Difference between revisions of "Applets:Linear Distortions of Periodic Signals"

From LNTwww
 
(87 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{LntAppletLink|verzerrungen}}  
+
{{LntAppletLink|physAnSignal_en}}         [https://en.lntwww.de/Applets:Physical_Signal_%26_Analytic_Signal '''English Applet with English WIKI description''']
  
==Applet description==
+
==Applet Description==
 
<br>
 
<br>
This applet showcases the effects of linear distortions(attenuation distortions and phase distortions) with
+
This applet illustrates the effects of linear distortions (attenuation distortions and phase distortions) with
[[File:Modell.png|right|frame|Bedeutung der verwendeten Signale]]
+
[[File:Modell_version2.png|right|frame|Meanings of the  used signals]]
*the input signal $x(t)$ &nbsp; &rArr; &nbsp; Power $P_x$:
+
*the input signal $x(t)$ &nbsp; &rArr; &nbsp; power $P_x$:
 
:$$x(t) = x_1(t) + x_2(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)+A_2\cdot \cos\left(2\pi f_2\cdot t- \varphi_2\right), $$
 
:$$x(t) = x_1(t) + x_2(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)+A_2\cdot \cos\left(2\pi f_2\cdot t- \varphi_2\right), $$
*the output signal $y(t)$ &nbsp; &rArr; &nbsp; output signal $P_y$:
+
*the output signal $y(t)$ &nbsp; &rArr; &nbsp; power $P_y$:
 
:$$y(t) = \alpha_1 \cdot  x_1(t-\tau_1)  +  \alpha_2  \cdot  x_2(t-\tau_2),$$
 
:$$y(t) = \alpha_1 \cdot  x_1(t-\tau_1)  +  \alpha_2  \cdot  x_2(t-\tau_2),$$
*the matching output signal $z(t)$ &nbsp; &rArr; &nbsp; Power $P_z$:
+
*the matched output signal $z(t)$ &nbsp; &rArr; &nbsp; power $P_z$:
 
:$$z(t) = k_{\rm M} \cdot  y(t-\tau_{\rm M})  +  \alpha_2  \cdot  x_2(t-\tau_2),$$
 
:$$z(t) = k_{\rm M} \cdot  y(t-\tau_{\rm M})  +  \alpha_2  \cdot  x_2(t-\tau_2),$$
*the differential signal &nbsp;  $\varepsilon(t) = z(t) - x(t)$ &nbsp; &rArr; &nbsp; Power $P_\varepsilon$.  
+
*the difference signal &nbsp;  $\varepsilon(t) = z(t) - x(t)$ &nbsp; &rArr; &nbsp; power $P_\varepsilon$.  
  
  
The adjustment of the output signal's  amplitude and phase $y(t)$ &nbsp; &rArr; &nbsp; &bdquo;Matching&rdquo;  allows for a differentiation between
+
The next block in the model above is ''Matching'': The output signal $y(t)$ is adjusted in amplitude and phase with equal variables $k_{\rm M}$ and $\tau_{\rm M}$ for all frequencies which means that this is not a frequency-dependent equalization. Using the signal $z(t)$, one can differentiate between:
*attenuation distortion and frequency&ndash;independant attenuation, as well as
+
*attenuation distortion and frequency&ndash;independent attenuation, as well as
*phase distortion and pure running time.
+
*phase distortion and frequency&ndash;independent delay.
  
  
The Distortion Power $P_{\rm D}$ is used to measure the strength of the linear distortion.
+
The ''Distortion Power'' $P_{\rm D}$ is used to measure the strength of the linear distortion and is defined as:
 +
:$$P_{\rm D} = \min_{k_{\rm M},  \ \tau_{\rm M}} P_\varepsilon.$$
  
==Theoretischer Hintergrund==
+
 
 +
==Theoretical Background==
 
<br>
 
<br>
Unter '''Verzerrungen''' (englisch: ''Distortions'') versteht man allgemein die unerwünschte deterministische Veränderungen eines Nachrichtensignals durch ein Übertragungssystem. Sie sind bei vielen Nachrichtensystemen neben den stochastischen Störungen (Rauschen, Nebensprechen, etc.) eine entscheidende Begrenzung für die Übertragungsqualität und die Übertragungsrate.
+
Distortions refer to generally unwanted alterations of a message signal through a transmission system. Together with the strong stochastic effects (noise, crosstalk, etc.), they are a crucial limitation for the quality and rate of transmission.
  
Ebenso wie man die &bdquo;Stärke&rdquo; von Rauschen durch
+
Just as the intensity of noise can be assessed through
*die Rauschleistung (englisch: ''Noise Power'') $P_{\rm N}$ und
+
*the ''Noise Power'' $P_{\rm N}$ and
*das Signal&ndash;zu&ndash;Rauschleistungsverhältnis  (englisch: ''Signal&ndash;to&ndash;Noise Ratio'', SNR) $\rho_{\rm N}$  
+
*the ''Signal&ndash;to&ndash;Noise Ratio'' (SNR) $\rho_{\rm N}$,
  
  
bewertet, verwendet man zur Quantifizierung der Verzerrungen
+
distortions can be quantified through
  
*die Verzerrungsleistung (englisch: ''Distortion Power'') $P_{\rm D}$ und
+
*the ''Distortion Power'' $P_{\rm D}$ and
*das Signal&ndash;zu&ndash;Verzerrungsleistungsverhältnis  (englisch: ''Signal&ndash;to&ndash;Distortion Ratio'', SDR)
+
*the ''Signal&ndash;to&ndash;Distortion Ratio'' (SDR)
:$$\rho_{\rm D}=\frac{\rm Signalleistung}{\rm Verzerrungsleistung} = \frac{P_x}{P_{\rm D} }.$$
+
:$$\rho_{\rm D}=\frac{\rm Signal \ Power}{\rm Distortion \ Power} = \frac{P_x}{P_{\rm D} }.$$
 
   
 
   
  
=== Lineare und nichtlineare Verzerrungen ===
+
=== Linear and Nonlinear Distortions ===
 
<br>
 
<br>
Man unterscheidet zwischen linearen und nichtlinearen Verzerrungen:
+
A distinction is made between linear and nonlinear distortions:
*'''Nichtlineare Verzerrungen''' gibt es, wenn zu allen Zeiten $t$ zwischen dem Signalwert $x = x(t)$ am Eingang und dem Ausgangssignalwert $y = y(t)$ der nichtlineare Zusammenhang $y = g(x) \ne {\rm const.}  \cdot x$ besteht, wobei $y = g(x)$ als die nichtlineare Kennlinie des Systems bezeichnet. Legt man an den Eingang ein Cosinussignal der Freuenz $f_0$ an, so beinhaltet das Ausgangssignalwert neben $f_0$ auch Vielfach hiervon &nbsp; &rArr; &nbsp; Oberwellen. Durch nichtlineare Verzerrungen entstehen also neue Frequenzen.
+
*'''Nonlinear distortions''' occur, if at all times $t$ the nonlinear correlation $y = g(x) \ne {\rm const.}  \cdot x$ exists between the signal values $x = x(t)$ at the input and $y = y(t)$ at the output, whereby  $y = g(x)$ is defined as the system's nonlinear characteristic. By creating a cosine signal at the input with frequency $f_0$ the output signal includes $f_0$, as well as  multiple harmonic waves. We conclude that new frequencies arise through nonlinear distortion.
 
    
 
    
[[File:LZI_T_2_2_S3_vers2.png|center|frame|Zur Verdeutlichung  nichtlinearer Verzerrungen |class=fit]]
+
[[File:EN_LZI_T_2_2_S3_v2.png|center|frame|For clarification of nonlinear distortions |class=fit]]
  
[[File:P_ID899__LZI_T_2_3_S1_neu.png|right |frame| Beschreibung eines linearen Systems|class=fit]]
+
[[File:P_ID899__LZI_T_2_3_S1_neu.png|right |frame| Description of a linear system|class=fit]]
*'''Lineare Verzerrungen''' entstehen dann, wenn der Übertragungskanal durch einen Frequenzgang $H(f) \ne \rm const.$ charakterisiert wird. Dann werden unterschiedliche Frequenzen unterschiedlich gedämpft und unterschiedlich verzögert. Charakteristisch hierfür ist, dass zwar Frequenzen verschwinden können (zum Beispiel durch einen Tiefpass oder einen Hochpass), dass aber keine neuen Frequenzen entstehen.
+
*'''Linear distortions''' occur, if the transmission channel is characterized by a frequency response $H(f) \ne \rm const.$ Various frequencies are attenuated and delayed differently. Characteristic of this is that although frequencies can disappear (for example, through a low&ndash;pass, a high&ndash;pass, or a band&ndash;pass), no new frequencies can arise.  
  
In diesem Applet werden nur lineare Verzerrungen betrachtet.
 
  
 +
In this applet only linear distortions are considered.
  
=== Beschreibungsformen für den  Frequenzgang ===
+
 
 +
=== Description Forms for the Frequency Response ===
 
<br>
 
<br>
Der im Allgemeinen komplexe Frequenzgang kann auch wie folgt dargestellt werden:  
+
The generally complex valued frequency response can be represented as follows:  
 
:$$H(f) = |H(f)| \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot
 
:$$H(f) = |H(f)| \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot
 
\hspace{0.05cm} b(f)} = {\rm e}^{-a(f)}\cdot {\rm e}^{-{\rm j}
 
\hspace{0.05cm} b(f)} = {\rm e}^{-a(f)}\cdot {\rm e}^{-{\rm j}
 
\hspace{0.05cm} \cdot \hspace{0.05cm} b(f)}.$$
 
\hspace{0.05cm} \cdot \hspace{0.05cm} b(f)}.$$
  
Daraus ergeben sich folgende Beschreibungsgrößen:  
+
This results in the following description variables:  
*Der Betrag $|H(f)|$ wird als '''Amplitudengang''' und in logarithmierter Form als '''Dämpfungsverlauf''' bezeichnet:  
+
*The absolute value $|H(f)|$ is called '''amplitude response''' and in logarithmic form '''attenuation function''':  
 
:$$a(f) = - \ln |H(f)|\hspace{0.2cm}{\rm in \hspace{0.1cm}Neper
 
:$$a(f) = - \ln |H(f)|\hspace{0.2cm}{\rm in \hspace{0.1cm}Neper
 
\hspace{0.1cm}(Np) } = - 20 \cdot \lg |H(f)|\hspace{0.2cm}{\rm in
 
\hspace{0.1cm}(Np) } = - 20 \cdot \lg |H(f)|\hspace{0.2cm}{\rm in
\hspace{0.1cm}Dezibel \hspace{0.1cm}(dB) }.$$
+
\hspace{0.1cm}Decibel \hspace{0.1cm}(dB) }.$$
*Der '''Phasengang''' $b(f)$ gibt den negativen frequenzabhängigen Winkel von $H(f)$ in der komplexen Ebene an, bezogen auf die reelle Achse:  
+
*The '''phase function''' $b(f)$ indicates the negative frequency&ndash;dependent angle of $H(f)$ in the complex plane based on the real axis:  
 
:$$b(f) = - {\rm arc} \hspace{0.1cm}H(f) \hspace{0.2cm}{\rm in
 
:$$b(f) = - {\rm arc} \hspace{0.1cm}H(f) \hspace{0.2cm}{\rm in
\hspace{0.1cm}Radian \hspace{0.1cm}(rad)}.$$
+
\hspace{0.1cm}Radians \hspace{0.1cm}(rad)}.$$
  
=== Tiefpass <i>N</i>&ndash;Ordnung  ===
+
 
 +
=== Low&ndash;pass of Order <i>N</i> ===
 
<br>
 
<br>
Der Frequenzgang eines realisierbaren Tiefpasses <i>N</i>&ndash;Ordnung lautet:
+
[[File:Tiefpass_version2.png|right|frame|Attenuation function $a(f)$ and phase function $b(f)$ of a low&ndash;Pass of order $N$]]
 +
The frequency response of a realizable low&ndash;pass (LP) of order $N$ is:
 
:$$H(f) = \left [\frac{1}{1 + {\rm j}\cdot f/f_0 }\right ]^N\hspace{0.05cm}.$$
 
:$$H(f) = \left [\frac{1}{1 + {\rm j}\cdot f/f_0 }\right ]^N\hspace{0.05cm}.$$
Ein einfacher RC&ndash;Tiefpass hat diesen Verlauf mit $N=1$. Damit erhält man
+
For example the RC low&ndash;pass is a first order low&ndash;pass. Consequently we can obtain
*den Dämpfungsverlauf:
+
*the attenuation function:
 
:$$a(f) =N/2 \cdot \ln  [1+( f/f_0)^2] \hspace{0.05cm},$$
 
:$$a(f) =N/2 \cdot \ln  [1+( f/f_0)^2] \hspace{0.05cm},$$
*den Phasenverlauf:
+
*the phase function:
 
:$$b(f) =N \cdot \arctan( f/f_0) \hspace{0.05cm},$$
 
:$$b(f) =N \cdot \arctan( f/f_0) \hspace{0.05cm},$$
*den Dämpfungsfaktor für die Frequenz $f=f_i$:
+
*the attenuation factor for the frequency $f=f_i$:
:$$\alpha_i =|H(f = f_i)| =  [1+( f/f_0)^2]^{N/2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm}  y(t)= \alpha_i  \cdot A_i\cdot \cos(2\pi f_i t)\hspace{0.05cm},$$
+
:$$\alpha_i =|H(f = f_i)| =  [1+( f_i/f_0)^2]^{-N/2}$$
*die Phasenlaufzeit für die Frequenz $f=f_i$:
+
:$$\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm}  y(t)= \alpha_i  \cdot A_i\cdot \cos(2\pi f_i t)\hspace{0.05cm},$$
:$$\tau_i =\frac{b(f_i)}{2 \pi f_i} = \frac{N \cdot \arctan( f_i/f_0)}{2 \pi f_i} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm}  y(t)=A_i\cdot \cos(2\pi f_i (t- \tau_i))\hspace{0.05cm},$$
+
*the phase delay for the frequency $f=f_i$:
 +
:$$\tau_i =\frac{b(f_i)}{2 \pi f_i} = \frac{N \cdot \arctan( f_i/f_0)}{2 \pi f_i}$$
 +
:$$\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm}  y(t)=A_i\cdot \cos(2\pi f_i (t- \tau_i))\hspace{0.05cm}.$$
  
[[File:Tiefpass.png|center|frame|Dämpfungsverlauf und Phasenverlauf eines Tiefpasses <i>N</i>&ndash;Ordnung]]
 
  
=== Hochpass <i>N</i>&ndash;Ordnung  ===
+
=== High&ndash;pass of Order <i>N</i> ===
 
<br>
 
<br>
Der Frequenzgang eines realisierbaren Hochpasses <i>N</i>&ndash;Ordnung lautet:
+
[[File:Hochpass_version2.png|right|frame|Attenuation function $a(f)$ and phase function $b(f)$ of a high&ndash;pass of order $N$]]
 +
The frequency response of a realizable high&ndash;pass  (HP) of order $N$ is:
 
:$$H(f) = \left [\frac{ {\rm j}\cdot f/f_0 }{1 + {\rm j}\cdot f/f_0 }\right ]^N\hspace{0.05cm}.$$
 
:$$H(f) = \left [\frac{ {\rm j}\cdot f/f_0 }{1 + {\rm j}\cdot f/f_0 }\right ]^N\hspace{0.05cm}.$$
Ein einfacher LC&ndash;Tiefpass hat diesen Verlauf mit $N=1$. Damit erhält man
+
For example the LC high-pass is a first order high-pass. Consequently we can obtain 
*den Dämpfungsverlauf:
+
*the attenuation function:
 
:$$a(f) =N/2 \cdot \ln  [1+( f_0/f)^2] \hspace{0.05cm},$$
 
:$$a(f) =N/2 \cdot \ln  [1+( f_0/f)^2] \hspace{0.05cm},$$
*den Phasenverlauf:
+
*the phase function:
 
:$$b(f) =-N \cdot \arctan( f_0/f) \hspace{0.05cm},$$
 
:$$b(f) =-N \cdot \arctan( f_0/f) \hspace{0.05cm},$$
*den Dämpfungsfaktor für die Frequenz $f=f_i$:
+
*the attenuation factor for the frequency $f=f_i$:
:$$\alpha_i =|H(f = f_i)| =  [1+( f_0/f)^2]^{N/2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm}  y(t)= \alpha_i  \cdot A_i\cdot \cos(2\pi f_i t)\hspace{0.05cm},$$
+
:$$\alpha_i =|H(f = f_i)| =  [1+( f_0/f_i)^2]^{-N/2}$$
*die Phasenlaufzeit für die Frequenz $f=f_i$:
+
:$$\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm}  y(t)= \alpha_i  \cdot A_i\cdot \cos(2\pi f_i t)\hspace{0.05cm},$$
:$$\tau_i =\frac{b(f_i)}{2\pif_i} = \frac{-N \cdot \arctan( f_0/f_i)}{2\pif_i} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm}  y(t)=A_i\cdot \cos(2\pi f_i (t- \tau_i))\hspace{0.05cm},$$
+
*the phase delay for the frequency $f=f_i$:
[[File:Hochpass.png|center|frame|Dämpfungsverlauf und Phasenverlauf eines Hochpasses <i>N</i>&ndash;Ordnung]]
+
:$$\tau_i =\frac{b(f_i)}{2\pi f_i} = \frac{-N \cdot \arctan( f_0/f_i)}{2\pi f_i}$$
 +
:$$\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm}  y(t)=A_i\cdot \cos(2\pi f_i (t- \tau_i))\hspace{0.05cm}.$$
  
=== Laufzeiten bei Tiefpass und Hochpass  ===
 
  
Mache ich noch
+
[[File:Verzerrungen_HP_TP_1_englisch.png|right|frame|Phase function $b(f)$ of high&ndash;pass and low&ndash;pass]]
 +
{{GraueBox|TEXT= 
 +
$\text{Example:}$&nbsp;
 +
This graphic shows the phase function $b(f)$ with the cutoff frequency $f_0 = 1\ \rm kHz$ and order $N=1$
 +
* of a low&ndash;pass (green curve),
 +
* of a high&ndash;pass (violet curve).
  
=== Dämpfungsverzerrungen und  Phasenverzerrungen  ===
 
  
Überarbeite ich noch
+
The input signal is sinusoidal with frequency $f_{\rm S} = 1.25\ {\rm kHz}$ whereby this signal is only turned on at $t=0$:
  
Lineare Verzerrungen treten üblicherweise in Form von
+
:$$x(t) = \left\{ \begin{array}{l} \hspace{0.75cm}0  \\ \sin(2\pi \cdot f_{\rm S} \cdot t ) \\ \end{array} \right.\quad\begin{array}{l} (t < 0), \\  (t>0). \\ \end{array}$$
* Dämpfungsverzerrungen $\alpha_i$ und
 
* Phasenverzerrungen $\tau_i$ auf.
 
Ist $\alpha_1 \ne \alpha_2$ und $\tau_1 = \tau_2$, so liegen ausschließlich Dämpfungsverzerrungen vor.
 
Dagegen führt $\alpha_1 = \alpha_2$ und $\tau_1 \ne \tau_2$ zu reinen Phasenverzerrungen.<br />
 
Ein Signal $y(t)$ ist gegenüber $x(t)$ unverzerrt, wenn $\alpha_1 = \alpha_2$ und $\tau_1 und \tau_2$ gilt.
 
  
 +
The left graphic shows the signal $x(t)$. The dashed line marks the first zero at  $t = T_0 = 0.8\ {\rm ms}$. The other two graphics show the output signals $y_{\rm LP}(t)$ und $y_{\rm HP}(t)$ of  low&ndash;pass  and high&ndash;pass, whereby the change in amplitude was balanced in both cases.
  
 +
[[File:Verzerrungen_HP_TP_2_version2.png|center|frame|Input signal $x(t)$  (enframed in blue) as well as output signals  $y_{\rm LP}(t)$ &rArr; &nbsp; green and $y_{\rm HP}(t)$ &rArr; &nbsp; magenta]]
  
 +
*The first zero of the signal $y_{\rm LP}(t)$ after the low&ndash;pass is delayed by $\tau_{\rm LP} = 0.9/(2\pi) \cdot T_0 \approx 0.115 \ {\rm ms}$ compared to the first zero of $x(t)$ &nbsp; &rArr; &nbsp; marked with green arrow, whereby $b_{\rm LP}(f/f_{\rm S} = 0.9 \ {\rm rad})$ was considered.
 +
* In contrast, the phase delay of the high&ndash;pass is negative:  $\tau_{\rm HP} = -0.67/(2\pi) \cdot T_0 \approx -0.085 \ {\rm ms}$  and therefore the first zero of $y_{\rm HP}(t)$ occurs before the dashed line.
 +
*Following this transient response, in both cases the zero crossings again come in the raster of the period duration $T_0 = 0.8 \ {\rm ms}.$
  
==Vorschlag für die Versuchsdurchführung==
+
 
 +
''Remark:'' The shown signals were created using the interactive applet [[Applets:Kausale_Systeme_-_Laplacetransformation|"Causal systems &ndash; Laplace transform"]]. }}
 +
 
 +
=== Attenuation and Phase Distortions  ===
 
<br>
 
<br>
BlaBla
+
[[File:P_ID900__LZI_T_2_3_S2_neu.png|frame| Requirements for a non&ndash;distorting channel|right|class=fit]]
 +
The adjacent figure shows
 +
*the even attenuation function $a(f)$ &nbsp; &rArr; &nbsp; $a(-f) = a(f)$, and
 +
*the uneven  function curve $b(f)$ &nbsp; &rArr; &nbsp; $b(-f) = -b(- f)$
 +
 
 +
 
 +
of a non&ndash;distorting channel. One can see:
 +
*In a distortion&ndash;free system the attenuation function $a(f)$ must be constant between$f_{\rm U}$ and $f_{\rm O}$ around the carrier frequency $f_{\rm T}$, where the input signal  exists &nbsp; &rArr; &nbsp;  $X(f) \ne 0$.
 +
*From the specified constant attenuation value $6 \ \rm dB$ follows for the amplitude response $|H(f)| = 0.5$ &nbsp; &rArr; &nbsp; the signal values of all frequencies are thus halved by the system &nbsp; &rArr; &nbsp; '''no attenuation distortions'''.
 +
*In addition, in such a system,  the phase function $b(f)$ between $f_{\rm U}$ and $f_{\rm O}$ must increase linearly with the frequency. As a result, all frequency components are delayed by the same phase delay $τ$ &nbsp; &rArr; &nbsp;  '''no phase distortion'''.
 +
*The delay $τ$ is fixed by the slope of $b(f)$. The phase function $b(f) \equiv 0$ would result in a delay&ndash;less system  &nbsp; &rArr; &nbsp; $τ = 0$.
 +
 
 +
 
 +
The following summary considers that &ndash; in this applet &ndash; the input signal is always the sum of two harmonic oscillations,
 +
:$$x(t) = x_1(t) + x_2(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)+A_2\cdot \cos\left(2\pi f_2\cdot t- \varphi_2\right), $$
 +
and therefore the channel influence is fully described by the attenuation factors $\alpha_1$ and $\alpha_2$ as well as the phase delays  $\tau_1$ and $\tau_2$:
 +
:$$y(t) = \alpha_1 \cdot  x_1(t-\tau_1)  +  \alpha_2  \cdot  x_2(t-\tau_2).$$
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Summary:}$&nbsp;
 +
*A signal $y(t)$ is only '''distortion&ndash;free''' compared to $x(t)$ if $\alpha_1 = \alpha_2= \alpha$ &nbsp;<u> and </u>&nbsp; $\tau_1 = \tau_2= \tau$ &nbsp; &rArr; &nbsp; $y(t) = \alpha \cdot  x(t-\tau)$.
 +
* '''Attenuation distortions''' occur when  $\alpha_1 \ne \alpha_2$. If $\alpha_1 \ne \alpha_2$ and $\tau_1 = \tau_2$, then there are exclusively attenuation distortions.
 +
* '''Phase distortions''' occur when $\tau_1 \ne \tau_2$. If $\tau_1 \ne \tau_2$ and $\alpha_1 = \alpha_2$, then there are exclusively phase distortions.  }}
 +
 
 +
 
 +
 
 +
 
 +
==Exercises==
 +
[[File:Exercises_verzerrungen.png|right]]
 +
*First choose an exercise number.
 +
*An exercise description is displayed.
 +
*Parameter values are adjusted to the respective exercises.
 +
*Click "Hide solution" to display the solution.
 +
 
 +
 
 +
Number "0" is a "Reset" button:
 +
*Sets parameters to initial values (when loading the page).
 +
*Displays a "Reset text" to describe the applet further.
 +
 
 
   
 
   
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(1)''' &nbsp; Für das Sendesignal $x(t)$ gelte $A_1 = 0.8\ {\rm V}, \ A_2 = 0.6\ {\rm V}, \ f_1 = 0.5\ {\rm kHz}, \ f_2 = 1.5\ {\rm kHz}, \ \varphi_1 = 90^\circ, \ \varphi_2 = 0^\circ$.  
+
'''(1)''' &nbsp; We consider the parameters $A_1 = 0.8\ {\rm V}, \ A_2 = 0.6\ {\rm V}, \ f_1 = 0.5\ {\rm kHz}, \ f_2 = 1.5\ {\rm kHz}, \ \varphi_1 = 90^\circ, \ \varphi_2 = 30^\circ$ for the input signal $x(t)$.  
:Wie groß ist die Periodendauer $T_0$? Welche Leistung $P_x$ weist dieses Signal auf? Wo können Sie diesen Wert im Programm ablesen? }}
+
:Calculate the signal's period duration $T_0$ and power $P_x$. Can you read the value for $P_x$ off the applet? }}
  
  
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}T_0 = \big [\hspace{-0.1cm}\text{ größter gemeinsamer Teiler }(0.5  \ {\rm kHz}, \ 1.5  \ {\rm kHz})\big ]^{-1}\hspace{0.15cm}\underline{ =  2.0 \ {\rm ms}};$  
+
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}T_0 = \big [\hspace{-0.1cm}\text{ greatest common divisor }(0.5  \ {\rm kHz}, \ 1.5  \ {\rm kHz})\big ]^{-1}\hspace{0.15cm}\underline{ =  2.0 \ {\rm ms}};$  
  
$\hspace{1.85cm} P_x = A_1^2/2 + A_2^2/2 \hspace{0.15cm}\underline{= 0.5 \ {\rm V^2}} = P_\varepsilon\text{, wenn }\hspace{0.15cm}\underline{k_{\rm M} = 0} \ \Rightarrow \ z(t) \equiv 0$.
+
$\hspace{1.85cm} P_x = A_1^2/2 + A_2^2/2 \hspace{0.15cm}\underline{= 0.5 \ {\rm V^2}} = P_\varepsilon\text{, if }\hspace{0.15cm}\underline{k_{\rm M} = 0} \ \Rightarrow \ z(t) \equiv 0$.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(2)''' &nbsp; Variieren Sie bei sonst gleicher Einstellung wie unter '''(1)''' die Phase $\varphi_2$ im gesamten möglichen Bereich $\pm 180^\circ$. Wie ändern sich $T_0$ und $P_x$?}}
+
'''(2)''' &nbsp;Vary $\varphi_2$ between $\pm 180^\circ$ while keeping all other parameters from Exercise (1). How does the value of $T_0$ and $P_x$ change?}}
  
  
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{Keine Veränderungen:}\hspace{0.2cm}\hspace{0.15cm}\underline{ T_0 = 2.0 \ {\rm ms}; \hspace{0.2cm} P_x =  0.5 \ {\rm V^2}}$.
+
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{No changes:}\hspace{0.2cm}\hspace{0.15cm}\underline{ T_0 = 2.0 \ {\rm ms}; \hspace{0.2cm} P_x =  0.5 \ {\rm V^2}}$.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(3)''' &nbsp; Variieren Sie bei sonst gleicher Einstellung wie unter '''(1)''' die Frequenz $f_2$ im Bereich $0 \le f_2 \le 5\ {\rm kHz}$. Wie ändert sich die Signalleistung $P_x$?}}
+
'''(3)''' &nbsp; Vary $f_2$ between $0 \le f_2 \le 10\ {\rm kHz}$ while keeping all  other parameters from Exercise (1). How does the value of $P_x$ change?}}
  
  
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{Keine Veränderungen, falls }f_2 \ne 0\text{ oder } f_2 \ne f_1\text{:}\hspace{0.3cm} \hspace{0.15cm}\underline{P_x =  0.5 \ {\rm V^2}}\text{.} \hspace{0.2cm} T_0 \text{ ändert sich, falls }f_2\text{ kein Vielfaches von }f_1$.
+
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{No changes if }f_2 \ne 0\text{ and } f_2 \ne f_1\text{:}\hspace{0.3cm} \hspace{0.15cm}\underline{P_x =  0.5 \ {\rm V^2}}\text{.} \hspace{0.2cm} T_0 \text{ changes if }f_2\text{is not a multiple of }f_1$.
  
$\hspace{1.85cm}\text{Falls }f_2 = 0\text{:}\hspace{0.2cm} P_x = A_1^2/2 + A_2^2\hspace{0.15cm}\underline{ = 0.68 \ {\rm V^2}}$. $\hspace{3cm}\text{Allgemeine Formel noch überprüfen}$
+
$\hspace{1.85cm}\text{If }f_2 = 0\text{:}\hspace{0.2cm} P_x = A_1^2/2 + A_2^2\hspace{0.15cm}\underline{ = 0.68 \ {\rm V^2}}$. $\hspace{3cm}$
  
$\hspace{1.85cm}\text{Falls }f_2 = f_1\text{:}\hspace{0.2cm} P_x = [A_1\cos(\varphi_1) + A_2\cos(\varphi_2)]^2/2 + [A_1\sin(\varphi_1) + A_2\sin(\varphi_2)]^2/2 \text{.  Mit } \varphi_1 = 90^\circ, \ \varphi_2 = 0^\circ\text{:}\hspace{0.3cm}\hspace{0.15cm}\underline{ P_x =  0.5 \ {\rm V^2}}\text{.} $
+
$\hspace{1.85cm}\text{If }f_2 = f_1\text{:}\hspace{0.2cm} P_x = [A_1\cos(\varphi_1) + A_2\cos(\varphi_2)]^2/2 + [A_1\sin(\varphi_1) + A_2\sin(\varphi_2)]^2/2 \text{.} $
 +
   
 +
$\hspace{1.85cm}\text{With } \varphi_1 = 90^\circ, \ \varphi_2 = 30^\circ\text{:}\hspace{0.3cm}\hspace{0.15cm}\underline{ P_x =  0.74 \ {\rm V^2}}\text{.} $
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(4)''' &nbsp; Ausgehend vom bisherigen Sendesignal $x(t)$ gelte für den Kanal: $\alpha_1 = \alpha_2 = 0.5, \ \tau_1 = \tau_2  = 0.5\ {\rm ms}$. Zudem sei  $k_{\rm M} = 1 \text{ und } \tau_{\rm M} = 0$ .  
+
'''(4)''' &nbsp; Keeping the previous input signal $x(t)$, set following parameters
:Gibt es lineare Verzerrungen? Wie groß ist die Empfangsleistung $P_y$ und die Leistung $P_\varepsilon$ des Differenzsignals $\varepsilon(t) = z(t) - x(t)$}}
+
: $\alpha_1 = \alpha_2 = 0.5, \ \tau_1 = \tau_2  = 0.5\ {\rm ms}$, $k_{\rm M} = 1 \text{ and } \tau_{\rm M} = 0$ .  
 +
:Are there linear distortions? Calculate the received power $P_y$ and the power $P_\varepsilon$ of the differential signal $\varepsilon(t) = z(t) - x(t)$. }}
  
  
$\hspace{1.0cm}\Rightarrow \hspace{0.3cm}\hspace{0.15cm}\underline{ y(t) = 0.5 \cdot x(t- 1\ {\rm ms})}\text{ ist unverzerrt, nur gedämpft und verzögert.}$   
+
$\hspace{1.0cm}\Rightarrow \hspace{0.3cm}\hspace{0.15cm}\underline{ y(t) = 0.5 \cdot x(t- 1\ {\rm ms})}\text{ is only attenuated and delayed, but not distorted.}$   
  
$\hspace{1.85cm}\text{Empfangsleistung:}\hspace{0.2cm} P_y = (A_1/2)^2/2 + (A_2/2)^2/2\hspace{0.15cm}\underline{ = 0.125 \ {\rm V^2}}\text{.  } P_\varepsilon \text{ ist deutlich größer:} \hspace{0.1cm} \hspace{0.15cm}\underline{P_\varepsilon = 0.625 \ {\rm V^2}}.$
+
$\hspace{1.85cm}\text{Received power:}\hspace{0.2cm} P_y = (A_1/2)^2/2 + (A_2/2)^2/2\hspace{0.15cm}\underline{ = 0.125 \ {\rm V^2}}\text{.  } P_\varepsilon \text{ is significantly larger:} \hspace{0.1cm} \hspace{0.15cm}\underline{P_\varepsilon = 0.625 \ {\rm V^2}}.$
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(5)''' &nbsp; Variieren Sie bei sonst gleicher Einstellung wie unter '''(4)''' die Matchingparameter $k_{\rm M} \text{ und } \tau_{\rm M}$. Wie groß ist die Verzerrungsleistung $P_{\rm D}$?}}
+
'''(5)''' &nbsp; With the same settings as in Exercise (4), vary the matching parameters $k_{\rm M} \text{ and } \tau_{\rm M}$. How big is the distortion power $P_{\rm D}$?}}
  
  
$\hspace{1.0cm}\Rightarrow \hspace{0.3cm} P_{\rm D}\text{ ist gleich der Leistung }P_\varepsilon  \text{ des Differenzsignals bei bestmöglicher Anpassung:} \hspace{0.2cm}k_{\rm M} = 2 \text{ und } \tau_{\rm M}=T_0 - 0.5\ {\rm ms} = 1.5\ {\rm ms}$
+
$\hspace{1.0cm}\Rightarrow \hspace{0.3cm} P_{\rm D}\text{ is equal to }P_\varepsilon  \text{ when using the ideal matching parameters:} \hspace{0.2cm}k_{\rm M} = 2 \text{ and } \tau_{\rm M}=T_0 - 0.5\ {\rm ms} = 1.5\ {\rm ms}$
  
$\hspace{1.0cm}\Rightarrow \hspace{0.3cm}z(t) = x(t)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\varepsilon(t) = 0\hspace{0.3cm}\Rightarrow \hspace{0.3cm}P_{\rm D}\hspace{0.15cm}\underline{ = P_\varepsilon = 0} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{weder Dämpfungs- noch Phasenverzerrungen.}$   
+
$\hspace{1.0cm}\Rightarrow \hspace{0.3cm}z(t) = x(t)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\varepsilon(t) = 0\hspace{0.3cm}\Rightarrow \hspace{0.3cm}P_{\rm D}\hspace{0.15cm}\underline{ = P_\varepsilon = 0} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{Neither attenuation nor phase distortion.}$   
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(6)''' &nbsp; Für den Kanal gelte nun $\alpha_1 = 0.5, \hspace{0.15cm}\underline{\alpha_2 = 0.2}, \ \tau_1 = \tau_2  = 0.5\ {\rm ms}$. Wie groß sind nun die Verzerrungsleistung $P_{\rm D}$ und das $\rm SDR$ $\rho_{\rm D}$?}}
+
'''(6)''' &nbsp; The channel parameters are now set to: $\alpha_1 = 0.5, \hspace{0.15cm}\underline{\alpha_2 = 0.2}, \ \tau_1 = \tau_2  = 0.5\ {\rm ms}$. Calculate the distortion power $P_{\rm D}$ and the Signal-to-Distortion ratio $(\rm SDR) \ \rho_{\rm D}$.}}
  
  
$\hspace{1.0cm}\Rightarrow \hspace{0.3cm} P_{\rm D} = P_\varepsilon  \text{ bei bestmöglicher Anpassung:} \hspace{0.2cm}\hspace{0.15cm}\underline{k_{\rm M} = 2.24} \text{ und } \hspace{0.15cm}\underline{\tau_{\rm M} = 1.5\ {\rm ms} }\text{:} \hspace{0.2cm}\hspace{0.15cm}\underline{P_{\rm D} =  0.059 \ {\rm V^2}}$.
+
$\hspace{1.0cm}\Rightarrow \hspace{0.3cm} P_{\rm D} = P_\varepsilon  \text{ when using the best matching parameters:} \hspace{0.2cm}\hspace{0.15cm}\underline{k_{\rm M} = 2.24} \text{ and } \hspace{0.15cm}\underline{\tau_{\rm M} = 1.5\ {\rm ms} }\text{:} \hspace{0.2cm}\hspace{0.15cm}\underline{P_{\rm D} =  0.059 \ {\rm V^2}}$.
  
$\hspace{1.85cm}\text{Nur Dämpfungsverzerrungen.} \hspace{0.3cm}\text{Signal-zu-Verzerrung-Leistungsverhältnis}\ \hspace{0.15cm}\underline{\rho_{\rm D} = P_x/P_\varepsilon \approx 8.5}$.   
+
$\hspace{1.85cm}\text{Attenuation distortions only.} \hspace{0.3cm}\text{Signal-to-Distortion-Ratio}\ \hspace{0.15cm}\underline{\rho_{\rm D} = P_x/P_\varepsilon \approx 8.5}$.   
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(7)''' &nbsp; Für den Kanal gelte nun $\alpha_1 = \alpha_2 = 0.5, \ \tau_1 \hspace{0.15cm}\underline{= 2\ {\rm ms} }, \  \tau_2  = 0.5\ {\rm ms}$. Wie groß sind nun $P_{\rm D}$ und $\rho_{\rm D}$?}}
+
'''(7)''' &nbsp; The channel parameters are now set to: $\alpha_1 = \alpha_2 = 0.5, \ \tau_1 \hspace{0.15cm}\underline{= 2\ {\rm ms} }, \  \tau_2  = 0.5\ {\rm ms}$. Calculate the distortion power $P_{\rm D}$ and the the Signal-to-Distortion ratio $\rho_{\rm D}$.}}
  
  
$\hspace{1.0cm}\Rightarrow \hspace{0.3cm} P_{\rm D} = P_\varepsilon  \text{ bei bestmöglicher Anpassung:} \hspace{0.2cm}\hspace{0.15cm}\underline{k_{\rm M} = 1.82} \text{ und } \tau_{\rm M}\hspace{0.15cm}\underline{  = 0.15\ {\rm ms} }\text{:} \hspace{0.2cm}\hspace{0.15cm}\underline{P_{\rm D} =  0.072 \ {\rm V^2}}$.
+
$\hspace{1.0cm}\Rightarrow \hspace{0.3cm} P_{\rm D} = P_\varepsilon  \text{when using the best matching parameters:} \hspace{0.2cm}\hspace{0.15cm}\underline{k_{\rm M} = 1.84} \text{ and } \tau_{\rm M}\hspace{0.15cm}\underline{  = 0.15\ {\rm ms} }\text{:} \hspace{0.2cm}\hspace{0.15cm}\underline{P_{\rm D} =  0.071 \ {\rm V^2}}$.
  
$\hspace{1.85cm}\text{Nur Phasenverzerrungen.} \hspace{0.3cm}\text{Signal-zu-Verzerrung-Leistungsverhältnis}\ \hspace{0.15cm}\underline{\rho_{\rm D} = P_x/P_\varepsilon \approx 7}$.   
+
$\hspace{1.85cm}\text{Phase distortions only.} \hspace{0.3cm}\text{Signal-to-Distortion-Ratio}\ \hspace{0.15cm}\underline{\rho_{\rm D} = P_x/P_\varepsilon \approx 7}$.   
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(8)''' &nbsp; Für den Kanal gelte nun  $\hspace{0.15cm}\underline{\alpha_1 = 0.5} , \hspace{0.15cm}\underline{\alpha_2 = 0.2} , \ \hspace{0.15cm}\underline{\tau_1= 2\ {\rm ms} }, \  \hspace{0.15cm}\underline{\tau_2  = 0.5\ {\rm ms} }$. Wie groß sind nun $P_{\rm D}$ und $\rho_{\rm D}$? Wie lässt sich $y(t)$ annähern?}}
+
'''(8)''' &nbsp; The channel parameters are now set to: $\hspace{0.15cm}\underline{\alpha_1 = 0.5} , \hspace{0.15cm}\underline{\alpha_2 = 0.2} , \ \hspace{0.15cm}\underline{\tau_1= 0.5\ {\rm ms} }, \  \hspace{0.15cm}\underline{\tau_2  = 0.3\ {\rm ms} }$. Are there attenuation distortions? Are there phase distortions? How can $y(t)$ be approximated?  ''Hint:'' $\cos(3x) = 4 \cdot \cos^3(x) - 3\cdot \cos(x).$}}
 +
 
 +
 
 +
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm} \text{Both attenuation and phase distortions, because }\alpha_1 \ne \alpha_2\text{ and }\tau_1 \ne \tau_2$.
 +
 
 +
$\hspace{1.85cm}y(t) = y_1(t) + y_2(t)\ \Rightarrow \ y_1(t) = A_1 \cdot \alpha_1 \cdot \sin[2\pi f_1\  (t- 0.5\ \rm ms)] = -0.4 \ {\rm V} \cdot \cos(2\pi f_1 t)$
  
 +
$\hspace{1.85cm}  y_2(t) = \alpha_2 \cdot x_2(t- \tau_2) \text{ mit }x_2(t) = A_2 \cdot \cos[2\pi f_2\  (t- 30^\circ)] \approx  A_2 \cdot \cos[2\pi f_2\  (t- 1/36 \ \rm ms)]$
  
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm} \text{Dämpfungs- und  Phasenverzerrungen. Bestmögliche Anpassung:} \hspace{0.2cm}\hspace{0.15cm}\underline{k_{\rm M} = 2.06} \text{, } \hspace{0.15cm}\underline{\tau_{\rm M} = 0.15\ {\rm ms} }\text{:} \hspace{0.2cm}\hspace{0.15cm}\underline{P_{\rm D} =  0.136 \ {\rm V^2}},\hspace{0.1cm}\hspace{0.15cm}\underline{\rho_{\rm D}  \approx 3.7}$.
+
$\hspace{1.85cm} \Rightarrow \ y_2(t) = 0.12 \ {\rm V} \cdot \cos[2\pi f_2\ (t- 0.328 \ {\rm ms})] \approx -0.12 \ { \rm V} \cdot \cos[2\pi f_2t] $.
  
$\hspace{1.85cm}\text{Zusammenfassen von }\varphi \text{- und } \tau\text{-Parameter: } y(t) = 0.4 \ {\rm V} \cdot \sin\ (2\pi f_1 t) - 0.12 \ {\rm V} \cdot \sin\ (2\pi \cdot 3f_1\cdot t) \hspace{0.15cm}\underline{\approx 0.52 \ {\rm V} \cdot \sin^3(2\pi f_1 t)}$.
+
$\hspace{1.85cm} \Rightarrow \ y(t) = y_1(t) + y_2(t) \approx -0.4 \ {\rm V} \cdot [\cos(2\pi \cdot f_1\cdot  t) + 1/3 \cdot \cos(2\pi \cdot 3 f_1 \cdot t) =  -0.533 \ {\rm V} \cdot \cos^3(2\pi f_1 t)$.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(9)''' &nbsp; Nun gelte $\underline{A_1 = A_2 = 1\ {\rm V}, \ f_1 = 1\ {\rm kHz}, \ f_2 = 1\ {\rm kHz}, \ \varphi_1 = 0^\circ, \ \varphi_2 = 0^\circ}$. Der Kanal sei ein <u>Tiefpass erster Ordnung</u>  $\underline{(f_0 = 1\ {\rm kHz})}$.  
+
'''(9)''' &nbsp; Using the parameters from  Exercise  (8),  calculate the distortion power $P_{\rm D}$ and the the Signal-to-Distortion ratio  $\rho_{\rm D}$.}}
:Gibt es Dämpfungsverzerrungen? Gibt es Phasenverzerrungen? Wie groß ist  nun die Verzerrungsleistung $P_{\rm D}$?}}
+
 
 +
 
 +
$\hspace{1.0cm}\text{Best possible adaptation:} \hspace{0.2cm}\hspace{0.15cm}\underline{k_{\rm M} = 1.96} \text{, } \hspace{0.15cm}\underline{\tau_{\rm M} = 1.65\ {\rm ms} }\text{:} \hspace{0.2cm}\hspace{0.15cm}\underline{P_{\rm D} = 0.15 \ {\rm V^2} },\hspace{0.1cm}\hspace{0.15cm}\underline{\rho_{\rm D} = 0.500/0.15 \approx 3.3}$.
  
 +
{{BlaueBox|TEXT= 
 +
'''(10)''' &nbsp;Now we set $A_2 = 0$ and $A_1 =  1\ {\rm V}, \ f_1 = 1\ {\rm kHz}, \ \varphi_1 = 0^\circ$. The channel is a <u>Low-pass of  order  1</u>  $\underline{(f_0 = 1\ {\rm kHz})}$. <br>Are there any attenuation  and/or phase distortions? Calculate the channel coefficients $\alpha_1$ and $\tau_1$.}}
  
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm} \text{Dämpfungsverzerrungen, da }\hspace{0.15cm}\underline{\alpha_1 = 0.71 \ne \alpha_2 = 0.45} \text{; geringere Phasenverzerrungen, da }\hspace{0.15cm}\underline{ \tau_1 = 0.13 \ {\rm ms} \approx  \tau_2 = 0.09 \ {\rm ms}}$.
 
  
$\hspace{1.85cm}\text{ Verzerrungsleistung }\hspace{0.15cm}\underline{P_{\rm D} = 0.074 \ {\rm V^2}\text{ bei bestmöglicher Anpassung:} \hspace{0.2cm}k_{\rm M}\hspace{0.15cm}\underline{ = 1.6} \text{ und } \tau_{\rm M}\hspace{0.15cm}\underline{ = 0.9\ {\rm ms} }$.
+
$\hspace{1.0cm}\text{At only one frequency there are neither attenuation nor phase distortions.}$
 +
$\hspace{1.0cm}\text{Attenuation factor for }f_1=f_0\text{ and }N=1\text{:   }\alpha_1 =|H(f = f_1)| =  [1+( f_1/f_0)^2]^{-N/2} = 2^{-1/2}= 1/\sqrt{2}\hspace{0.15cm}\underline{=0.707},$
 +
$\hspace{1.0cm}\text{Phase factor for }f_1=f_0\text{ and }N=1\text{:  }\tau_1 = N \cdot \arctan( f_1/f_0)/(2 \pi f_1)=\arctan( 1)/(2 \pi f_1) =1/(8f_1) \hspace{0.15cm}\underline{=0.125 \ \rm ms}.$
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(10)''' &nbsp; Wie ändern sich die Kanalparameter durch einen <u>Tiefpass zweiter Ordnung</u> gegenüber einem Tiefpass erster Ordnung $(f_0 = 1\ {\rm kHz})$.
+
'''(11)''' &nbsp; How do the channel parameters change when using a <u>Low-pass of order 2</u> compared to a Low-pass of order 1 $(f_0 = 1\ {\rm kHz})$?}}  
:Wie groß ist  nun die Verzerrungsleistung $P_{\rm D}$? Wie groß ist  nun die Verzerrungsleistung $P_{\rm D}$?}}
 
  
  
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm} \text{Es gilt }\hspace{0.15cm}\underline{\alpha_1 = 0.71^2 \approx 0.5, \alpha_2 = 0.45^2  \approx 0.5, \tau_1 = 2 \cdot 0.13 \approx 0.25 \ {\rm ms} \tau_2 = 2 \cdot 0.09 \ {\rm ms} \approx 0.18 \ {\rm ms}} $.
+
$\hspace{1.0cm}\alpha_1 = 0.707^2 = 0.5$ and $\tau_1 = 2 \cdot 0.125 = 0.25 \ {\rm ms}$.
  
$\hspace{1.85cm}P_{\rm D} =  0.228 \ {\rm V^2} \text { ist größer und der 2 kHz-Anteil wird im Vergleich zum  2 kHz-Anteil  noch mehr unterdrückt}$.  
+
$\hspace{1.0cm}\text{The signal }y(t)\text{ is only half as big as }x(t)\text{ and is retarded: The cosine turns into a sine function}$.  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(11)''' &nbsp; Welche Unterschiede ergeben sich bei einem <u>Hochpass zweiter Ordnung</u> gegenüber einem Tiefpass zweiter Ordnung $(f_0 = 1\ {\rm kHz})$. }}
+
'''(12)''' &nbsp; What differences arise when using a  <u>High-pass of order 2</u> compared to a Low-pass of order 2 $(f_0 = 1\ {\rm kHz})$? }}
 +
 
 +
 
 +
$\hspace{1.0cm}\text{Since }f_1 = f_0\text{ the attenuation factor }\alpha_1 = 0.5\text{ stays the same and }\tau_1 = -0.25 \ {\rm ms}\text{ which means:}$
 +
 
 +
$\hspace{1.0cm}\text{The signal }y(t)\text{  is also only half as big as }x(t)\text{ and precedes it: The cosine turns into the Minus&ndash;sine function}$.
  
 +
{{BlaueBox|TEXT= 
 +
'''(13)''' &nbsp; What differences at the signal $y(t)$ can be observed between the Low-pass and the High-pass of order 2  $(f_0 = 1\ {\rm kHz})$ when you start with the initial input signal according to Exercise (1) and continuously raise $f_2$ up to $10 \ \rm kHz$ ? }}
  
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm} \text{???????????????}$
 
  
 +
$\hspace{1.0cm}\text{With the Low-pass the second term is increasingly suppressed. For }f_2 =  10 \ {\rm kHz}\text{: }y_{\rm LP}(t) \approx 0.8 \cdot x_1(t-0.3 \ \rm ms).$ 
  
 +
$\hspace{1.0cm}\text{With the High-pass however the second  term dominates. For }f_2 =  10 \ {\rm kHz}\text{: }y_{\rm HP}(t) \approx 0.2 \cdot x_1(t+0.7 \ {\rm ms}) + x_2(t).$
  
 +
==Applet Manual==
 +
[[File:Handhabung_verzerrungen.png|center]]
 +
<br>
 +
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Parameter selection for input signal $x(t)$ per slider: Amplitude, frequency, phase values
  
 +
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Preselection for channel parameters per slider: Low-pass or High-pass
  
==Zur Handhabung des Applets==
+
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Selction of channel parameters per slider: Dämpfungsfaktoren und Phasenlaufzeiten
[[File:Periodendauer_fertig_version1.png|left]]
 
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Parametereingabe per Slider
 
  
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Bereich der graphischen Darstellung
+
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Selection of channel parameters for High and Low pass: Order$n$, cutoff frequency $f_0$
  
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Variationsmöglichkeit für die  graphische Darstellung
+
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Selection of matching parameters $k_{\rm M}$ and $\varphi_{\rm M}$
  
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Abspeichern und Zurückholen von Parametersätzen
+
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Selection of the signals to be displayed: $x(t)$,  $y(t)$, $z(t)$, $\varepsilon(t)$, $\varepsilon^2(t)$
  
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Numerikausgabe des Hauptergebnisses $T_0$; graphische Verdeutlichung durch rote Linie
+
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Graphic display of the signals
  
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Ausgabe von $x_{\rm max}$ und der Signalwerte $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$
+
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Enter the time $t_*$ for the numeric output
  
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Darstellung der Signalwerte $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$ durch grüne Punkte
+
&nbsp; &nbsp; '''( I )''' &nbsp; &nbsp; numeric output of the signal values $x(t_*)$,  $y(t_*)$, $z(t_*)$  and $\varepsilon(t_*)$
  
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Einstellung der Zeit $t_*$ für die Signalwerte $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$
+
&nbsp; &nbsp; '''(J)''' &nbsp; &nbsp; Numeric output of the main result $P_\varepsilon$
  
'''Details zum obigen Punkt (C)'''
+
&nbsp; &nbsp; '''(K)''' &nbsp; &nbsp; Save and reall parameters
 
&nbsp; &nbsp; '''(*)''' &nbsp; Zoom&ndash;Funktionen &bdquo;$+$&rdquo; (Vergrößern), &bdquo;$-$&rdquo; (Verkleinern) und $\rm o$ (Zurücksetzen)
 
  
&nbsp; &nbsp; '''(*)''' &nbsp; Verschieben mit &bdquo;$\leftarrow$&rdquo; (Ausschnitt nach links, Ordinate nach rechts),  &bdquo;$\uparrow$&rdquo; &bdquo;$\downarrow$&rdquo; und &bdquo;$\rightarrow$&rdquo;
+
&nbsp; &nbsp; '''(L)''' &nbsp; &nbsp; Exercises: Exercise selection, description and solution
  
'''Andere Möglichkeiten''':
+
&nbsp; &nbsp; '''(M)''' &nbsp; &nbsp; Variation possibilities for the graphic display
 +
 +
$\hspace{1.5cm}$Zoom&ndash;functions "$+$" (scale up), "$-$" (scale down) und $\rm o$ (reset)
  
&nbsp; &nbsp; '''(*)''' &nbsp; Gedrückte Shifttaste und Scrollen:  Zoomen im Koordinatensystem,
+
$\hspace{1.5cm}$Move with "$\leftarrow$" (section to the left, ordinate to the right),  "$\uparrow$" "$\downarrow$" und "$\rightarrow$"
  
&nbsp; &nbsp; '''(*)''' &nbsp; Gedrückte Shifttaste und linke Maustaste: Verschieben des Koordinatensystems.
+
$\hspace{1.5cm}$'''Other options'':
<br clear = all>
 
  
 +
$\hspace{1.5cm}$Hold shift and scroll:  Zoom in on/out of coordinate system,
  
==Über die Autoren==
+
$\hspace{1.5cm}$Hold shift and left click: Move the coordinate system.
Dieses interaktive Berechnungstool  wurde am [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik] der [https://www.tum.de/ Technischen Universität München] konzipiert und realisiert.
 
*Die erste Version wurde 2005 von [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Bettina_Hirner_.28Diplomarbeit_LB_2005.29|Bettina Hirner]] im Rahmen ihrer Diplomarbeit mit &bdquo;FlashMX&ndash;Actionscript&rdquo; erstellt (Betreuer: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]] ).
 
*2018 wurde dieses Programm  von [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Jimmy_He_.28Bachelorarbeit_2018.29|Jimmy He]] im Rahmen seiner Bachelorarbeit (Betreuer: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28am_LNT_seit_2014.29|Tasnád Kernetzky]])  auf  &bdquo;HTML5&rdquo; umgesetzt und neu gestaltet.
 
  
==Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster==
+
==About the Authors==
 +
This interactive calculation was designed and realized at the [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik] of the [https://www.tum.de/ Technische Universität München].
 +
*The original version was created in 2005 by [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Bettina_Hirner_.28Diplomarbeit_LB_2005.29|Bettina Hirner]] as part of her Diploma thesis using "FlashMX&ndash;Actionscript" (Supervisor: [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]] ).
 +
*In 2018 this Applet was redesigned and updated to "HTML5" by [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Jimmy_He_.28Bachelorarbeit_2018.29|Jimmy He]] as part of his Bachelor's thesis (Supervisor: [[Biographies_and_Bibliographies/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]]) .
  
{{LntAppletLink|verzerrungen}}
+
==Once again: Open Applet in new Tab==
  
[[Category:Applets|^Periodendauer^]]
+
{{LntAppletLinkEn|linDistortions_en}} &nbsp; &nbsp; &nbsp; &nbsp; [https://www.lntwww.de/Applets:Lineare_Verzerrungen_periodischer_Signale '''English Applet with German WIKI description''']

Latest revision as of 16:16, 13 April 2023

Open Applet in a new tab         English Applet with English WIKI description

Applet Description


This applet illustrates the effects of linear distortions (attenuation distortions and phase distortions) with

Meanings of the used signals
  • the input signal $x(t)$   ⇒   power $P_x$:
$$x(t) = x_1(t) + x_2(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)+A_2\cdot \cos\left(2\pi f_2\cdot t- \varphi_2\right), $$
  • the output signal $y(t)$   ⇒   power $P_y$:
$$y(t) = \alpha_1 \cdot x_1(t-\tau_1) + \alpha_2 \cdot x_2(t-\tau_2),$$
  • the matched output signal $z(t)$   ⇒   power $P_z$:
$$z(t) = k_{\rm M} \cdot y(t-\tau_{\rm M}) + \alpha_2 \cdot x_2(t-\tau_2),$$
  • the difference signal   $\varepsilon(t) = z(t) - x(t)$   ⇒   power $P_\varepsilon$.


The next block in the model above is Matching: The output signal $y(t)$ is adjusted in amplitude and phase with equal variables $k_{\rm M}$ and $\tau_{\rm M}$ for all frequencies which means that this is not a frequency-dependent equalization. Using the signal $z(t)$, one can differentiate between:

  • attenuation distortion and frequency–independent attenuation, as well as
  • phase distortion and frequency–independent delay.


The Distortion Power $P_{\rm D}$ is used to measure the strength of the linear distortion and is defined as:

$$P_{\rm D} = \min_{k_{\rm M}, \ \tau_{\rm M}} P_\varepsilon.$$


Theoretical Background


Distortions refer to generally unwanted alterations of a message signal through a transmission system. Together with the strong stochastic effects (noise, crosstalk, etc.), they are a crucial limitation for the quality and rate of transmission.

Just as the intensity of noise can be assessed through

  • the Noise Power $P_{\rm N}$ and
  • the Signal–to–Noise Ratio (SNR) $\rho_{\rm N}$,


distortions can be quantified through

  • the Distortion Power $P_{\rm D}$ and
  • the Signal–to–Distortion Ratio (SDR)
$$\rho_{\rm D}=\frac{\rm Signal \ Power}{\rm Distortion \ Power} = \frac{P_x}{P_{\rm D} }.$$


Linear and Nonlinear Distortions


A distinction is made between linear and nonlinear distortions:

  • Nonlinear distortions occur, if at all times $t$ the nonlinear correlation $y = g(x) \ne {\rm const.} \cdot x$ exists between the signal values $x = x(t)$ at the input and $y = y(t)$ at the output, whereby $y = g(x)$ is defined as the system's nonlinear characteristic. By creating a cosine signal at the input with frequency $f_0$ the output signal includes $f_0$, as well as multiple harmonic waves. We conclude that new frequencies arise through nonlinear distortion.
For clarification of nonlinear distortions
Description of a linear system
  • Linear distortions occur, if the transmission channel is characterized by a frequency response $H(f) \ne \rm const.$ Various frequencies are attenuated and delayed differently. Characteristic of this is that although frequencies can disappear (for example, through a low–pass, a high–pass, or a band–pass), no new frequencies can arise.


In this applet only linear distortions are considered.


Description Forms for the Frequency Response


The generally complex valued frequency response can be represented as follows:

$$H(f) = |H(f)| \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} b(f)} = {\rm e}^{-a(f)}\cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} b(f)}.$$

This results in the following description variables:

  • The absolute value $|H(f)|$ is called amplitude response and in logarithmic form attenuation function:
$$a(f) = - \ln |H(f)|\hspace{0.2cm}{\rm in \hspace{0.1cm}Neper \hspace{0.1cm}(Np) } = - 20 \cdot \lg |H(f)|\hspace{0.2cm}{\rm in \hspace{0.1cm}Decibel \hspace{0.1cm}(dB) }.$$
  • The phase function $b(f)$ indicates the negative frequency–dependent angle of $H(f)$ in the complex plane based on the real axis:
$$b(f) = - {\rm arc} \hspace{0.1cm}H(f) \hspace{0.2cm}{\rm in \hspace{0.1cm}Radians \hspace{0.1cm}(rad)}.$$


Low–pass of Order N


Attenuation function $a(f)$ and phase function $b(f)$ of a low–Pass of order $N$

The frequency response of a realizable low–pass (LP) of order $N$ is:

$$H(f) = \left [\frac{1}{1 + {\rm j}\cdot f/f_0 }\right ]^N\hspace{0.05cm}.$$

For example the RC low–pass is a first order low–pass. Consequently we can obtain

  • the attenuation function:
$$a(f) =N/2 \cdot \ln [1+( f/f_0)^2] \hspace{0.05cm},$$
  • the phase function:
$$b(f) =N \cdot \arctan( f/f_0) \hspace{0.05cm},$$
  • the attenuation factor for the frequency $f=f_i$:
$$\alpha_i =|H(f = f_i)| = [1+( f_i/f_0)^2]^{-N/2}$$
$$\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm} y(t)= \alpha_i \cdot A_i\cdot \cos(2\pi f_i t)\hspace{0.05cm},$$
  • the phase delay for the frequency $f=f_i$:
$$\tau_i =\frac{b(f_i)}{2 \pi f_i} = \frac{N \cdot \arctan( f_i/f_0)}{2 \pi f_i}$$
$$\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm} y(t)=A_i\cdot \cos(2\pi f_i (t- \tau_i))\hspace{0.05cm}.$$


High–pass of Order N


Attenuation function $a(f)$ and phase function $b(f)$ of a high–pass of order $N$

The frequency response of a realizable high–pass (HP) of order $N$ is:

$$H(f) = \left [\frac{ {\rm j}\cdot f/f_0 }{1 + {\rm j}\cdot f/f_0 }\right ]^N\hspace{0.05cm}.$$

For example the LC high-pass is a first order high-pass. Consequently we can obtain

  • the attenuation function:
$$a(f) =N/2 \cdot \ln [1+( f_0/f)^2] \hspace{0.05cm},$$
  • the phase function:
$$b(f) =-N \cdot \arctan( f_0/f) \hspace{0.05cm},$$
  • the attenuation factor for the frequency $f=f_i$:
$$\alpha_i =|H(f = f_i)| = [1+( f_0/f_i)^2]^{-N/2}$$
$$\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm} y(t)= \alpha_i \cdot A_i\cdot \cos(2\pi f_i t)\hspace{0.05cm},$$
  • the phase delay for the frequency $f=f_i$:
$$\tau_i =\frac{b(f_i)}{2\pi f_i} = \frac{-N \cdot \arctan( f_0/f_i)}{2\pi f_i}$$
$$\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm} y(t)=A_i\cdot \cos(2\pi f_i (t- \tau_i))\hspace{0.05cm}.$$


Phase function $b(f)$ of high–pass and low–pass

$\text{Example:}$  This graphic shows the phase function $b(f)$ with the cutoff frequency $f_0 = 1\ \rm kHz$ and order $N=1$

  • of a low–pass (green curve),
  • of a high–pass (violet curve).


The input signal is sinusoidal with frequency $f_{\rm S} = 1.25\ {\rm kHz}$ whereby this signal is only turned on at $t=0$:

$$x(t) = \left\{ \begin{array}{l} \hspace{0.75cm}0 \\ \sin(2\pi \cdot f_{\rm S} \cdot t ) \\ \end{array} \right.\quad\begin{array}{l} (t < 0), \\ (t>0). \\ \end{array}$$

The left graphic shows the signal $x(t)$. The dashed line marks the first zero at $t = T_0 = 0.8\ {\rm ms}$. The other two graphics show the output signals $y_{\rm LP}(t)$ und $y_{\rm HP}(t)$ of low–pass and high–pass, whereby the change in amplitude was balanced in both cases.

Input signal $x(t)$ (enframed in blue) as well as output signals $y_{\rm LP}(t)$ ⇒   green and $y_{\rm HP}(t)$ ⇒   magenta
  • The first zero of the signal $y_{\rm LP}(t)$ after the low–pass is delayed by $\tau_{\rm LP} = 0.9/(2\pi) \cdot T_0 \approx 0.115 \ {\rm ms}$ compared to the first zero of $x(t)$   ⇒   marked with green arrow, whereby $b_{\rm LP}(f/f_{\rm S} = 0.9 \ {\rm rad})$ was considered.
  • In contrast, the phase delay of the high–pass is negative: $\tau_{\rm HP} = -0.67/(2\pi) \cdot T_0 \approx -0.085 \ {\rm ms}$ and therefore the first zero of $y_{\rm HP}(t)$ occurs before the dashed line.
  • Following this transient response, in both cases the zero crossings again come in the raster of the period duration $T_0 = 0.8 \ {\rm ms}.$


Remark: The shown signals were created using the interactive applet "Causal systems – Laplace transform".

Attenuation and Phase Distortions


Requirements for a non–distorting channel

The adjacent figure shows

  • the even attenuation function $a(f)$   ⇒   $a(-f) = a(f)$, and
  • the uneven function curve $b(f)$   ⇒   $b(-f) = -b(- f)$


of a non–distorting channel. One can see:

  • In a distortion–free system the attenuation function $a(f)$ must be constant between$f_{\rm U}$ and $f_{\rm O}$ around the carrier frequency $f_{\rm T}$, where the input signal exists   ⇒   $X(f) \ne 0$.
  • From the specified constant attenuation value $6 \ \rm dB$ follows for the amplitude response $|H(f)| = 0.5$   ⇒   the signal values of all frequencies are thus halved by the system   ⇒   no attenuation distortions.
  • In addition, in such a system, the phase function $b(f)$ between $f_{\rm U}$ and $f_{\rm O}$ must increase linearly with the frequency. As a result, all frequency components are delayed by the same phase delay $τ$   ⇒   no phase distortion.
  • The delay $τ$ is fixed by the slope of $b(f)$. The phase function $b(f) \equiv 0$ would result in a delay–less system   ⇒   $τ = 0$.


The following summary considers that – in this applet – the input signal is always the sum of two harmonic oscillations,

$$x(t) = x_1(t) + x_2(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)+A_2\cdot \cos\left(2\pi f_2\cdot t- \varphi_2\right), $$

and therefore the channel influence is fully described by the attenuation factors $\alpha_1$ and $\alpha_2$ as well as the phase delays $\tau_1$ and $\tau_2$:

$$y(t) = \alpha_1 \cdot x_1(t-\tau_1) + \alpha_2 \cdot x_2(t-\tau_2).$$

$\text{Summary:}$ 

  • A signal $y(t)$ is only distortion–free compared to $x(t)$ if $\alpha_1 = \alpha_2= \alpha$   and   $\tau_1 = \tau_2= \tau$   ⇒   $y(t) = \alpha \cdot x(t-\tau)$.
  • Attenuation distortions occur when $\alpha_1 \ne \alpha_2$. If $\alpha_1 \ne \alpha_2$ and $\tau_1 = \tau_2$, then there are exclusively attenuation distortions.
  • Phase distortions occur when $\tau_1 \ne \tau_2$. If $\tau_1 \ne \tau_2$ and $\alpha_1 = \alpha_2$, then there are exclusively phase distortions.



Exercises

Exercises verzerrungen.png
  • First choose an exercise number.
  • An exercise description is displayed.
  • Parameter values are adjusted to the respective exercises.
  • Click "Hide solution" to display the solution.


Number "0" is a "Reset" button:

  • Sets parameters to initial values (when loading the page).
  • Displays a "Reset text" to describe the applet further.


(1)   We consider the parameters $A_1 = 0.8\ {\rm V}, \ A_2 = 0.6\ {\rm V}, \ f_1 = 0.5\ {\rm kHz}, \ f_2 = 1.5\ {\rm kHz}, \ \varphi_1 = 90^\circ, \ \varphi_2 = 30^\circ$ for the input signal $x(t)$.

Calculate the signal's period duration $T_0$ and power $P_x$. Can you read the value for $P_x$ off the applet?


$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}T_0 = \big [\hspace{-0.1cm}\text{ greatest common divisor }(0.5 \ {\rm kHz}, \ 1.5 \ {\rm kHz})\big ]^{-1}\hspace{0.15cm}\underline{ = 2.0 \ {\rm ms}};$

$\hspace{1.85cm} P_x = A_1^2/2 + A_2^2/2 \hspace{0.15cm}\underline{= 0.5 \ {\rm V^2}} = P_\varepsilon\text{, if }\hspace{0.15cm}\underline{k_{\rm M} = 0} \ \Rightarrow \ z(t) \equiv 0$.

(2)  Vary $\varphi_2$ between $\pm 180^\circ$ while keeping all other parameters from Exercise (1). How does the value of $T_0$ and $P_x$ change?


$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{No changes:}\hspace{0.2cm}\hspace{0.15cm}\underline{ T_0 = 2.0 \ {\rm ms}; \hspace{0.2cm} P_x = 0.5 \ {\rm V^2}}$.

(3)   Vary $f_2$ between $0 \le f_2 \le 10\ {\rm kHz}$ while keeping all other parameters from Exercise (1). How does the value of $P_x$ change?


$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{No changes if }f_2 \ne 0\text{ and } f_2 \ne f_1\text{:}\hspace{0.3cm} \hspace{0.15cm}\underline{P_x = 0.5 \ {\rm V^2}}\text{.} \hspace{0.2cm} T_0 \text{ changes if }f_2\text{is not a multiple of }f_1$.

$\hspace{1.85cm}\text{If }f_2 = 0\text{:}\hspace{0.2cm} P_x = A_1^2/2 + A_2^2\hspace{0.15cm}\underline{ = 0.68 \ {\rm V^2}}$. $\hspace{3cm}$

$\hspace{1.85cm}\text{If }f_2 = f_1\text{:}\hspace{0.2cm} P_x = [A_1\cos(\varphi_1) + A_2\cos(\varphi_2)]^2/2 + [A_1\sin(\varphi_1) + A_2\sin(\varphi_2)]^2/2 \text{.} $

$\hspace{1.85cm}\text{With } \varphi_1 = 90^\circ, \ \varphi_2 = 30^\circ\text{:}\hspace{0.3cm}\hspace{0.15cm}\underline{ P_x = 0.74 \ {\rm V^2}}\text{.} $

(4)   Keeping the previous input signal $x(t)$, set following parameters

$\alpha_1 = \alpha_2 = 0.5, \ \tau_1 = \tau_2 = 0.5\ {\rm ms}$, $k_{\rm M} = 1 \text{ and } \tau_{\rm M} = 0$ .
Are there linear distortions? Calculate the received power $P_y$ and the power $P_\varepsilon$ of the differential signal $\varepsilon(t) = z(t) - x(t)$.


$\hspace{1.0cm}\Rightarrow \hspace{0.3cm}\hspace{0.15cm}\underline{ y(t) = 0.5 \cdot x(t- 1\ {\rm ms})}\text{ is only attenuated and delayed, but not distorted.}$

$\hspace{1.85cm}\text{Received power:}\hspace{0.2cm} P_y = (A_1/2)^2/2 + (A_2/2)^2/2\hspace{0.15cm}\underline{ = 0.125 \ {\rm V^2}}\text{. } P_\varepsilon \text{ is significantly larger:} \hspace{0.1cm} \hspace{0.15cm}\underline{P_\varepsilon = 0.625 \ {\rm V^2}}.$

(5)   With the same settings as in Exercise (4), vary the matching parameters $k_{\rm M} \text{ and } \tau_{\rm M}$. How big is the distortion power $P_{\rm D}$?


$\hspace{1.0cm}\Rightarrow \hspace{0.3cm} P_{\rm D}\text{ is equal to }P_\varepsilon \text{ when using the ideal matching parameters:} \hspace{0.2cm}k_{\rm M} = 2 \text{ and } \tau_{\rm M}=T_0 - 0.5\ {\rm ms} = 1.5\ {\rm ms}$

$\hspace{1.0cm}\Rightarrow \hspace{0.3cm}z(t) = x(t)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\varepsilon(t) = 0\hspace{0.3cm}\Rightarrow \hspace{0.3cm}P_{\rm D}\hspace{0.15cm}\underline{ = P_\varepsilon = 0} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{Neither attenuation nor phase distortion.}$

(6)   The channel parameters are now set to: $\alpha_1 = 0.5, \hspace{0.15cm}\underline{\alpha_2 = 0.2}, \ \tau_1 = \tau_2 = 0.5\ {\rm ms}$. Calculate the distortion power $P_{\rm D}$ and the Signal-to-Distortion ratio $(\rm SDR) \ \rho_{\rm D}$.


$\hspace{1.0cm}\Rightarrow \hspace{0.3cm} P_{\rm D} = P_\varepsilon \text{ when using the best matching parameters:} \hspace{0.2cm}\hspace{0.15cm}\underline{k_{\rm M} = 2.24} \text{ and } \hspace{0.15cm}\underline{\tau_{\rm M} = 1.5\ {\rm ms} }\text{:} \hspace{0.2cm}\hspace{0.15cm}\underline{P_{\rm D} = 0.059 \ {\rm V^2}}$.

$\hspace{1.85cm}\text{Attenuation distortions only.} \hspace{0.3cm}\text{Signal-to-Distortion-Ratio}\ \hspace{0.15cm}\underline{\rho_{\rm D} = P_x/P_\varepsilon \approx 8.5}$.

(7)   The channel parameters are now set to: $\alpha_1 = \alpha_2 = 0.5, \ \tau_1 \hspace{0.15cm}\underline{= 2\ {\rm ms} }, \ \tau_2 = 0.5\ {\rm ms}$. Calculate the distortion power $P_{\rm D}$ and the the Signal-to-Distortion ratio $\rho_{\rm D}$.


$\hspace{1.0cm}\Rightarrow \hspace{0.3cm} P_{\rm D} = P_\varepsilon \text{when using the best matching parameters:} \hspace{0.2cm}\hspace{0.15cm}\underline{k_{\rm M} = 1.84} \text{ and } \tau_{\rm M}\hspace{0.15cm}\underline{ = 0.15\ {\rm ms} }\text{:} \hspace{0.2cm}\hspace{0.15cm}\underline{P_{\rm D} = 0.071 \ {\rm V^2}}$.

$\hspace{1.85cm}\text{Phase distortions only.} \hspace{0.3cm}\text{Signal-to-Distortion-Ratio}\ \hspace{0.15cm}\underline{\rho_{\rm D} = P_x/P_\varepsilon \approx 7}$.

(8)   The channel parameters are now set to: $\hspace{0.15cm}\underline{\alpha_1 = 0.5} , \hspace{0.15cm}\underline{\alpha_2 = 0.2} , \ \hspace{0.15cm}\underline{\tau_1= 0.5\ {\rm ms} }, \ \hspace{0.15cm}\underline{\tau_2 = 0.3\ {\rm ms} }$. Are there attenuation distortions? Are there phase distortions? How can $y(t)$ be approximated? Hint: $\cos(3x) = 4 \cdot \cos^3(x) - 3\cdot \cos(x).$


$\hspace{1.0cm}\Rightarrow\hspace{0.3cm} \text{Both attenuation and phase distortions, because }\alpha_1 \ne \alpha_2\text{ and }\tau_1 \ne \tau_2$.

$\hspace{1.85cm}y(t) = y_1(t) + y_2(t)\ \Rightarrow \ y_1(t) = A_1 \cdot \alpha_1 \cdot \sin[2\pi f_1\ (t- 0.5\ \rm ms)] = -0.4 \ {\rm V} \cdot \cos(2\pi f_1 t)$

$\hspace{1.85cm} y_2(t) = \alpha_2 \cdot x_2(t- \tau_2) \text{ mit }x_2(t) = A_2 \cdot \cos[2\pi f_2\ (t- 30^\circ)] \approx A_2 \cdot \cos[2\pi f_2\ (t- 1/36 \ \rm ms)]$

$\hspace{1.85cm} \Rightarrow \ y_2(t) = 0.12 \ {\rm V} \cdot \cos[2\pi f_2\ (t- 0.328 \ {\rm ms})] \approx -0.12 \ { \rm V} \cdot \cos[2\pi f_2t] $.

$\hspace{1.85cm} \Rightarrow \ y(t) = y_1(t) + y_2(t) \approx -0.4 \ {\rm V} \cdot [\cos(2\pi \cdot f_1\cdot t) + 1/3 \cdot \cos(2\pi \cdot 3 f_1 \cdot t) = -0.533 \ {\rm V} \cdot \cos^3(2\pi f_1 t)$.

(9)   Using the parameters from Exercise (8), calculate the distortion power $P_{\rm D}$ and the the Signal-to-Distortion ratio $\rho_{\rm D}$.


$\hspace{1.0cm}\text{Best possible adaptation:} \hspace{0.2cm}\hspace{0.15cm}\underline{k_{\rm M} = 1.96} \text{, } \hspace{0.15cm}\underline{\tau_{\rm M} = 1.65\ {\rm ms} }\text{:} \hspace{0.2cm}\hspace{0.15cm}\underline{P_{\rm D} = 0.15 \ {\rm V^2} },\hspace{0.1cm}\hspace{0.15cm}\underline{\rho_{\rm D} = 0.500/0.15 \approx 3.3}$.

(10)  Now we set $A_2 = 0$ and $A_1 = 1\ {\rm V}, \ f_1 = 1\ {\rm kHz}, \ \varphi_1 = 0^\circ$. The channel is a Low-pass of order 1 $\underline{(f_0 = 1\ {\rm kHz})}$.
Are there any attenuation and/or phase distortions? Calculate the channel coefficients $\alpha_1$ and $\tau_1$.


$\hspace{1.0cm}\text{At only one frequency there are neither attenuation nor phase distortions.}$ $\hspace{1.0cm}\text{Attenuation factor for }f_1=f_0\text{ and }N=1\text{: }\alpha_1 =|H(f = f_1)| = [1+( f_1/f_0)^2]^{-N/2} = 2^{-1/2}= 1/\sqrt{2}\hspace{0.15cm}\underline{=0.707},$ $\hspace{1.0cm}\text{Phase factor for }f_1=f_0\text{ and }N=1\text{: }\tau_1 = N \cdot \arctan( f_1/f_0)/(2 \pi f_1)=\arctan( 1)/(2 \pi f_1) =1/(8f_1) \hspace{0.15cm}\underline{=0.125 \ \rm ms}.$

(11)   How do the channel parameters change when using a Low-pass of order 2 compared to a Low-pass of order 1 $(f_0 = 1\ {\rm kHz})$?


$\hspace{1.0cm}\alpha_1 = 0.707^2 = 0.5$ and $\tau_1 = 2 \cdot 0.125 = 0.25 \ {\rm ms}$.

$\hspace{1.0cm}\text{The signal }y(t)\text{ is only half as big as }x(t)\text{ and is retarded: The cosine turns into a sine function}$.

(12)   What differences arise when using a High-pass of order 2 compared to a Low-pass of order 2 $(f_0 = 1\ {\rm kHz})$?


$\hspace{1.0cm}\text{Since }f_1 = f_0\text{ the attenuation factor }\alpha_1 = 0.5\text{ stays the same and }\tau_1 = -0.25 \ {\rm ms}\text{ which means:}$

$\hspace{1.0cm}\text{The signal }y(t)\text{ is also only half as big as }x(t)\text{ and precedes it: The cosine turns into the Minus–sine function}$.

(13)   What differences at the signal $y(t)$ can be observed between the Low-pass and the High-pass of order 2 $(f_0 = 1\ {\rm kHz})$ when you start with the initial input signal according to Exercise (1) and continuously raise $f_2$ up to $10 \ \rm kHz$ ?


$\hspace{1.0cm}\text{With the Low-pass the second term is increasingly suppressed. For }f_2 = 10 \ {\rm kHz}\text{: }y_{\rm LP}(t) \approx 0.8 \cdot x_1(t-0.3 \ \rm ms).$

$\hspace{1.0cm}\text{With the High-pass however the second term dominates. For }f_2 = 10 \ {\rm kHz}\text{: }y_{\rm HP}(t) \approx 0.2 \cdot x_1(t+0.7 \ {\rm ms}) + x_2(t).$

Applet Manual

Handhabung verzerrungen.png


    (A)     Parameter selection for input signal $x(t)$ per slider: Amplitude, frequency, phase values

    (B)     Preselection for channel parameters per slider: Low-pass or High-pass

    (C)     Selction of channel parameters per slider: Dämpfungsfaktoren und Phasenlaufzeiten

    (D)     Selection of channel parameters for High and Low pass: Order$n$, cutoff frequency $f_0$

    (E)     Selection of matching parameters $k_{\rm M}$ and $\varphi_{\rm M}$

    (F)     Selection of the signals to be displayed: $x(t)$, $y(t)$, $z(t)$, $\varepsilon(t)$, $\varepsilon^2(t)$

    (G)     Graphic display of the signals

    (H)     Enter the time $t_*$ for the numeric output

    ( I )     numeric output of the signal values $x(t_*)$, $y(t_*)$, $z(t_*)$ and $\varepsilon(t_*)$

    (J)     Numeric output of the main result $P_\varepsilon$

    (K)     Save and reall parameters

    (L)     Exercises: Exercise selection, description and solution

    (M)     Variation possibilities for the graphic display

$\hspace{1.5cm}$Zoom–functions "$+$" (scale up), "$-$" (scale down) und $\rm o$ (reset)

$\hspace{1.5cm}$Move with "$\leftarrow$" (section to the left, ordinate to the right), "$\uparrow$" "$\downarrow$" und "$\rightarrow$"

$\hspace{1.5cm}$'Other options:

$\hspace{1.5cm}$Hold shift and scroll: Zoom in on/out of coordinate system,

$\hspace{1.5cm}$Hold shift and left click: Move the coordinate system.

About the Authors

This interactive calculation was designed and realized at the Lehrstuhl für Nachrichtentechnik of the Technische Universität München.

  • The original version was created in 2005 by Bettina Hirner as part of her Diploma thesis using "FlashMX–Actionscript" (Supervisor: Günter Söder ).
  • In 2018 this Applet was redesigned and updated to "HTML5" by Jimmy He as part of his Bachelor's thesis (Supervisor: Tasnád Kernetzky) .

Once again: Open Applet in new Tab

Open Applet in new Tab         English Applet with German WIKI description