Difference between revisions of "Aufgaben:Exercise 2.1Z: Which Tables Describe Groups?"

From LNTwww
 
(16 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Einige Grundlagen der Algebra}}
+
{{quiz-Header|Buchseite=Channel_Coding/Some_Basics_of_Algebra}}
  
[[File:P_ID2491__KC_Z_2_1.png|right|frame|Verschiedene Additionstabellen für $q = 3$]]
+
[[File:P_ID2491__KC_Z_2_1.png|right|frame|Addition tables for  $q = 3$]]
In dieser Aufgabe betrachten wir Mengen mit jeweils drei Elementen, allgemein bezeichnet mit $\{z_0, \, z_1, \, z_2\}$. Die Elemente können dabei sein:
+
In this exercise we consider sets of three elements each,  generally denoted by  $\{z_0, \, z_1, \, z_2\}$.  The elements can be:
* Zahlen, beispielsweise $z_0 = 0, \ z_1 = 1, \ z_2 = 2$,
+
* numbers,  for example  $z_0 = 0, \ z_1 = 1, \ z_2 = 2$,
* algebraische Ausdrücke wie $z_0 = A, \ z_1 = B, \ z_2 = C$,
 
* irgendwas, beispielsweise $z_0 = „{\rm Apfel}”, \ z_1 = „{\rm Birne}”, \ z_2 = „{\rm Citrone}”$.
 
  
 +
* algebraic expressions,  such as  $z_0 = A, \ z_1 = B, \ z_2 = C$,
  
Eine Gruppe $(G, \ „+”)$ hinsichtlich der Addition ergibt sich dann, wenn durch eine Tabelle die „$+$”–Verknüpfung zwischen je zwei Elementen so definiert wurde, dass folgende Bedingungen erfüllt sind (die Laufvariablen $i, \ j, \ k$ können dabei jeweils die Werte $0, \ 1, \ 2$ annehmen):
+
* anything,  for example  $z_0 = \ "\hspace{-0.05cm}{\rm apple}\hspace{-0.05cm}", \ z_1 = \ "\hspace{-0.05cm}{\rm pear}\hspace{-0.05cm}", \ z_2 = \ "\hspace{-0.05cm}{\rm lemon}\hspace{-0.05cm}"$.
* Für alle $z_i ∈ G$ und $z_j ∈ G$ gilt $(z_i + z_j) ∈ G$   ⇒   '''Closure–Kriterium'''. Die Bedingung muss auch für $i = j$ erfüllt sein.
 
* Für alle $z_i, \ z_j, \ z_k$ gilt $(z_i + z_j) + z_k = z_i + (z_j + z_k)$   ⇒   '''Assoziativgesetz'''.
 
* Es gibt ein '''hinsichtlich Addition neutrales Element''' $N_{\rm A} ∈ G$, so dass für alle $z_i ∈ G$ gilt:   $z_i + N_{\rm A} = z_i$.
 
* Für alle $z_i ∈ G$ gibt es ein '''hinsichtlich Addition inverses Element''' ${\rm Inv}_{\rm A}(z_i) ∈ G$, so dass $z_i + {\rm Inv}_{\rm A}(z_i) = N_{\rm A}$ gilt.
 
  
  
Wird zudem für alle $z_i &#8712; G$ und $z_j &#8712; G$ noch das '''Kommutativgesetz''' &nbsp; &#8658; &nbsp; $z_i + z_j = z_j + z_i$ erfüllt, so spricht man von einer kommutativen Gruppe oder &ndash; nach dem norwegischen Mathematiker [https://de.wikipedia.org/wiki/Niels_Henrik_Abel Niels Hendrik Abel] &ndash; von einer <b>abelschen Gruppe</b>.
+
A group&nbsp; $(G, \ "+")$&nbsp; with respect to the addition results if by a table the&nbsp; "$+$"&ndash;linkage between two elements each was defined in such a way that the following conditions are fulfilled&nbsp; $($the control variables&nbsp; $i, \ j, \ k$&nbsp; can take the values&nbsp; $0, \ 1, \ 2$&nbsp; respectively):
  
Die Zahlenmenge $\{0, \, 1, \, 2\}$ ist eine abelsche (kommutative) Gruppe. Entsprechend der grün umrandeten Additionstabelle in obiger Grafik ist hier die Addition modulo $3$ zu verstehen. Somit ist auch die Summe stets $0, \ 1$ oder $2$. Das neutrale Element ist $N_{\rm A} = 0$ und das zu $z_i$ inverse Element ${\rm Inv}_{\rm A}(z_i) = -z_i$:
+
* For all&nbsp; $z_i &#8712; G$&nbsp; and&nbsp; $z_j &#8712; G$&nbsp; holds&nbsp; $(z_i + z_j) &#8712; G$ &nbsp; &#8658; &nbsp; "closure criterion".&nbsp; The condition must also be satisfied for&nbsp; $i = j$.
:$${\rm Inv_A}(0) = 0 \hspace{0.05cm},\hspace{0.1cm}{\rm Inv_A}(1) = (-1)\hspace{0.15cm}{\rm mod}\hspace{0.15cm}3 = 2
+
 
\hspace{0.05cm},\hspace{0.1cm}{\rm Inv_A}(2) = (-2)\hspace{0.15cm}{\rm mod}\hspace{0.15cm}3 = 1  
+
* For all&nbsp; $z_i, \ z_j, \ z_k$:&nbsp; $(z_i + z_j) + z_k = z_i + (z_j + z_k)$ &nbsp; &#8658; &nbsp; "Associative law".
 +
 
 +
* There is a&nbsp; "neutral element with respect to addition" &nbsp; &rArr; &nbsp; $N_{\rm A} &#8712; G$&nbsp; such that for all&nbsp; $z_i &#8712; G$&nbsp; holds &nbsp; $z_i + N_{\rm A} = z_i$.
 +
 
 +
* For all $z_i &#8712; G$ there is a&nbsp; "inverse element with respect to addition" &nbsp; &rArr; &nbsp; ${\rm Inv}_{\rm A}(z_i) &#8712; G$&nbsp; such that &nbsp; $z_i + {\rm Inv}_{\rm A}(z_i) = N_{\rm A}$ &nbsp; holds.
 +
 
 +
 
 +
If,&nbsp; in addition,&nbsp; for all&nbsp; $z_i &#8712; G$&nbsp; and&nbsp; $z_j &#8712; G$&nbsp; still the&nbsp; "commutative law" &nbsp; &#8658; &nbsp; $z_i + z_j = z_j + z_i$&nbsp; is satisfied,&nbsp; then it is called a&nbsp; "commutative group" or &ndash; after the Norwegian mathematician&nbsp; [https://en.wikipedia.org/wiki/Niels_Henrik_Abel Niels Hendrik Abel] &ndash; an&nbsp; "Abelian group".
 +
 
 +
The number set&nbsp; $\{0, \, 1, \, 2\}$&nbsp; is an Abelian (commutative) group.  
 +
*According to the green bordered addition table in the above diagram,&nbsp; the addition modulo&nbsp; $3$&nbsp; is to be understood here.  
 +
*So the sum is always&nbsp; $0, \ 1$&nbsp; or&nbsp; $2$.
 +
*The neutral element is&nbsp; $N_{\rm A} = 0$&nbsp; and the&nbsp; to $z_i$&nbsp; inverse element&nbsp; ${\rm Inv}_{\rm A}(z_i) = -z_i$:
 +
:$${\rm Inv_A}(0) = 0 \hspace{0.05cm},\hspace{0.5cm}{\rm Inv_A}(1) = (-1)\hspace{0.15cm}{\rm mod}\hspace{0.15cm}3 = 2
 +
\hspace{0.05cm},\hspace{0.5cm}{\rm Inv_A}(2) = (-2)\hspace{0.15cm}{\rm mod}\hspace{0.15cm}3 = 1  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
In dieser Aufgabe sollen Sie überprüfen, ob auch die beiden weiteren in der obigen Grafik dargestellten Additionstabellen jeweils zu einer algebraischen Gruppe gehören.
+
In this exercise,&nbsp; you are to check whether the two other addition tables shown in the above diagram also each belong to an&nbsp; "algebraic group".
 +
 
  
  
  
  
 +
Hints:
 +
* The exercise belongs to the chapter&nbsp; [[Channel_Coding/Some_Basics_of_Algebra|"Some Basics of Algebra"]].
  
''Hinweise:''
+
* Reference is made in particular to the page&nbsp; [[Channel_Coding/Some_Basics_of_Algebra#Definition_and_examples_of_an_algebraic_group|"Definition and examples of an algebraic group"]].
* Die Aufgabe gehört zum Kapitel [[Kanalcodierung/Einige_Grundlagen_der_Algebra| Einige Grundlagen der Algebra]].
 
* Bezug genommen wird insbesondere auf die Seite [[Kanalcodierung/Einige_Grundlagen_der_Algebra#Definition_und_Beispiele_einer_algebraischen_Gruppe|Definition und Beispiele einer algebraischen Gruppe]].
 
  
  
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Aussagen ergeben sich aus der rot umrandeten Additionstabelle?
+
{What statements result from the&nbsp; <u>red bordered</u>&nbsp; addition table?
 
|type="[]"}
 
|type="[]"}
+ Das neutrale Element ist $N_{\rm A} = {\rm C}$.
+
+ The neutral element is&nbsp; $N_{\rm A} = {\rm C}$.
+ Die Inversen sind $\rm Inv_A(A) = B, \ Inv_A(B) = A, \ Inv_A(C) = C$.
+
+ The inverses are&nbsp; $\rm Inv_A(A) = B, \ \ Inv_A(B) = A, \ \ Inv_A(C) = C$.
+ Es handelt sich hier um eine additive Gruppe $(G, \ +)$.
+
+ This is an additive group&nbsp; $(G, \ +)$.
+ Auch die Bedingung einer abelschen Gruppe wird erfüllt.
+
+ The condition of an Abelian group is also satisfied.
  
{Ändert sich etwas gegenüber Teilaufgabe (1), wenn die Elemente $\rm A, \ B, \ C$ nun für &bdquo;$\rm Apfel$&rdquo;, &bdquo;$\rm Birne$&rdquo; und &bdquo;$\rm Zitrone$&rdquo; stehen?
+
{Does anything change from subtask&nbsp; '''(1)'''&nbsp; if the elements&nbsp; $\rm A, \ \ B, \ \ C$&nbsp; now stand for&nbsp; "$\hspace{-0.01cm}\rm apple\hspace{0.01cm}$",&nbsp; "$\rm pear$"&nbsp; and&nbsp; "$\rm lemon$"&nbsp;?
 
|type="()"}
 
|type="()"}
- Ja.
+
- Yes.
+ Nein.
+
+ No.
  
{Welche Aussagen ergeben sich aus der blau umrandeten Additionstabelle?
+
{What statements result from the&nbsp; <u>blue bordered</u>&nbsp; addition table?
 
|type="[]"}
 
|type="[]"}
+ Das neutrale Element ist $N_{\rm A} = a$.
+
+ The neutral element is&nbsp; $N_{\rm A} = a$.
+ Die additiven Inversen sind $\rm Inv_A(a) = a, \ Inv_A(b) = b, \ Inv_A(c) = c$.
+
+ The additive inverses are&nbsp; $\rm Inv_A(a) = a, \ \ Inv_A(b) = b, \ \ Inv_A(c) = c$.
- Es handelt sich um eine abelsche Gruppe.
+
- This is an Abelian group.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Es treffen <u>alle Aussagen</u> zu:  
+
'''(1)'''&nbsp; <u>All statements</u>&nbsp; are true:  
*Das neutrale Element $N_{\rm A} = {\rm C}$ erkennt man aus der letzten Zeile der Additionstabelle.  
+
*The neutral element&nbsp; $N_{\rm A} = {\rm C}$&nbsp; can be recognized from the last row of the addition table.
*Aus der Bedingung $z_i + {\rm Inv}_{\rm A}(z_i) = N_{\rm A} = {\rm C}$ erhält man:
+
:* $\rm Inv_A(A) = B$, da an der zweiten Stelle der ersten Zeile das einzige $\rm C$ steht,
+
*From the condition&nbsp; $z_i + {\rm Inv}_{\rm A}(z_i) = N_{\rm A} = {\rm C}$&nbsp; one obtains:
:* $\rm Inv_A(B) = A$, da an der ersten Stelle der zweiten Zeile das einzige $\rm C$ steht,
+
:* $\rm Inv_A(A) = B$,&nbsp; since the second position of the first row contains the only&nbsp; $\rm C$,
:* $\rm Inv_A(C) = C$, da an der letzten Stelle der dritten Zeile das einzige $\rm C$ steht.
+
:* $\rm Inv_A(B) = A$,&nbsp; since the first position of the second row is the only&nbsp; $\rm C$,
*Das Assoziativgesetz überprüfen wir (unzulässigerweise) nur an einem einzigen Beispiel. Durch zweimalige Anwendung der Additionstabelle erhält man beispielsweise $\rm (A + B) + C = C + C=C$. Das gleiche Ergebnis ergibt sich für $\rm A + (B + C) = A + B = C$.
+
:* $\rm Inv_A(C) = C$,&nbsp; since in the last position of the third row is the only&nbsp; $\rm C$.
 +
*We check the&nbsp; "associative law"&nbsp; (improperly)&nbsp; on only one example.&nbsp; By applying the addition table twice,&nbsp; we get e.g.&nbsp; $\rm (A + B) + C = C + C=C$.&nbsp; The same result is obtained for&nbsp; $\rm A + (B + C) = A + B = C$.
 +
 
 +
 
 +
Thus all conditions for an additive group are fulfilled.&nbsp; The validity of the commutative law can be seen from the symmetry of the addition table to the diagonal.&nbsp; Thus the group is also&nbsp; "Abelian".  
  
 +
By the way:&nbsp; The&nbsp; (red)&nbsp; addition table results from the green table by renaming&nbsp; $0 &#8594 \rm C, \ 1 &#8594 A$ and $2 &#8594 \rm B$&nbsp; and&nbsp; then&nbsp; $\rm ABC$&nbsp; sorting.
  
Damit sind alle Bedingungen für eine additive Gruppe erfüllt. Die Gültigkeit des Kommutativgesetzes erkennt man aus der Symmetrie der Additionstabelle zur Diagonalen. Damit ist die Gruppe auch &bdquo;abelsch&rdquo;.
 
  
''Übrigens:'' Die (rote) Additionstabelle ergibt sich aus der grünen Tabelle durch die Umbenennungen $0 &#8594 \rm C, \ 1 &#8594 A$ und $2 &#8594 \rm B$ und anschließender $\rm ABC$&ndash;Sortierung.
 
  
 +
'''(2)'''&nbsp; Correct is&nbsp; <u>No</u>:
 +
*All statements are determined by the addition table alone and not by the meaning of the elements.
 +
 +
*Even the author of this exercise,&nbsp; however,&nbsp; cannot justify more deeply why the modulo&ndash;3 addition of&nbsp; "$\rm apple$"&nbsp; and&nbsp; "$\rm pear$"&nbsp; yields the neutral element&nbsp; "$\rm lemon$".
  
'''(2)'''&nbsp; Richtig ist <u>Nein</u>:
 
*Alle Aussagen sind allein durch die Additionstabelle bestimmt und nicht durch die Bedeutung der Elemente.
 
*Auch der Autor dieser Aufgabe kann allerdings nicht tiefergehend begründen, warum die Modulo&ndash;3&ndash;Addition von &bdquo;$\rm Apfel$&rdquo; und &bdquo;$\rm Birne$&rdquo; das neutrale Element &bdquo;$\rm Citrone$&rdquo; ergibt.
 
  
  
'''(3)'''&nbsp; Die <u>beiden ersten Aussagen</u> treffen zu im Gegensatz zur letzten:  
+
'''(3)'''&nbsp; The&nbsp; <u>first two statements</u>&nbsp; are true in contrast to the last one:  
*Das Kommutativgesetz wird verletzt (keine Symmetrie bezüglich der Tabellendiagonalen). Beispielsweise gilt:
+
*The commutative law is violated&nbsp; (no symmetry with respect to the table diagonals).&nbsp; For example:
 
:$$ {\rm a} + {\rm b} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm b} \hspace{0.5cm} \ne \hspace{0.5cm} {\rm b} + {\rm a} = {\rm c}  \hspace{0.05cm},$$
 
:$$ {\rm a} + {\rm b} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm b} \hspace{0.5cm} \ne \hspace{0.5cm} {\rm b} + {\rm a} = {\rm c}  \hspace{0.05cm},$$
 
:$${\rm a} + {\rm c} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm c} \hspace{0.5cm} \ne \hspace{0.5cm} {\rm c} + {\rm a} = {\rm b}  \hspace{0.05cm},$$
 
:$${\rm a} + {\rm c} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm c} \hspace{0.5cm} \ne \hspace{0.5cm} {\rm c} + {\rm a} = {\rm b}  \hspace{0.05cm},$$
 
:$${\rm b} + {\rm c} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm b} \hspace{0.5cm} \ne \hspace{0.5cm} {\rm c} + {\rm b} = {\rm c}  \hspace{0.05cm}  \hspace{0.05cm}.$$
 
:$${\rm b} + {\rm c} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm b} \hspace{0.5cm} \ne \hspace{0.5cm} {\rm c} + {\rm b} = {\rm c}  \hspace{0.05cm}  \hspace{0.05cm}.$$
  
*Damit ist die hier betrachtete Verknüpfung keine abelsche (kommutative) Gruppe. Mehr noch, wegen der Verletzung des Assoziativgesetzes liegen hier bereits die Grundvoraussetzungen einer Gruppe nicht vor. Beispielsweise gilt:
+
*Thus the linkage considered here is not an Abelian&nbsp; (commutative)&nbsp; group.
 +
 +
*Moreover,&nbsp; because of the violation of the&nbsp; "associative law",&nbsp; already the basic conditions of a group are not present here.&nbsp; For example:
 
:$${\rm c} + ({\rm c} + {\rm c}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm c} + {\rm a} = {\rm b} \hspace{0.05cm},$$
 
:$${\rm c} + ({\rm c} + {\rm c}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm c} + {\rm a} = {\rm b} \hspace{0.05cm},$$
 
:$$({\rm c} + {\rm c}) + {\rm c}  \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm a} + {\rm c} = {\rm c}  \hspace{0.05cm}.$$
 
:$$({\rm c} + {\rm c}) + {\rm c}  \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm a} + {\rm c} = {\rm c}  \hspace{0.05cm}.$$
Line 89: Line 105:
  
  
[[Category:Aufgaben zu  Kanalcodierung|^2.1 Einige Grundlagen der Algebra^]]
+
[[Category:Channel Coding: Exercises|^2.1 Some Basics of Algebra^]]

Latest revision as of 15:23, 27 August 2022

Addition tables for  $q = 3$

In this exercise we consider sets of three elements each,  generally denoted by  $\{z_0, \, z_1, \, z_2\}$.  The elements can be:

  • numbers,  for example  $z_0 = 0, \ z_1 = 1, \ z_2 = 2$,
  • algebraic expressions,  such as  $z_0 = A, \ z_1 = B, \ z_2 = C$,
  • anything,  for example  $z_0 = \ "\hspace{-0.05cm}{\rm apple}\hspace{-0.05cm}", \ z_1 = \ "\hspace{-0.05cm}{\rm pear}\hspace{-0.05cm}", \ z_2 = \ "\hspace{-0.05cm}{\rm lemon}\hspace{-0.05cm}"$.


A group  $(G, \ "+")$  with respect to the addition results if by a table the  "$+$"–linkage between two elements each was defined in such a way that the following conditions are fulfilled  $($the control variables  $i, \ j, \ k$  can take the values  $0, \ 1, \ 2$  respectively):

  • For all  $z_i ∈ G$  and  $z_j ∈ G$  holds  $(z_i + z_j) ∈ G$   ⇒   "closure criterion".  The condition must also be satisfied for  $i = j$.
  • For all  $z_i, \ z_j, \ z_k$:  $(z_i + z_j) + z_k = z_i + (z_j + z_k)$   ⇒   "Associative law".
  • There is a  "neutral element with respect to addition"   ⇒   $N_{\rm A} ∈ G$  such that for all  $z_i ∈ G$  holds   $z_i + N_{\rm A} = z_i$.
  • For all $z_i ∈ G$ there is a  "inverse element with respect to addition"   ⇒   ${\rm Inv}_{\rm A}(z_i) ∈ G$  such that   $z_i + {\rm Inv}_{\rm A}(z_i) = N_{\rm A}$   holds.


If,  in addition,  for all  $z_i ∈ G$  and  $z_j ∈ G$  still the  "commutative law"   ⇒   $z_i + z_j = z_j + z_i$  is satisfied,  then it is called a  "commutative group" or – after the Norwegian mathematician  Niels Hendrik Abel – an  "Abelian group".

The number set  $\{0, \, 1, \, 2\}$  is an Abelian (commutative) group.

  • According to the green bordered addition table in the above diagram,  the addition modulo  $3$  is to be understood here.
  • So the sum is always  $0, \ 1$  or  $2$.
  • The neutral element is  $N_{\rm A} = 0$  and the  to $z_i$  inverse element  ${\rm Inv}_{\rm A}(z_i) = -z_i$:
$${\rm Inv_A}(0) = 0 \hspace{0.05cm},\hspace{0.5cm}{\rm Inv_A}(1) = (-1)\hspace{0.15cm}{\rm mod}\hspace{0.15cm}3 = 2 \hspace{0.05cm},\hspace{0.5cm}{\rm Inv_A}(2) = (-2)\hspace{0.15cm}{\rm mod}\hspace{0.15cm}3 = 1 \hspace{0.05cm}.$$

In this exercise,  you are to check whether the two other addition tables shown in the above diagram also each belong to an  "algebraic group".



Hints:



Questions

1

What statements result from the  red bordered  addition table?

The neutral element is  $N_{\rm A} = {\rm C}$.
The inverses are  $\rm Inv_A(A) = B, \ \ Inv_A(B) = A, \ \ Inv_A(C) = C$.
This is an additive group  $(G, \ +)$.
The condition of an Abelian group is also satisfied.

2

Does anything change from subtask  (1)  if the elements  $\rm A, \ \ B, \ \ C$  now stand for  "$\hspace{-0.01cm}\rm apple\hspace{0.01cm}$",  "$\rm pear$"  and  "$\rm lemon$" ?

Yes.
No.

3

What statements result from the  blue bordered  addition table?

The neutral element is  $N_{\rm A} = a$.
The additive inverses are  $\rm Inv_A(a) = a, \ \ Inv_A(b) = b, \ \ Inv_A(c) = c$.
This is an Abelian group.


Solution

(1)  All statements  are true:

  • The neutral element  $N_{\rm A} = {\rm C}$  can be recognized from the last row of the addition table.
  • From the condition  $z_i + {\rm Inv}_{\rm A}(z_i) = N_{\rm A} = {\rm C}$  one obtains:
  • $\rm Inv_A(A) = B$,  since the second position of the first row contains the only  $\rm C$,
  • $\rm Inv_A(B) = A$,  since the first position of the second row is the only  $\rm C$,
  • $\rm Inv_A(C) = C$,  since in the last position of the third row is the only  $\rm C$.
  • We check the  "associative law"  (improperly)  on only one example.  By applying the addition table twice,  we get e.g.  $\rm (A + B) + C = C + C=C$.  The same result is obtained for  $\rm A + (B + C) = A + B = C$.


Thus all conditions for an additive group are fulfilled.  The validity of the commutative law can be seen from the symmetry of the addition table to the diagonal.  Thus the group is also  "Abelian".

By the way:  The  (red)  addition table results from the green table by renaming  $0 → \rm C, \ 1 → A$ and $2 → \rm B$  and  then  $\rm ABC$  sorting.


(2)  Correct is  No:

  • All statements are determined by the addition table alone and not by the meaning of the elements.
  • Even the author of this exercise,  however,  cannot justify more deeply why the modulo–3 addition of  "$\rm apple$"  and  "$\rm pear$"  yields the neutral element  "$\rm lemon$".


(3)  The  first two statements  are true in contrast to the last one:

  • The commutative law is violated  (no symmetry with respect to the table diagonals).  For example:
$$ {\rm a} + {\rm b} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm b} \hspace{0.5cm} \ne \hspace{0.5cm} {\rm b} + {\rm a} = {\rm c} \hspace{0.05cm},$$
$${\rm a} + {\rm c} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm c} \hspace{0.5cm} \ne \hspace{0.5cm} {\rm c} + {\rm a} = {\rm b} \hspace{0.05cm},$$
$${\rm b} + {\rm c} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm b} \hspace{0.5cm} \ne \hspace{0.5cm} {\rm c} + {\rm b} = {\rm c} \hspace{0.05cm} \hspace{0.05cm}.$$
  • Thus the linkage considered here is not an Abelian  (commutative)  group.
  • Moreover,  because of the violation of the  "associative law",  already the basic conditions of a group are not present here.  For example:
$${\rm c} + ({\rm c} + {\rm c}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm c} + {\rm a} = {\rm b} \hspace{0.05cm},$$
$$({\rm c} + {\rm c}) + {\rm c} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm a} + {\rm c} = {\rm c} \hspace{0.05cm}.$$