Difference between revisions of "Aufgaben:Exercise 5.6: OFDM Spectrum"
m (Guenter verschob die Seite 5.6 OFDM–Spektrum nach Aufgabe 5.6: OFDM–Spektrum) |
|||
(12 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Modulation_Methods/General_Description_of_OFDM |
}} | }} | ||
− | [[File:P_ID1659__A_5_6.png|right|frame|Real | + | [[File:P_ID1659__A_5_6.png|right|frame|Real and imaginary part of the OFDM signal]] |
− | + | In this Exercise, we consider an OFDM system with N=4 carriers. | |
+ | *For simplicity, we restrict ourselves to a single time interval T. | ||
+ | *The frame duration is also $T_{\rm R} = T.$ | ||
+ | *Accordingly, a guard interval is not used. | ||
− | + | ||
− | :$$ g_\mu (t) = \left\{ \begin{array}{l} s_0 \cdot {\rm{e}}^{ {\kern 1pt} {\rm{j2 \pi}} {\kern 1pt} \mu f_0 t} \quad 0 \le t < T, \\ 0 \quad \quad \quad \quad \quad {\rm | + | With the summary of pulse shaping and modulation by the function |
− | + | :$$ g_\mu (t) = \left\{ \begin{array}{l} s_0 \cdot {\rm{e}}^{ {\kern 1pt} {\rm{j2 \pi}} {\kern 1pt} \mu f_0 t} \quad 0 \le t < T, \\ 0 \quad \quad \quad \quad \quad {\rm otherwise} \\ \end{array} \right.$$ | |
+ | the (complex) OFDM transmitted signal in the considered time interval $(0 ≤ t < T)$ results to: | ||
:s(t)=N−1∑μ=0aμ⋅gμ(t). | :s(t)=N−1∑μ=0aμ⋅gμ(t). | ||
− | + | All carrier coefficients a0, a1, a2 and a3 are either 0 or ±1. | |
+ | |||
+ | The diagram shows the real and imaginary parts of the transmitted signal s(t) for a given combination of a0, ... , a3, <br>which is to be determined in subtask '''(3)'''. | ||
+ | |||
+ | |||
+ | |||
− | + | Notes: | |
− | * | + | *The exercise belongs to the chapter [[Modulation_Methods/Allgemeine_Beschreibung_von_OFDM|General Description of OFDM]]. |
− | * | + | *Reference is made in particular to the pages |
− | + | : [[Modulation_Methods/General_Description_of_OFDM#The_principle_of_OFDM_-_system_consideration_in_the_time_domain|OFDM - System consideration in the time domain]], | |
+ | : [[Modulation_Methods/General_Description_of_OFDM#System_consideration_in_the_frequency_domain_with_causal_basic_pulse|OFDM - System consideration in the frequency domain with causal basic pulse]]. | ||
+ | |||
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {What is the amplitude s0 of the transmitted signal? |
|type="{}"} | |type="{}"} | ||
s0 = { 5 3% } V | s0 = { 5 3% } V | ||
− | { | + | {What is the symbol duration $T$? |
|type="{}"} | |type="{}"} | ||
T = { 0.2 3% } ms | T = { 0.2 3% } ms | ||
− | { | + | {Which amplitude coefficients are the basis of the diagram? |
|type="{}"} | |type="{}"} | ||
a0 = { 0. } | a0 = { 0. } | ||
Line 37: | Line 48: | ||
a3 = { -1.01--0.99 } | a3 = { -1.01--0.99 } | ||
− | { | + | {Which statements are true regarding the OFDM magnitude function $|s(t)|$? |
|type="[]"} | |type="[]"} | ||
− | - |s(t)| | + | - |s(t)| is constant without limit. |
− | + |s(t)| | + | + |s(t)| is constant within the symbol duration T. |
− | - |s(t)| | + | - |s(t)| has a cosine shape. |
− | - |s(t)| | + | - |s(t)| has a sinusoidal shape. |
− | { | + | {Now let a0=0, a1=+1, a2=−1, a3=+1. Calculate the spectrum $S(f)$. <br>Which values result for the mentioned frequencies? |
− | <br> | ||
|type="{}"} | |type="{}"} | ||
S(f=0) = { 0. } mV/Hz | S(f=0) = { 0. } mV/Hz | ||
Line 52: | Line 62: | ||
S(f=15 kHz) = { 1 1% } mV/Hz | S(f=15 kHz) = { 1 1% } mV/Hz | ||
− | { | + | {Interpret your results of subtasks '''(3)''' and '''(5)'''. Which statements are true? |
|type="[]"} | |type="[]"} | ||
− | + OFDM | + | + OFDM satisfies the first Nyquist criterion in the time domain. |
− | + OFDM | + | + OFDM satisfies the first Nyquist criterion in the frequency domain. |
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' The transmitted signal s(t) is a complex oscillation with only one frequency. |
+ | *The amplitude s0=5 V_ can be taken directly from the diagram. | ||
+ | |||
− | '''(2)''' | + | '''(2)''' Furthermore, the symbol duration T=0.2 ms_ can be seen from the diagram. |
+ | *From this the basic frequency results to f0=1/T=5 kHz. | ||
− | '''(3)''' | + | |
+ | '''(3)''' In the example shown, there is only one frequency, namely 3·f0. | ||
+ | *From this follows a0=a1=a2=0_ and for the range 0≤t<T: | ||
:s(t)=a3⋅s0⋅ej⋅2π⋅3f0⋅t=a3⋅s0⋅cos(2π⋅3f0⋅t)+j⋅a3⋅s0⋅sin(2π⋅3f0⋅t). | :s(t)=a3⋅s0⋅ej⋅2π⋅3f0⋅t=a3⋅s0⋅cos(2π⋅3f0⋅t)+j⋅a3⋅s0⋅sin(2π⋅3f0⋅t). | ||
− | + | *Comparison with the sketch $($real part: minus cosine, imaginary part: minus sine$)$ gives the following result: | |
+ | :$$a_3\hspace{0.15cm}\underline {= -1}.$$ | ||
+ | |||
+ | |||
+ | '''(4)''' The <u>second solution</u> is correct: | ||
+ | * The magnitude function is: |s(t)|=a3⋅s0⋅√cos2(2π⋅3f0⋅t)+sin2(2π⋅3f0⋅t)=a3⋅s0. | ||
+ | *However, this equation is valid only in the range of symbol duration T. | ||
+ | *This means: The OFDM principle works only with a time limit on $T$. | ||
− | |||
− | |||
− | |||
+ | '''(5)''' In general, for the OFDM spectrum: | ||
+ | :S(f)=s0⋅T⋅N−1∑μ=0aμ⋅sinc(T⋅(f−μ⋅f0))⋅e−j⋅2π⋅T/2⋅(f−μ⋅f0). | ||
+ | *The sinc function results from the time limit on T, and the last term in the sum results from the displacement law. | ||
+ | *By the zero crossings of the sinc function at the distance f0 as well as sinc(0)=1 one obtains | ||
+ | :S(f = μ · f_0) = s_0 · T · a_μ. | ||
+ | *With s_0 = 5 \ \rm V and T = 0.2 \ \rm ms ⇒ s_0 · T = 1\ \rm mV/Hz it further holds: | ||
+ | : \mu = 0,\hspace{0.1cm} a_0 = 0\text{:}\hspace{0.95cm} S (f = 0) \hspace{0.15cm}\underline {= 0},\hspace{8cm}. | ||
+ | :\mu = 1, \hspace{0.1cm}a_1 = +1\text{:}\hspace{0.55cm} S (f = 5\,\,{\rm{kHz}}) \hspace{0.15cm}\underline {= +1\,\,{\rm{mV/Hz}}}, | ||
+ | : \mu = 2, \hspace{0.1cm}a_2 = -1\text{:}\hspace{0.55cm} S (f = 10\,\,{\rm{kHz}}) \hspace{0.15cm}\underline {= -1\,\,{\rm{mV/Hz}}}, | ||
+ | : \mu = 3, \hspace{0.1cm}a_3 = +1\text{:}\hspace{0.55cm} S (f = 15\,\,{\rm{kHz}}) \hspace{0.15cm}\underline {= +1\,\,{\rm{mV/Hz}}}. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | '''(6)''' <u> | + | '''(6)''' <u>Both statements</u> are correct: |
− | * | + | * The orthogonality with respect to the frequency domain has already been shown in subtask '''(5)'''. |
− | * | + | *The orthogonality with respect to the time domain results from the limitation of the individual symbols to the time duration T. |
{{ML-Fuß}} | {{ML-Fuß}} | ||
Line 94: | Line 114: | ||
− | [[Category: | + | [[Category:Modulation Methods: Exercises|^5.5 General Description of OFDM^]] |
Latest revision as of 12:19, 10 January 2022
In this Exercise, we consider an OFDM system with N = 4 carriers.
- For simplicity, we restrict ourselves to a single time interval T.
- The frame duration is also T_{\rm R} = T.
- Accordingly, a guard interval is not used.
With the summary of pulse shaping and modulation by the function
- g_\mu (t) = \left\{ \begin{array}{l} s_0 \cdot {\rm{e}}^{ {\kern 1pt} {\rm{j2 \pi}} {\kern 1pt} \mu f_0 t} \quad 0 \le t < T, \\ 0 \quad \quad \quad \quad \quad {\rm otherwise} \\ \end{array} \right.
the (complex) OFDM transmitted signal in the considered time interval (0 ≤ t < T) results to:
- s (t) = \sum\limits_{\mu = 0}^{N - 1} {a_{\mu} \cdot g_\mu (t )}.
All carrier coefficients a_0, a_1, a_2 and a_3 are either 0 or \pm 1.
The diagram shows the real and imaginary parts of the transmitted signal s(t) for a given combination of a_0, ... , a_3,
which is to be determined in subtask (3).
Notes:
- The exercise belongs to the chapter General Description of OFDM.
- Reference is made in particular to the pages
- OFDM - System consideration in the time domain,
- OFDM - System consideration in the frequency domain with causal basic pulse.
Questions
Solution
- The amplitude s_0 \hspace{0.15cm}\underline { = 5\ \rm V} can be taken directly from the diagram.
(2) Furthermore, the symbol duration T\hspace{0.15cm}\underline { = 0.2\ \rm ms} can be seen from the diagram.
- From this the basic frequency results to f_0 = 1/T = 5\ \rm kHz.
(3) In the example shown, there is only one frequency, namely 3 · f_0.
- From this follows a_0 = a_1 = a_2 \hspace{0.15cm}\underline { = 0} and for the range 0 ≤ t < T:
- s(t) = a_3 \cdot s_0 \cdot {\rm{e}}^{ {\kern 1pt} {\rm{j\hspace{0.04cm}\cdot \hspace{0.04cm}2 \pi}} \hspace{0.04cm}\cdot \hspace{0.04cm} 3 f_0 \hspace{0.04cm}\cdot \hspace{0.04cm} t}= a_3 \cdot s_0 \cdot \cos ({\rm{2 \pi}} \cdot 3 f_0 \cdot t) + \rm{j} \cdot a_3 \cdot s_0 \cdot \sin ({\rm{2 \pi}} \cdot 3 f_0 \cdot t).
- Comparison with the sketch (real part: minus cosine, imaginary part: minus sine) gives the following result:
- a_3\hspace{0.15cm}\underline {= -1}.
(4) The second solution is correct:
- The magnitude function is: |s(t)| = a_3 \cdot s_0 \cdot \sqrt{\cos^2 ({\rm{2 \pi}} \cdot 3 f_0 \cdot t) + \sin^2 ({\rm{2 \pi}} \cdot 3 f_0 \cdot t)}= a_3 \cdot s_0.
- However, this equation is valid only in the range of symbol duration T.
- This means: The OFDM principle works only with a time limit on T.
(5) In general, for the OFDM spectrum:
- S (f) = s_0 \cdot T \cdot \sum\limits_{\mu = 0}^{N - 1} {a_{\mu } \cdot \,} {\rm{sinc}}(T \cdot (f - \mu \cdot f_0 )) \cdot {\rm{e}}^{ - {\rm{j\hspace{0.04cm}\cdot \hspace{0.04cm}2\pi}} \hspace{0.04cm}\cdot \hspace{0.04cm}{T}/{2}\hspace{0.04cm}\cdot \hspace{0.04cm} (f - \mu \cdot f_0 )} .
- The \rm sinc function results from the time limit on T, and the last term in the sum results from the displacement law.
- By the zero crossings of the \rm sinc function at the distance f_0 as well as \rm sinc(0) = 1 one obtains
- S(f = μ · f_0) = s_0 · T · a_μ.
- With s_0 = 5 \ \rm V and T = 0.2 \ \rm ms ⇒ s_0 · T = 1\ \rm mV/Hz it further holds:
- \mu = 0,\hspace{0.1cm} a_0 = 0\text{:}\hspace{0.95cm} S (f = 0) \hspace{0.15cm}\underline {= 0},\hspace{8cm}.
- \mu = 1, \hspace{0.1cm}a_1 = +1\text{:}\hspace{0.55cm} S (f = 5\,\,{\rm{kHz}}) \hspace{0.15cm}\underline {= +1\,\,{\rm{mV/Hz}}},
- \mu = 2, \hspace{0.1cm}a_2 = -1\text{:}\hspace{0.55cm} S (f = 10\,\,{\rm{kHz}}) \hspace{0.15cm}\underline {= -1\,\,{\rm{mV/Hz}}},
- \mu = 3, \hspace{0.1cm}a_3 = +1\text{:}\hspace{0.55cm} S (f = 15\,\,{\rm{kHz}}) \hspace{0.15cm}\underline {= +1\,\,{\rm{mV/Hz}}}.
(6) Both statements are correct:
- The orthogonality with respect to the frequency domain has already been shown in subtask (5).
- The orthogonality with respect to the time domain results from the limitation of the individual symbols to the time duration T.