Difference between revisions of "Aufgaben:Exercise 3.10: Noise Power Calculation"

From LNTwww
m
 
(14 intermediate revisions by 4 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1115__Mod_A_3_9.png|right|frame|Rauschleistungsdichten von PM und FM]]
+
[[File:P_ID1115__Mod_A_3_9.png|right|frame|Noise power densities of PM and FM]]
Betrachtet werden die Phasen– und Frequenzmodulation einer Cosinusschwingung mit der Frequenz $f_{\rm N}$. Zunächst gelte für die Nachrichtenfrequenz $f_{\rm N} = f_5 = 5 \ \rm kHz$ und der Modulationsindex (Phasenhub) sei $η = 5$.
+
Consider the phase and frequency modulation of a cosine oscillation with frequency   $f_{\rm N}$.  .  First, let the message frequency be  $f_{\rm N} = f_5 = 5 \ \rm kHz$  and the modulation index (phase deviation) be  $η = 5$.
  
Bei Vorhandensein von additivem Gaußschen Rauschen mit der Rauschleistungsdichte $N_0$ ergibt sich nach dem PM–Demodulator eine konstante Rauschleistungsdichte ${\it \Phi}_{v {\rm , \hspace{0.08cm}FM} }(f) = {\it \Phi}_0$, die auch vom Modulationsindex abhängt:
+
In the presence of additive Gaussian noise with noise power density  $N_0$ , the PM demodulator results in a constant noise power density  ${\it \Phi}_{v {\rm , \hspace{0.08cm}PM} }(f) = {\it \Phi}_0$, which also depends on the modulation index  $η$ :
 
:$${\it \Phi}_0 = \frac{N_0}{\eta^2} \hspace{0.05cm}.$$
 
:$${\it \Phi}_0 = \frac{N_0}{\eta^2} \hspace{0.05cm}.$$
Für die Berechnung der Rauschleistung $P_{\rm R}$ ist lediglich der Frequenzbereich von $±f_{\rm N}$ relevant (siehe Grafik).
+
For the calculation of the noise power  $P_{\rm R}$ , only the frequency range  $±f_{\rm N}$  is relevant (see graph).
  
Die Rauschleistungsdichte nach der FM–Demodulation lautet mit dem Frequenzhub $Δf_{\rm A}$:
+
The noise power density after FM demodulation with the frequency deviation  $Δf_{\rm A}$ is:
 
:$${\it \Phi}_{v {\rm , \hspace{0.08cm}FM} } (f) = N_0 \cdot \left(\frac{f}{\Delta f_{\rm A}}\right)^2 \hspace{0.05cm}.$$
 
:$${\it \Phi}_{v {\rm , \hspace{0.08cm}FM} } (f) = N_0 \cdot \left(\frac{f}{\Delta f_{\rm A}}\right)^2 \hspace{0.05cm}.$$
*Gegeben ist der Rauschabstand $10 · \lg ρ_v = 50 \ \rm dB$ für Phasenmodulation und $f_N = 5 kHz$.  
+
*The signal-to-noise ratio  $10 · \lg ρ_v = 50 \ \rm dB$  is given for phase modulation with  $f_{\rm N} = 5 \ \rm kHz$.  
*Gesucht sind in dieser Aufgabe der Rauschabstand bei FM für die Nachrichtenfrequenz $f_{\rm N} = 5 \ \rm kHz$) sowie die sich ergebenden Rauschabstände von PM und FM für die Nachrichtenfrequenz $f_{\rm N} = f_{10} = 10 \ \rm kHz$.
+
*In this task, we are looking for the S/N ratio of FM for the message frequency  $f_{\rm N} = 5 \ \rm kHz$  as well as the resulting S/N ratios of PM and FM for message frequency   $f_{\rm N} = f_{10} = 10 \ \rm kHz$.
  
  
''Hinweise:''
+
 
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/Rauscheinfluss_bei_Winkelmodulation|Rauscheinfluss bei Winkelmodulation]].
+
 
*Bezug genommen wird insbesondere auf den Abschnitt [[Modulationsverfahren/Rauscheinfluss_bei_Winkelmodulation#Systemvergleich_von_AM.2C_PM_und_FM_hinsichtlich_Rauschen|Systemvergleich von AM, PM und FM hinsichtlich Rauschen]].
+
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
+
 
 +
 
 +
 
 +
 
 +
''Hints:''
 +
*This exercise belongs to the chapter  [[Modulation_Methods/Influence_of_Noise_on_Systems_with_Angle_Modulation|Influence of Noise on Systems with Angle Modulation]].
 +
*Particular reference is made to the section  [[Modulation_Methods/Influence_of_Noise_on_Systems_with_Angle_Modulation#System_comparison_of_AM.2C_PM_and_FM_with_respect_to_noise| System comparison of AM, PM and FM with respect to noise]].
 +
 
   
 
   
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welcher Rauschabstand ergibt sich bei Phasenmodulation und $f_{\rm N} = 10 \ \rm kHz$? Interpretieren Sie das Ergebnis.
+
{What is the signal-to-noise ratio for&nbsp; <u>phase modulation</u>&nbsp; and &nbsp;$f_{\rm N} = 10 \ \rm kHz$? Interpret the result.
 
|type="{}"}
 
|type="{}"}
 
$10 · \lg ρ_v \ = \ $ { 46.99 3% } $\ \rm dB$  
 
$10 · \lg ρ_v \ = \ $ { 46.99 3% } $\ \rm dB$  
  
  
{Berechnen Sie den Rauschabstand bei Frequenzmodulation und $f_{\rm N} = 5 \ \rm kHz$. Wie groß ist der Modulationsindex bei dieser Konstellation?
+
{Calculate the signal-to-noise ratio for <u>frequency modulation</u> and &nbsp;$f_{\rm N} = 5 \ \rm kHz$. What is the modulation index for this configuration?
 
|type="{}"}
 
|type="{}"}
 
$10 · \lg ρ_v \ = \ $ { 54.77 3% } $\ \rm dB$
 
$10 · \lg ρ_v \ = \ $ { 54.77 3% } $\ \rm dB$
  
{Berechnen Sie den Rauschabstand bei Frequenzmodulation und $f_{\rm N} = 10 \ \rm kHz$. Interpretieren Sie das Ergebnis im Vergleich zu  (1) und (2).
+
{Calculate the signal-to-noise ratio for <u>frequency modulation</u> and &nbsp;$f_{\rm N} = 10 \ \rm kHz$.&nbsp; Interpret the result in comparison to your answers for &nbsp; '''(1)'''&nbsp; and&nbsp; '''(2)'''.
 
|type="{}"}
 
|type="{}"}
$10 · \lg ρ_v \ = \ $ { 45.74 3% } $\ \rm kHz$  
+
$10 · \lg ρ_v \ = \ $ { 45.74 3% } $\ \rm dB$  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Das Signal–zu–Rausch–Leistungsverhältnis (Sinken–SNR) $ \rho_{v }$ ist der Quotient aus der Nutzleistung $P_{\rm S}$ und der Rauschleistung $P_{\rm S}$. Speziell bei der Phasenmodulation gilt:
+
'''(1)'''&nbsp; The signal-to-noise power ratio (sink SNR) $ \rho_{v }$&nbsp; is the quotient of useful power&nbsp; $P_{\rm S}$&nbsp; and noise power&nbsp; $P_{\rm R}$.&nbsp; For phase modulation, it is:
 
:$$ \rho_{v } = \frac{P_{\rm S}}{P_{\rm R}} = \frac{P_{\rm S}}{{\it \Phi}_0 \cdot 2 f_{\rm N} } =\frac{\eta^2}{2} \cdot \frac{P_{\rm S}}{N_0 \cdot f_{\rm N} }\hspace{0.05cm}.$$
 
:$$ \rho_{v } = \frac{P_{\rm S}}{P_{\rm R}} = \frac{P_{\rm S}}{{\it \Phi}_0 \cdot 2 f_{\rm N} } =\frac{\eta^2}{2} \cdot \frac{P_{\rm S}}{N_0 \cdot f_{\rm N} }\hspace{0.05cm}.$$
*Die Messung mit $f_{\rm N} = f_5 = 5 \ \rm kHz$ hat das SNR $ \rho_{v } = 10^5$ (entsprechend $10 · \lg ρ_v  =50 dB$) ergeben.  
+
*The measurement with&nbsp; $f_{\rm N} = f_5 = 5 \ \rm kHz$&nbsp; gives the SNR&nbsp; $ \rho_{v } = 10^5$&nbsp; $($corresponding to &nbsp; $10 · \lg ρ_v  =50\ \rm dB)$&nbsp;.  
*Die doppelte Nachrichtenfrequenz führt zum halben SNR, da nun die doppelte Rauschleistung wirksam ist:
+
*Doubling the message frequency results in half the SNR, since twice the noise power is now effective:
 
:$$ \rho_{v }= 0.5 \cdot 10^5 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } \hspace{0.15cm}\underline {\approx 46.99\,{\rm dB}}\hspace{0.05cm}.$$
 
:$$ \rho_{v }= 0.5 \cdot 10^5 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } \hspace{0.15cm}\underline {\approx 46.99\,{\rm dB}}\hspace{0.05cm}.$$
  
Dieses Ergebnis lässt sich auch über die Beziehung $ρ_v = η^2/2 · ξ$ herleiten.  
+
This result can also be derived using the relationship &nbsp;$ρ_v = η^2/2 · ξ$&nbsp;.  
*Bei Phasenmodulation ist $η$ unabhängig von der Nachrichtenfrequenz.  
+
*For phase modulation, &nbsp; $η$&nbsp; is independent of the message frequency.
*Der SNR–Verlust geht darauf zurück, dass nun die Leistungskenngröße $ξ = P_{\rm S}/(N_0 · f_{\rm N})$ halbiert wird.
+
*DThe SNR loss is due to the fact that now the performance parameter &nbsp;$ξ = P_{\rm S}/(N_0 · f_{\rm N})$&nbsp; is halved.
 +
 
 +
 
  
  
'''(2)'''&nbsp; Bei Frequenzmodulation und der Nachrichtenfrequenz $f_{\rm N} = 5 \ \rm kHz$ erhält man für die Rauschleistung
+
'''(2)'''&nbsp; For frequency modulation and a message frequency&nbsp; $f_{\rm N} = 5 \ \rm kHz$&nbsp; the noise power is given by:
 
:$$P_{\rm R} = \int_{-f_{\rm N}}^{ + f_{\rm N}} {\it \Phi}_{v {\rm , \hspace{0.08cm}FM} } (f)\hspace{0.1cm}{\rm d}f = \frac{2 \cdot N_0}{\Delta f_{\rm A}^{\hspace{0.1cm}2}} \cdot \int_{0}^{ f_{\rm N}} f^2\hspace{0.1cm}{\rm d}f = \frac{2 \cdot N_0 \cdot f_{\rm N}^{\hspace{0.1cm}3}}{3 \cdot \Delta f_{\rm A}^2} \hspace{0.05cm}.$$
 
:$$P_{\rm R} = \int_{-f_{\rm N}}^{ + f_{\rm N}} {\it \Phi}_{v {\rm , \hspace{0.08cm}FM} } (f)\hspace{0.1cm}{\rm d}f = \frac{2 \cdot N_0}{\Delta f_{\rm A}^{\hspace{0.1cm}2}} \cdot \int_{0}^{ f_{\rm N}} f^2\hspace{0.1cm}{\rm d}f = \frac{2 \cdot N_0 \cdot f_{\rm N}^{\hspace{0.1cm}3}}{3 \cdot \Delta f_{\rm A}^2} \hspace{0.05cm}.$$
Unter Berücksichtigung des Frequenzhubs $Δf_{\rm A} = η · f_{\rm N}$ ergibt sich somit:
+
*Thus, considering the frequency deviation&nbsp; $Δf_{\rm A} = η · f_{\rm N}$&nbsp;, we get:
 
:$$P_{\rm R} = \frac{2 \cdot N_0 \cdot f_{\rm N}}{3 \cdot \eta^2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \rho_{v }= \frac{3 \cdot \eta^2 \cdot P_{\rm S}}{2 \cdot N_0 \cdot f_{\rm N}} = 3 \cdot \rho_{v {\rm , \hspace{0.08cm}PM}}\hspace{0.05cm}.$$
 
:$$P_{\rm R} = \frac{2 \cdot N_0 \cdot f_{\rm N}}{3 \cdot \eta^2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \rho_{v }= \frac{3 \cdot \eta^2 \cdot P_{\rm S}}{2 \cdot N_0 \cdot f_{\rm N}} = 3 \cdot \rho_{v {\rm , \hspace{0.08cm}PM}}\hspace{0.05cm}.$$
Das heißt: Die Frequenzmodulation ist um den Faktor $3$ (oder $4.77 \ \rm dB$) besser als die Phasenmodulation:
+
*This means:&nbsp; frequency modulation is better than phase modulation by a factor of&nbsp; $3$&nbsp; $($or $4.77 \ \rm dB)$&nbsp;:
 
:$$10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v }= 50\,{\rm dB} + 10 \cdot {\rm lg} \hspace{0.15cm}{3}\hspace{0.15cm}\underline {\approx 54.77\,{\rm dB}}\hspace{0.05cm}.$$
 
:$$10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v }= 50\,{\rm dB} + 10 \cdot {\rm lg} \hspace{0.15cm}{3}\hspace{0.15cm}\underline {\approx 54.77\,{\rm dB}}\hspace{0.05cm}.$$
  
'''(3)'''&nbsp; Entsprechend dem Ergebnis der Teilaufgabe (2) erhält man mit $f_{10} = 10 \ \rm kHz$:
+
 
 +
 
 +
'''(3)'''&nbsp; According to the answer to question&nbsp; '''(2)'''&nbsp;, together with &nbsp; $f_{10} = 10 \ \rm kHz$, we get:
 
:$$P_{\rm R} = \frac{2 \cdot N_0 \cdot f_{\rm 10}}{3 \cdot \eta_{10}^{\hspace{0.1cm}2}} = \frac{ f_{\rm 10} \cdot \eta_{5}^{\hspace{0.1cm}2}}{ 3 \cdot f_{\rm 5} \cdot \eta_{10}^{\hspace{0.1cm}2}}\cdot \frac{2 \cdot N_0 \cdot f_{\rm 5}}{\eta_{5}^{\hspace{0.1cm}2}} \hspace{0.05cm}.$$
 
:$$P_{\rm R} = \frac{2 \cdot N_0 \cdot f_{\rm 10}}{3 \cdot \eta_{10}^{\hspace{0.1cm}2}} = \frac{ f_{\rm 10} \cdot \eta_{5}^{\hspace{0.1cm}2}}{ 3 \cdot f_{\rm 5} \cdot \eta_{10}^{\hspace{0.1cm}2}}\cdot \frac{2 \cdot N_0 \cdot f_{\rm 5}}{\eta_{5}^{\hspace{0.1cm}2}} \hspace{0.05cm}.$$
Der zweite Term gibt die Rauschleistung des Vergleichssystems (PM, $f_{\rm N} = f_5$) an, die zum Ergebnis $10 · \lg ρ_v = 50\ \rm  dB$ geführt hat.
+
*the second term gives the noise power of the comparison system&nbsp; $($PM, $f_{\rm N} = f_5)$&nbsp;,&nbsp; which led to the result of &nbsp; $10 · \lg ρ_v = 50\ \rm  dB$&nbsp;.
  
Bei Frequenzmodulation ist nun jedoch der Modulationsindex $η$ umgekehrt proportional zur Nachrichtenfrequenz, so dass der Quotient $η_5^2/η_{10}^2 = 4$ ist. Somit ergibt sich für den Vorfaktor $8/3$. Aufgrund der größeren Rauschleistung ist das SNR kleiner:
+
*However, in frequency modulation, the modulation index &nbsp; $η$&nbsp; is now inversely proportional to the message frequency, so the quotient is &nbsp; $η_5^2/η_{10}^2 = 4$&nbsp;.
 +
*Thus, the pre-factor is &nbsp; $8/3$. Due to the larger noise power, the SNR is smaller:
 
:$$10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v }= 50\,{\rm dB} - 10 \cdot {\rm lg} \hspace{0.15cm}({8}/{3})\hspace{0.15cm}\underline {\approx 45.74\,{\rm dB}}\hspace{0.05cm}.$$
 
:$$10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v }= 50\,{\rm dB} - 10 \cdot {\rm lg} \hspace{0.15cm}({8}/{3})\hspace{0.15cm}\underline {\approx 45.74\,{\rm dB}}\hspace{0.05cm}.$$
Bei gleicher Nachrichtenfrequenz $f_{\rm N} = 10 \ \rm kHz$ ist nun die FM um $1.25 \ \rm dB$ schlechter als die PM, da sich nun die Halbierung von $η$ – nach Quadrierung der Faktor $4$ – stärker auswirkt als der systembedingte Faktor $3$, um den die FM gegenüber der PM überlegen ist.
 
  
*Der Vergleich der Teilaufgaben (2) und (3) zeigt einen Unterschied um den Faktor $8$ bzw. $9.03 \ \rm dB$.  
+
 
*Der ungünstigere Wert für die größere Nachrichtenfrequenz $f_{\rm N} = 10 \ \rm kHz$ ergibt sich durch den nur halb so großen Modulationsindex – nach Quadrierung Faktor $4$ – und die doppelte Rauschbandbreite.
+
At the same message frequency&nbsp; $f_{\rm N} = 10 \ \rm kHz$&nbsp;, FM is now&nbsp; $1.25 \ \rm dB$&nbsp; worse than PM, since the halving of&nbsp; $η$&nbsp; – a factor of &nbsp; $4$&nbsp;after squaring–&nbsp; snow has a greater effect than the system-dependent factor of&nbsp; $3$ by which FM was superior to PM.
 +
 
 +
*The comparison of subtasks&nbsp; '''(2)'''&nbsp; and&nbsp; '''(3)'''&nbsp; shows a difference by a factor of&nbsp; $8$&nbsp; and&nbsp; $9.03 \ \rm dB$, respectively.  
 +
*The less favorable value for the larger message frequency &nbsp; $f_{\rm N} = 10 \ \rm kHz$&nbsp; results from the halved modulation index and the doubled large noise bandwidth.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 75: Line 89:
  
  
[[Category:Aufgaben zu Modulationsverfahren|^3.3 Rauscheinfluss bei PM und FM^]]
+
[[Category:Modulation Methods: Exercises|^3.3 Noise Influence with PM and FM^]]

Latest revision as of 18:00, 17 March 2022

Noise power densities of PM and FM

Consider the phase and frequency modulation of a cosine oscillation with frequency   $f_{\rm N}$.  . First, let the message frequency be  $f_{\rm N} = f_5 = 5 \ \rm kHz$  and the modulation index (phase deviation) be  $η = 5$.

In the presence of additive Gaussian noise with noise power density  $N_0$ , the PM demodulator results in a constant noise power density  ${\it \Phi}_{v {\rm , \hspace{0.08cm}PM} }(f) = {\it \Phi}_0$, which also depends on the modulation index  $η$ :

$${\it \Phi}_0 = \frac{N_0}{\eta^2} \hspace{0.05cm}.$$

For the calculation of the noise power  $P_{\rm R}$ , only the frequency range  $±f_{\rm N}$  is relevant (see graph).

The noise power density after FM demodulation with the frequency deviation  $Δf_{\rm A}$ is:

$${\it \Phi}_{v {\rm , \hspace{0.08cm}FM} } (f) = N_0 \cdot \left(\frac{f}{\Delta f_{\rm A}}\right)^2 \hspace{0.05cm}.$$
  • The signal-to-noise ratio  $10 · \lg ρ_v = 50 \ \rm dB$  is given for phase modulation with  $f_{\rm N} = 5 \ \rm kHz$.
  • In this task, we are looking for the S/N ratio of FM for the message frequency  $f_{\rm N} = 5 \ \rm kHz$  as well as the resulting S/N ratios of PM and FM for message frequency  $f_{\rm N} = f_{10} = 10 \ \rm kHz$.





Hints:


Questions

1

What is the signal-to-noise ratio for  phase modulation  and  $f_{\rm N} = 10 \ \rm kHz$? Interpret the result.

$10 · \lg ρ_v \ = \ $

$\ \rm dB$

2

Calculate the signal-to-noise ratio for frequency modulation and  $f_{\rm N} = 5 \ \rm kHz$. What is the modulation index for this configuration?

$10 · \lg ρ_v \ = \ $

$\ \rm dB$

3

Calculate the signal-to-noise ratio for frequency modulation and  $f_{\rm N} = 10 \ \rm kHz$.  Interpret the result in comparison to your answers for   (1)  and  (2).

$10 · \lg ρ_v \ = \ $

$\ \rm dB$


Solution

(1)  The signal-to-noise power ratio (sink SNR) $ \rho_{v }$  is the quotient of useful power  $P_{\rm S}$  and noise power  $P_{\rm R}$.  For phase modulation, it is:

$$ \rho_{v } = \frac{P_{\rm S}}{P_{\rm R}} = \frac{P_{\rm S}}{{\it \Phi}_0 \cdot 2 f_{\rm N} } =\frac{\eta^2}{2} \cdot \frac{P_{\rm S}}{N_0 \cdot f_{\rm N} }\hspace{0.05cm}.$$
  • The measurement with  $f_{\rm N} = f_5 = 5 \ \rm kHz$  gives the SNR  $ \rho_{v } = 10^5$  $($corresponding to   $10 · \lg ρ_v =50\ \rm dB)$ .
  • Doubling the message frequency results in half the SNR, since twice the noise power is now effective:
$$ \rho_{v }= 0.5 \cdot 10^5 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } \hspace{0.15cm}\underline {\approx 46.99\,{\rm dB}}\hspace{0.05cm}.$$

This result can also be derived using the relationship  $ρ_v = η^2/2 · ξ$ .

  • For phase modulation,   $η$  is independent of the message frequency.
  • DThe SNR loss is due to the fact that now the performance parameter  $ξ = P_{\rm S}/(N_0 · f_{\rm N})$  is halved.



(2)  For frequency modulation and a message frequency  $f_{\rm N} = 5 \ \rm kHz$  the noise power is given by:

$$P_{\rm R} = \int_{-f_{\rm N}}^{ + f_{\rm N}} {\it \Phi}_{v {\rm , \hspace{0.08cm}FM} } (f)\hspace{0.1cm}{\rm d}f = \frac{2 \cdot N_0}{\Delta f_{\rm A}^{\hspace{0.1cm}2}} \cdot \int_{0}^{ f_{\rm N}} f^2\hspace{0.1cm}{\rm d}f = \frac{2 \cdot N_0 \cdot f_{\rm N}^{\hspace{0.1cm}3}}{3 \cdot \Delta f_{\rm A}^2} \hspace{0.05cm}.$$
  • Thus, considering the frequency deviation  $Δf_{\rm A} = η · f_{\rm N}$ , we get:
$$P_{\rm R} = \frac{2 \cdot N_0 \cdot f_{\rm N}}{3 \cdot \eta^2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \rho_{v }= \frac{3 \cdot \eta^2 \cdot P_{\rm S}}{2 \cdot N_0 \cdot f_{\rm N}} = 3 \cdot \rho_{v {\rm , \hspace{0.08cm}PM}}\hspace{0.05cm}.$$
  • This means:  frequency modulation is better than phase modulation by a factor of  $3$  $($or $4.77 \ \rm dB)$ :
$$10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v }= 50\,{\rm dB} + 10 \cdot {\rm lg} \hspace{0.15cm}{3}\hspace{0.15cm}\underline {\approx 54.77\,{\rm dB}}\hspace{0.05cm}.$$


(3)  According to the answer to question  (2) , together with   $f_{10} = 10 \ \rm kHz$, we get:

$$P_{\rm R} = \frac{2 \cdot N_0 \cdot f_{\rm 10}}{3 \cdot \eta_{10}^{\hspace{0.1cm}2}} = \frac{ f_{\rm 10} \cdot \eta_{5}^{\hspace{0.1cm}2}}{ 3 \cdot f_{\rm 5} \cdot \eta_{10}^{\hspace{0.1cm}2}}\cdot \frac{2 \cdot N_0 \cdot f_{\rm 5}}{\eta_{5}^{\hspace{0.1cm}2}} \hspace{0.05cm}.$$
  • the second term gives the noise power of the comparison system  $($PM, $f_{\rm N} = f_5)$ ,  which led to the result of   $10 · \lg ρ_v = 50\ \rm dB$ .
  • However, in frequency modulation, the modulation index   $η$  is now inversely proportional to the message frequency, so the quotient is   $η_5^2/η_{10}^2 = 4$ .
  • Thus, the pre-factor is   $8/3$. Due to the larger noise power, the SNR is smaller:
$$10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v }= 50\,{\rm dB} - 10 \cdot {\rm lg} \hspace{0.15cm}({8}/{3})\hspace{0.15cm}\underline {\approx 45.74\,{\rm dB}}\hspace{0.05cm}.$$


At the same message frequency  $f_{\rm N} = 10 \ \rm kHz$ , FM is now  $1.25 \ \rm dB$  worse than PM, since the halving of  $η$  – a factor of   $4$ after squaring–  snow has a greater effect than the system-dependent factor of  $3$ by which FM was superior to PM.

  • The comparison of subtasks  (2)  and  (3)  shows a difference by a factor of  $8$  and  $9.03 \ \rm dB$, respectively.
  • The less favorable value for the larger message frequency   $f_{\rm N} = 10 \ \rm kHz$  results from the halved modulation index and the doubled large noise bandwidth.