intersect the  $y$-axis at  $y= 1$.
  • The lower boundary line has slope  $0.5$,  the upper has slope  $1$.


(2)  According to the clues we get:

$$m_{xy}=\int_{\rm 0}^{\rm 4} x \cdot \int_{\it x/\rm 2 +\rm 1}^{\it x+\rm 1} {1}/{4}\cdot y \, \,{\rm d}y\,\, {\rm d}x = {1}/{8}\cdot \int_{\rm 0}^{\rm 4} x\cdot \big[( x+ 1)^{\rm 2}- ({ x}/{2}+1)^{\rm 2} \big] \,\, {\rm d}x. $$
  • This leads to the integral or final result:
$$m_{xy}={1}/{8}\int_{\rm 0}^{\rm 4}(\frac{3}{4}\cdot x^{3}{\rm +} x^2\,{\rm d}x = \rm \frac{1}{8} \cdot (\frac{3}{16}\cdot 4^4+\rm \frac{4^3}{3})=\frac{26}{3}\hspace{0.15cm}\underline{ \approx 8.667}.$$

(3)  Since both random variables each have a nonzero mean,  it follows for the covariance:

Regression line
$$\it \mu_{xy}=\it m_{xy}-m_{x}\cdot m_{y}=\frac{\rm 26}{\rm 3}-\frac{\rm 8}{\rm 3}\cdot\rm 3={2}/{3} \hspace{0.15cm}\underline{=0.667}.$$

(4)  With the given standard deviations we obtain:

$$\rho_{xy}=\frac{\mu_{xy}}{\sigma_{x}\cdot\sigma_{y}}=\frac{{\rm 2}/{\rm 3}}{\sqrt{{\rm 8}/{\rm 9}}\cdot\sqrt{{\rm 2}/{\rm 3}}}=\sqrt{0.75}\hspace{0.15cm}\underline{=\rm 0.866}.$$

(5)  For the regression line ("RL"  in the graph),  in general:

$$ y-m_{y}=\rho_{xy}\cdot\frac{\sigma_{y}}{\sigma_ {x}}\cdot(x-m_{x}).$$
  • Using the numerical values calculated above,  we obtain
$$y={\rm 3}/{\rm 4}\cdot x +\rm 1.$$
  • The correlation line intersects the  $y$-axis at  $\underline{y=1}$  and also passes through the point  $(4, 4)$. 
  • Any other result would be impossible to interpret considering the definition area:
If one sets  $m_x = 8/3$,  one obtains  $y = m_y = 3$.
  • This means:   The calculated correlation line actually passes through the point  $(m_x, m_y)$,  as the theory says.