Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 5.1Z: Cosine Square Noise Limitation"

From LNTwww
m (Text replacement - "rms value" to "standard deviation")
 
(18 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Stochastische Systemtheorie
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Stochastic_System_Theory
 
}}
 
}}
  
[[File:P_ID491__Sto_Z_5_1.png|right|Zur Cosinus-Quadrat-Rauschbegrenzung]]
+
[[File:P_ID491__Sto_Z_5_1.png|right|frame|Top:  Input PSD  {\it Φ}_x(f), Bottom:  Frequency response  H(f)]]
Wir betrachten ein bandbegrenztes weißes Rauschsignal x(t) mit dem oben skizzierten Leistungsdichtespektrum {\it Φ}_x(f). Dieses ist im Bereich |f| \le B_x  konstant gleich N_0/2 und außerhalb gleich Null.  
+
We consider bandlimited white noise  x(t)  with the power-spectral density  {\it Φ}_x(f)  sketched above.  This is constant equal to  N_0/2  in the range  |f| \le B_x  and zero outside.
  
Gehen Sie von folgenden Zahlenwerten aus:
+
Assume the following numerical values:
  
*Rauschleistungsdichte N_0 = 10^{-16} \ \rm V^2/Hz,  
+
*Noise power-spectral density  N_0 = 10^{-16} \ \rm V^2/Hz,  
*Rauschbandbreite B_x = 10 \ \rm kHz.
+
*(one-sided)  noise bandwidth  B_x = 10 \ \rm kHz.
  
Dieses Signal wird an den Eingang eines Tiefpassfilters mit dem Frequenzgang
 
H(f) = \left\{ {\begin{array}{*{20}c}  {\cos ^2 \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)} & {\rm{f\ddot{u}r}\quad \left| \it f \right| \le \it f_{\rm 0} ,}  \\  0 & {{\rm{sonst}}}  \\\end{array}} \right.
 
  
angelegt. Hierbei bezeichnet $f_0$ die absolute Filterbandbreite, die zwischen $B_x/2$ und 2B_x variieren kann.
+
This signal is applied to the input of a low-pass filter with frequency response
 +
:$$H(f) = \left\{ {\begin{array}{*{20}c}  {\cos ^2 \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)} & {\rm{f\ddot{u}r}\quad \left| \it f \right| \le \it f_{\rm 0} ,}  \\  0 & {{\rm{else}}}  \\\end{array}} \right.$$
  
Das Filterausgangssignal wird mit $y(t)$ bezeichnet.
+
*Here, $f_0  denotes the absolute filter bandwidth,  which can vary between  B_x/2  and  2B_x$. 
  
 +
*The filter output signal is denoted by  y(t). 
  
''Hinweise:''
+
 
*Die Aufgabe gehört zum  Kapitel [[Stochastische_Signaltheorie/Stochastische_Systemtheorie|Stochastische Systemtheorie]].
+
 
*Bezug genommen wird auch auf die  Kapitel [[Stochastische_Signaltheorie/Gaußverteilte_Zufallsgrößen|Gaußverteilte Zufallsgrößen]] sowie [[Stochastische_Signaltheorie/Leistungsdichtespektrum_(LDS)|Leistungsdichtespektrum]].  
+
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
+
Notes:  
*Benutzen Sie, falls nötig, die nachfolgenden Gleichungen:
+
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Stochastic_System_Theory|Stochastic System Theory]].
:$${\rm Q}(x) \approx \frac{1}{{\sqrt {2{\rm{\pi }}}  \cdot x}} \cdot {\rm{e}}^{ - x^2 /2} \quad {\rm{(f\ddot{u}r }}\;{\rm{grösse }}\;x{\rm{)}}{\rm{,}}$$
+
*Reference is also made to the chapters  [[Theory_of_Stochastic_Signals/Gaußverteilte_Zufallsgrößen|Gaussian Distributed Random Variables]]  and  [[Theory_of_Stochastic_Signals/Power-Spectral_Density|Power-Spectral Density]].  
 +
 +
*Use the following equations if necessary:
 +
:$${\rm Q}(x) \approx \frac{1}{{\sqrt {2{\rm{\pi }}}  \cdot x}} \cdot {\rm{e}}^{ - x^2 /2} \hspace{0.15cm}(
 +
\text{for large }x),$$
 
:\int {\rm{cos}}^{\rm{2}}( {ax} )\hspace{0.1cm}{\rm{d}}x = \frac{1}{2} \cdot x + \frac{1}{4a} \cdot \sin ( {2ax} ),
 
:\int {\rm{cos}}^{\rm{2}}( {ax} )\hspace{0.1cm}{\rm{d}}x = \frac{1}{2} \cdot x + \frac{1}{4a} \cdot \sin ( {2ax} ),
 
:\int {\cos ^4 } ( {ax} )\hspace{0.1cm}{\rm{d}}x = \frac{3}{8} \cdot x + \frac{1}{4a} \cdot \sin ( {2ax} ) + \frac{1}{32a} \cdot \sin ( {4ax} ).
 
:\int {\cos ^4 } ( {ax} )\hspace{0.1cm}{\rm{d}}x = \frac{3}{8} \cdot x + \frac{1}{4a} \cdot \sin ( {2ax} ) + \frac{1}{32a} \cdot \sin ( {4ax} ).
  
  
===Fragebogen===
+
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß ist der Effektivwert des Eingangssignals x(t)?
+
{What is the standard deviation of the input signal&nbsp; x(t)?
 
|type="{}"}
 
|type="{}"}
\sigma_x \ =   { 1 3% } $\ \rm \mu V$
+
$\sigma_x \ = \   { 1 3% } \ \rm &micro; V$
  
  
{Wie groß ist die Wahrscheinlichkeit, dass ein momentaner Spannungswert des Eingangssignals betragsmäßig größer als $5 \hspace{0.05cm} \rm \mu V$ ist?
+
{What is the probability that an instantaneous voltage value of the input signal is greater than&nbsp; $5 \hspace{0.05cm} \rm &micro; V$&nbsp; in magnitude?
 
|type="{}"}
 
|type="{}"}
${\rm Pr}(|x(t)| > 5 \hspace{0.05cm} \rm \mu V) \ =   { 0.6 3% } \ \cdot 10^{-6}$
+
${\rm Pr}(|x(t)| > 5 \hspace{0.05cm} \rm &micro; V) \ = \   { 0.6 3% } \ \cdot 10^{-6}$
  
  
{Wie groß ist der Mittelwert (Gleichanteil) des Ausgangssignals y(t)?
+
{What is the mean value (DC component) of the output signal&nbsp; y(t)?
 
|type="{}"}
 
|type="{}"}
m_y\  \ =   { 0. } $\ \rm \mu V$
+
$m_y\  \ = \   { 0. } \ \rm &micro; V$
  
  
{Berechnen Sie den Effektivwert des Ausgangssignals y(t) für  
+
{Calculate the standard deviation of the output signal&nbsp; y(t)&nbsp; for&nbsp; f_0 = B_x/2.
f_0 = B_x/2.
 
 
|type="{}"}
 
|type="{}"}
$f_0 = B_x/2\text{:}\ \ \sigma_y \ =   { 0.433 3% } \ \rm \mu V$
+
$\sigma_y \ = \   { 0.433 3% } \ \rm &micro; V$
  
  
{Berechnen Sie den Effektivwert von y(t) unter der Bedingung f_0 = 2 \cdot B_x.
+
{Calculate the standard deviation of&nbsp; y(t)&nbsp; under the condition&nbsp; f_0 = 2 \cdot B_x.
 
|type="{}"}
 
|type="{}"}
$f_0 = 2 \cdot B_x\text{:}\ \ \sigma_y \ = { 0.731 3% } \ \rm \mu V$
+
$\sigma_y \ = \ { 0.731 3% } \ \rm &micro; V$
  
  
{Es gelte weiter f_0 = 2 \cdot B_x. Wie groß ist die Wahrscheinlichkeit, dass das Ausgangssignal y(t) betragsmäßig größer als $5 \hspace{0.05cm} \rm \mu V$ ist?
+
{Let&nbsp; f_0 = 2 \cdot B_x&nbsp; be further valid. What is the probability that the output signal&nbsp; y(t)&nbsp; is greater than&nbsp; $5 \hspace{0.05cm} \rm &micro; V$&nbsp; in magnitude?
 
|type="{}"}
 
|type="{}"}
${\rm Pr}(|y(t)| > 5 \hspace{0.05cm} \rm \mu V) \ = { 8 3% } \ \cdot 10^{-12}$
+
${\rm Pr}(|y(t)| > 5 \hspace{0.05cm} \rm &micro; V) \ = \ { 8 3% } \ \cdot 10^{-12}$
  
  
Line 66: Line 71:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die Varianz (Leistung) &nbsp;&#8658;&nbsp; Effektivwert zum Quadrat des Signals x(t) beträgt
+
'''(1)'''&nbsp; The variance&nbsp; of the signal&nbsp; x(t)&nbsp; is
 
:$$\sigma _x ^2  = \frac{N_0 }{2} \cdot 2B_x  = N_0  \cdot B_x  = 10^{ - 12} \;{\rm{V}}^2
 
:$$\sigma _x ^2  = \frac{N_0 }{2} \cdot 2B_x  = N_0  \cdot B_x  = 10^{ - 12} \;{\rm{V}}^2
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm}
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm}
\sigma _x  \hspace{0.15cm}\underline{ = 1\,\,{\rm \mu}{\rm V}}.$$
+
\sigma _x  \hspace{0.15cm}\underline{ = 1\,\,{\rm &micro;}{\rm V}}.$$
  
'''(2)'''&nbsp; Entsprechend dem Kapitel &bdquo;Gaußverteilte Zufallsgrößen&rdquo; und der hier angegebenen Näherung (für große x) erhält man:
 
:\Pr \left( {\left| {x(t)} \right| > 5\;{\rm{\mu V}}} \right) = 2 \cdot {\rm Q}(5) = \frac{2}{{\sqrt {2{\rm{\pi }}}  \cdot 5}} \cdot {\rm{e}}^{ - 12.5}\hspace{0.15cm} \underline{ \approx 0.6 \cdot 10^{ - 6}} .
 
  
'''(3)'''&nbsp; Das Eingangssignal $x(t)$ ist mittelwertfrei $(m_x = 0)$, da sonst ${\it Φ}_x(f) noch eine Diracfunktion bei f= 0$ beinhalten müsste. Der Mittelwert wird durch das lineare Filter nicht verändert &nbsp;&#8658;&nbsp; $m_y\hspace{0.05cm}\underline{ = 0}$.
+
'''(2)'''&nbsp; According to the chapter&nbsp; "Gaussian Distributed Random Variables"&nbsp; and the approximation given here&nbsp; (for large&nbsp; $x)$,&nbsp; we obtain:
 +
:$$\Pr \left( {\left| {x(t)} \right| > 5\;{\rm{&micro; V}}} \right) = 2 \cdot {\rm Q}(5) = \frac{2}{{\sqrt {2{\rm{\pi }}}  \cdot 5}} \cdot {\rm{e}}^{ - 12.5}\hspace{0.15cm} \underline{ \approx 0.6 \cdot 10^{ - 6}} .$$
  
'''(4)'''&nbsp; Für das Leistungsdichtespektrum des Ausgangssignals gilt allgemein:
+
 
 +
'''(3)'''&nbsp; The input signal&nbsp; x(t)&nbsp; is mean-free &nbsp;&rArr;  &nbsp; m_x = 0.
 +
*Otherwise&nbsp; {\it Φ}_x(f)&nbsp; would still have to contain a Dirac delta function at&nbsp; f= 0.&nbsp; 
 +
*The mean is not changed by the linear filter &nbsp; &#8658; &nbsp; m_y\hspace{0.05cm}\underline{ = 0}.
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; For the power-spectral density of the output signal generally applies:
 
:{\it \Phi}_y (f) = {N_0 }/{2} \cdot \left| {H( f )} \right|^2 .
 
:{\it \Phi}_y (f) = {N_0 }/{2} \cdot \left| {H( f )} \right|^2 .
  
Damit kann die Varianz \sigma _y^2 berechnet werden. Unter Ausnützung der Symmetrie erhält man:
+
*Thus,&nbsp; the variance&nbsp; \sigma _y^2&nbsp; can be calculated.&nbsp; Taking advantage of the symmetry,&nbsp; we obtain:
:$$\sigma _y ^2  = {N_0 }/{2} \cdot \int_{ - \infty }^{ + \infty } {\left| {H( f )} \right|^2 \left( f \right)\hspace{0.1cm}{\rm{d}}f} =  N_0  \cdot \int_0^{f_0 } {\cos ^4 } \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f .$$
+
:\sigma _y ^2  = {N_0 }/{2} \cdot \int_{ - \infty }^{ + \infty } {\left| {H( f )} \right|^2 \hspace{0.1cm}{\rm{d}}f} =  N_0  \cdot \int_0^{f_0 } {\cos ^4 } \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f .
 +
 
 +
*The definite integral is given.&nbsp; For each of the three solution terms,&nbsp; the value of the lower bound is zero.&nbsp; It follows that:
 +
:\sigma _y ^2  = {N_0}/{2} \cdot \left( {\frac{3}{8} \cdot f_0  + \frac{f_0 }{{2{\rm{\pi }}}} \cdot \sin ( {\rm{\pi }} ) + \frac{f_0 }{{16{\rm{\pi }}}} \cdot \sin ( {{\rm{2\pi }}} )} \right) = \frac{3}{8} \cdot N_0  \cdot f_0
 +
:\Rightarrow \hspace{0.3cm} f_0 = B_x/2\text{:}\hspace{0.2cm}\sigma _y ^2  = \frac{3}{16} \cdot N_0  \cdot B_x  = \frac{3}{16} \cdot \sigma _x ^2  = 0.1875 \cdot 10^{ - 12} \;{\rm{V}}^2  \hspace{0.2cm}\Rightarrow \hspace{0.2cm}\sigma _y \hspace{0.15cm}\underline{ = 0.433\;{\rm{&micro; V}}}{\rm{.}}
 +
 
  
Das bestimmte Integral ist vorgegeben. Bei jedem der drei Lösungsterme ergibt sich für die untere Grenze der Wert 0. Daraus folgt:
 
:\sigma _y ^2  = {N_0}/{2} \cdot \left( {\frac{3}{8} \cdot f_0  + \frac{f_0 }{{2{\rm{\pi }}}} \cdot \sin ( {\rm{\pi }} ) + \frac{f_0 }{{16{\rm{\pi }}}} \cdot \sin ( {{\rm{2\pi }}} )} \right) = \frac{3}{8} \cdot N_0  \cdot f_0 .
 
:f_0 = B_x/2\text{:}\hspace{0.2cm}\sigma _y ^2  = \frac{3}{16} \cdot N_0  \cdot B_x  = \frac{3}{16} \cdot \sigma _x ^2  = 0.1875 \cdot 10^{ - 12} \;{\rm{V}}^2  \hspace{0.2cm}\Rightarrow \hspace{0.2cm}\sigma _y \hspace{0.15cm}\underline{ = 0.433\;{\rm{\mu V}}}{\rm{.}}
 
  
'''(5)'''&nbsp; Nun besitzt das Eingangs-LDS für |f| > B_x keine Anteile. Deshalb gilt:
+
'''(5)'''&nbsp; Now the input PSD for&nbsp; |f| > B_x&nbsp; has no components.
 +
*Therefore holds:
 
:\sigma _y ^2  = N_0\cdot \int_0^{B_x } {\cos ^4 \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f = N_0  \cdot \int_0^{f_0 /2} {\cos ^4 } \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f.}
 
:\sigma _y ^2  = N_0\cdot \int_0^{B_x } {\cos ^4 \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f = N_0  \cdot \int_0^{f_0 /2} {\cos ^4 } \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f.}
  
Die numerische Auswertung liefert hierfür:
+
*The numerical evaluation yields for this:
:$$\sigma _y ^2  = N_0 \left( {\frac{3}{8} \cdot B_x  + \frac{B_x }{{2{\rm{\pi }}}} \cdot \sin ( {\frac{{\rm{\pi }}}{2}} ) + \frac{B_x }{{{\rm{16\pi }}}} \cdot \sin ( {\rm{\pi }} )} \right) = N_0  \cdot B_x \left( {\frac{3}{8} + \frac{1}{{2{\rm{\pi }}}}} \right) = 0.534\cdot \sigma _x ^2  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\sigma _y \hspace{0.15cm}\underline{  = 0.731\;{\rm{\mu V}}}{\rm{.}}$$
+
:$$\sigma _y ^2  = N_0 \left( {\frac{3}{8} \cdot B_x  + \frac{B_x }{{2{\rm{\pi }}}} \cdot \sin ( {\frac{{\rm{\pi }}}{2}} ) + \frac{B_x }{{{\rm{16\pi }}}} \cdot \sin ( {\rm{\pi }} )} \right) = N_0  \cdot B_x \left( {\frac{3}{8} + \frac{1}{{2{\rm{\pi }}}}} \right) = 0.534\cdot \sigma _x ^2  \hspace{0.6cm}\Rightarrow \hspace{0.6cm}\sigma _y \hspace{0.15cm}\underline{  = 0.731\;{\rm{&micro; V}}}{\rm{.}}$$
 +
 
 +
 
  
'''(6)'''&nbsp; Analog zur Musterlösung der Teilaufgabe (2) gilt:
+
'''(6)'''&nbsp; Analogous to the solution of subtask&nbsp; '''(2)'''&nbsp; holds:
:$$\Pr \left( {\left| {y\left( t \right)} \right| > 5\;{\rm{\mu V}}} \right) = 2 \cdot {\rm Q}\left( {\frac{{5\;{\rm{\mu V}}}}{{0.731\;{\rm{\mu V}}}}} \right) = 2 \cdot {\rm Q}( {6.84} ).$$
+
:$$\Pr \left( {\left| {y\left( t \right)} \right| > 5\;{\rm{&micro; V}}} \right) = 2 \cdot {\rm Q}\left( {\frac{{5\;{\rm{&micro; V}}}}{{0.731\;{\rm{&micro; V}}}}} \right) = 2 \cdot {\rm Q}( {6.84} ).$$
  
Mit der angegebenen Näherung hat diese Wahrscheinlichkeit den Wert $\Pr \left( {\left| {y\left( t \right)} \right| > 5\;{\rm{\mu V}}} \right) \hspace{0.15cm} \underline{ \approx 8 \cdot 10^{ - 12}}$.
+
*With the given approximation,&nbsp; this probability has the following value:
 +
:$$\Pr \left( {\left| {y\left( t \right)} \right| > 5\;{\rm{&micro; V}}} \right) \hspace{0.15cm} \underline{ \approx 8 \cdot 10^{ - 12}}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Stochastische Signaltheorie|^5.1 Stochastische Systemtheorie^]]
+
[[Category:Theory of Stochastic Signals: Exercises|^5.1 Stochastic Systems Theory^]]

Latest revision as of 13:12, 17 February 2022

Top:  Input PSD  {\it Φ}_x(f), Bottom:  Frequency response  H(f)

We consider bandlimited white noise  x(t)  with the power-spectral density  {\it Φ}_x(f)  sketched above.  This is constant equal to  N_0/2  in the range  |f| \le B_x  and zero outside.

Assume the following numerical values:

  • Noise power-spectral density  N_0 = 10^{-16} \ \rm V^2/Hz,
  • (one-sided)  noise bandwidth  B_x = 10 \ \rm kHz.


This signal is applied to the input of a low-pass filter with frequency response

H(f) = \left\{ {\begin{array}{*{20}c} {\cos ^2 \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)} & {\rm{f\ddot{u}r}\quad \left| \it f \right| \le \it f_{\rm 0} ,} \\ 0 & {{\rm{else}}} \\\end{array}} \right.
  • Here, f_0  denotes the absolute filter bandwidth,  which can vary between  B_x/2  and  2B_x
  • The filter output signal is denoted by  y(t)



Notes:

  • Use the following equations if necessary:
{\rm Q}(x) \approx \frac{1}{{\sqrt {2{\rm{\pi }}} \cdot x}} \cdot {\rm{e}}^{ - x^2 /2} \hspace{0.15cm}( \text{for large }x),
\int {\rm{cos}}^{\rm{2}}( {ax} )\hspace{0.1cm}{\rm{d}}x = \frac{1}{2} \cdot x + \frac{1}{4a} \cdot \sin ( {2ax} ),
\int {\cos ^4 } ( {ax} )\hspace{0.1cm}{\rm{d}}x = \frac{3}{8} \cdot x + \frac{1}{4a} \cdot \sin ( {2ax} ) + \frac{1}{32a} \cdot \sin ( {4ax} ).



Questions

1

What is the standard deviation of the input signal  x(t)?

\sigma_x \ = \

\ \rm µ V

2

What is the probability that an instantaneous voltage value of the input signal is greater than  5 \hspace{0.05cm} \rm µ V  in magnitude?

{\rm Pr}(|x(t)| > 5 \hspace{0.05cm} \rm µ V) \ = \

\ \cdot 10^{-6}

3

What is the mean value (DC component) of the output signal  y(t)?

m_y\ \ = \

\ \rm µ V

4

Calculate the standard deviation of the output signal  y(t)  for  f_0 = B_x/2.

\sigma_y \ = \

\ \rm µ V

5

Calculate the standard deviation of  y(t)  under the condition  f_0 = 2 \cdot B_x.

\sigma_y \ = \

\ \rm µ V

6

Let  f_0 = 2 \cdot B_x  be further valid. What is the probability that the output signal  y(t)  is greater than  5 \hspace{0.05cm} \rm µ V  in magnitude?

{\rm Pr}(|y(t)| > 5 \hspace{0.05cm} \rm µ V) \ = \

\ \cdot 10^{-12}


Solution

(1)  The variance  of the signal  x(t)  is

\sigma _x ^2 = \frac{N_0 }{2} \cdot 2B_x = N_0 \cdot B_x = 10^{ - 12} \;{\rm{V}}^2 \hspace{0.3cm}\Rightarrow\hspace{0.3cm} \sigma _x \hspace{0.15cm}\underline{ = 1\,\,{\rm µ}{\rm V}}.


(2)  According to the chapter  "Gaussian Distributed Random Variables"  and the approximation given here  (for large  x),  we obtain:

\Pr \left( {\left| {x(t)} \right| > 5\;{\rm{µ V}}} \right) = 2 \cdot {\rm Q}(5) = \frac{2}{{\sqrt {2{\rm{\pi }}} \cdot 5}} \cdot {\rm{e}}^{ - 12.5}\hspace{0.15cm} \underline{ \approx 0.6 \cdot 10^{ - 6}} .


(3)  The input signal  x(t)  is mean-free  ⇒   m_x = 0.

  • Otherwise  {\it Φ}_x(f)  would still have to contain a Dirac delta function at  f= 0
  • The mean is not changed by the linear filter   ⇒   m_y\hspace{0.05cm}\underline{ = 0}.


(4)  For the power-spectral density of the output signal generally applies:

{\it \Phi}_y (f) = {N_0 }/{2} \cdot \left| {H( f )} \right|^2 .
  • Thus,  the variance  \sigma _y^2  can be calculated.  Taking advantage of the symmetry,  we obtain:
\sigma _y ^2 = {N_0 }/{2} \cdot \int_{ - \infty }^{ + \infty } {\left| {H( f )} \right|^2 \hspace{0.1cm}{\rm{d}}f} = N_0 \cdot \int_0^{f_0 } {\cos ^4 } \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f .
  • The definite integral is given.  For each of the three solution terms,  the value of the lower bound is zero.  It follows that:
\sigma _y ^2 = {N_0}/{2} \cdot \left( {\frac{3}{8} \cdot f_0 + \frac{f_0 }{{2{\rm{\pi }}}} \cdot \sin ( {\rm{\pi }} ) + \frac{f_0 }{{16{\rm{\pi }}}} \cdot \sin ( {{\rm{2\pi }}} )} \right) = \frac{3}{8} \cdot N_0 \cdot f_0
\Rightarrow \hspace{0.3cm} f_0 = B_x/2\text{:}\hspace{0.2cm}\sigma _y ^2 = \frac{3}{16} \cdot N_0 \cdot B_x = \frac{3}{16} \cdot \sigma _x ^2 = 0.1875 \cdot 10^{ - 12} \;{\rm{V}}^2 \hspace{0.2cm}\Rightarrow \hspace{0.2cm}\sigma _y \hspace{0.15cm}\underline{ = 0.433\;{\rm{µ V}}}{\rm{.}}


(5)  Now the input PSD for  |f| > B_x  has no components.

  • Therefore holds:
\sigma _y ^2 = N_0\cdot \int_0^{B_x } {\cos ^4 \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f = N_0 \cdot \int_0^{f_0 /2} {\cos ^4 } \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f.}
  • The numerical evaluation yields for this:
\sigma _y ^2 = N_0 \left( {\frac{3}{8} \cdot B_x + \frac{B_x }{{2{\rm{\pi }}}} \cdot \sin ( {\frac{{\rm{\pi }}}{2}} ) + \frac{B_x }{{{\rm{16\pi }}}} \cdot \sin ( {\rm{\pi }} )} \right) = N_0 \cdot B_x \left( {\frac{3}{8} + \frac{1}{{2{\rm{\pi }}}}} \right) = 0.534\cdot \sigma _x ^2 \hspace{0.6cm}\Rightarrow \hspace{0.6cm}\sigma _y \hspace{0.15cm}\underline{ = 0.731\;{\rm{µ V}}}{\rm{.}}


(6)  Analogous to the solution of subtask  (2)  holds:

\Pr \left( {\left| {y\left( t \right)} \right| > 5\;{\rm{µ V}}} \right) = 2 \cdot {\rm Q}\left( {\frac{{5\;{\rm{µ V}}}}{{0.731\;{\rm{µ V}}}}} \right) = 2 \cdot {\rm Q}( {6.84} ).
  • With the given approximation,  this probability has the following value:
\Pr \left( {\left| {y\left( t \right)} \right| > 5\;{\rm{µ V}}} \right) \hspace{0.15cm} \underline{ \approx 8 \cdot 10^{ - 12}}.