Difference between revisions of "Aufgaben:Exercise 4.5Z: Tangent Hyperbolic and Inverse"
(16 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Channel_Coding/Soft-in_Soft-Out_Decoder}} |
− | [[File:P_ID3025__KC_Z_4_5_v1.png|right|frame| | + | [[File:P_ID3025__KC_Z_4_5_v1.png|right|frame|$y = \tanh {(x)}$ tabularly]] |
− | + | In the [[Channel_Coding/Soft-in_Soft-Out_Decoder#Calculation_of_extrinsic_LLRs|"Theory Part"]] it was shown, using the example of a "single parity–check code" that the extrinsic $L$ value with respect to the $i^{th}$ symbol is defined as follows: | |
− | :$$L_{\rm E}(i) = {\rm ln} \hspace{0.2cm}\frac{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm | + | :$$L_{\rm E}(i) = {\rm ln} \hspace{0.2cm}\frac{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm is \hspace{0.15cm} even} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]}{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm is \hspace{0.15cm} odd} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]} |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | *This equation is also applicable to many other channel codes. | |
− | In | + | *The code word $\underline{x}^{(-i)}$ in this definition includes all symbols except $x_i$ and has thus only length $n-1$. |
+ | |||
+ | |||
+ | In the [[Aufgaben:Exercise_4.4:_Extrinsic_L-values_at_SPC|$\text{Exercise 4.4}$]] it was shown that the extrinsic $L$ value can also be written as follows: | ||
:$$L_{\rm E}(i) = {\rm ln} \hspace{0.2cm} \frac{1 + \pi}{1 - \pi}\hspace{0.05cm}, \hspace{0.3cm} | :$$L_{\rm E}(i) = {\rm ln} \hspace{0.2cm} \frac{1 + \pi}{1 - \pi}\hspace{0.05cm}, \hspace{0.3cm} | ||
− | {\rm | + | {\rm with} \hspace{0.3cm} \pi = \prod\limits_{j \ne i}^{n} \hspace{0.15cm}{\rm tanh}(L_j/2) |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | In | + | In this exercise, we will now look for another calculation possibility. |
+ | |||
+ | |||
+ | |||
+ | |||
+ | Hints: | ||
+ | *This exercise belongs to the chapter [[Channel_Coding/Soft-in_Soft-Out_Decoder|"Soft–in Soft–out Decoder"]]. | ||
− | + | *Reference is made in particular to the [[Channel_Coding/Soft-in_Soft-Out_Decoder#Calculation_of_extrinsic_log_likelihood_ratios|"Calculations of extrinsic log likelihood ratios"]] section. | |
− | * | + | |
− | + | * Above you can see a table with the numerical values of the function $y = \tanh(x)$ ⇒ "hyperbolic tangent". | |
− | * | + | |
− | + | *With the rows highlighted in red you can read the values of the inverse function $x = \tanh^{-1}(y)$ needed for subtask '''(5)'''. | |
+ | |||
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {It holds $\underline{L}_{\rm APP} = (+1.0, +0.4, -1.0)$. Calculate the extrinsic $L$ values ⇒ $\underline{L}_{\rm E} = \big (L_{\rm E}(1), \ L_{\rm E}(2), \ L_{\rm E}(3) \big)$ according to the second equation given: |
|type="{}"} | |type="{}"} | ||
$L_{\rm E}(1) \ = \ ${ -0.188387--0.177413 } | $L_{\rm E}(1) \ = \ ${ -0.188387--0.177413 } | ||
Line 35: | Line 45: | ||
$L_{\rm E}(3) \ = \ ${ 0.1829 3% } | $L_{\rm E}(3) \ = \ ${ 0.1829 3% } | ||
− | { | + | {Which of the properties does the function $y = \tanh\hspace{-0.05cm}{(x)}$ exhibit? |
|type="[]"} | |type="[]"} | ||
− | + | + | + $\tanh\hspace{-0.05cm} {(x)} = ({\rm e}^x - {\rm e}^{-x}) \ / \ ({\rm e}^x + {\rm e}^{-x})$ is valid. |
− | + | + | + $\tanh\hspace{-0.05cm} {(x)} = (1 - {\rm e}^{-2x}) \ / \ (1 + {\rm e}^{-2x})$ is valid. |
− | + | + | + The function $y = \tanh\hspace{-0.05cm} {(x)}$ is defined for all $x$ values. |
− | - | + | - $y_{\rm min} = 0$ and $y_{\rm max} → ∞$ is valid. |
− | + | + | + $y_{\rm min} = -1$ and $y_{\rm max} = +1$ is valid. |
− | { | + | {What are the properties of the inverse function $x = \tanh^{-1}\hspace{-0.08cm} {(y)}$? |
|type="[]"} | |type="[]"} | ||
− | - | + | - The function $x = \tanh^{-1}\hspace{-0.05cm} (y)$ is defined for all $y$ values. |
− | + | + | + $x = \tanh^{-1}\hspace{-0.08cm} {(y)} = 1/2 \cdot \ln {[(1 + y) \ / \ (1 - y)]}$ is valid. |
− | - | + | - $x_{\rm min} = -1$ and $x_{\rm max} = +1$ is valid. |
− | + | + | + $x_{\rm min} → -∞$ and $x_{\rm max} → +∞$ is valid. |
− | { | + | {How can $L_{\rm E}(i)$ also be represented? Let $\pi$ be defined as in the specification section. |
|type="[]"} | |type="[]"} | ||
− | - | + | - $L_{\rm E}(i) = \tanh^{-1}\hspace{-0.08cm} {(\pi)}$ is valid. |
− | + | + | + $L_{\rm E}(i) = 2 \cdot \tanh^{-1}\hspace{-0.08cm} {(\pi)}$ is valid. |
− | - | + | - $L_{\rm E}(i) = 2 \cdot \tanh^{-1}\hspace{-0.05cm}\big [ {\ln {[(1 + \pi) \ / \ (1 - \pi)]}}\big ]$ is valid. |
− | { | + | {Calculate the extrinsic $L$ values using the equation given in exercise '''(4)'''. Use the table in the information section for this purpose. |
|type="{}"} | |type="{}"} | ||
$L_{\rm E}(1) \ = \ ${ -0.18849--0.17751 } | $L_{\rm E}(1) \ = \ ${ -0.18849--0.17751 } | ||
Line 63: | Line 73: | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' According to the specification applies: |
:$$L_{\rm E}(i) = {\rm ln} \hspace{0.2cm} \frac{1 + \pi}{1 - \pi}\hspace{0.05cm}, \hspace{0.3cm} | :$$L_{\rm E}(i) = {\rm ln} \hspace{0.2cm} \frac{1 + \pi}{1 - \pi}\hspace{0.05cm}, \hspace{0.3cm} | ||
− | {\rm | + | {\rm with} \hspace{0.3cm} \pi = \prod\limits_{j \ne i}^{3} \hspace{0.15cm}{\rm tanh}(L_j/2) |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | *From the table on the specification section can be read: | |
:$$\tanh {(L_1/2)} = \tanh {(0.5)} = 0.4621,$$ | :$$\tanh {(L_1/2)} = \tanh {(0.5)} = 0.4621,$$ | ||
:$$\tanh {(L_2/2)} = \tanh {(0.2)} = 0.1974.$$ | :$$\tanh {(L_2/2)} = \tanh {(0.2)} = 0.1974.$$ | ||
− | + | *Since the hyperbolic tangent is an odd function, the following applies further | |
:$$\tanh {(L_3/2)} = -\tanh {(0.5)} = -0.4621.$$ | :$$\tanh {(L_3/2)} = -\tanh {(0.5)} = -0.4621.$$ | ||
− | * | + | * Calculation of $L_{\rm E}(1)$: |
− | :$$\pi = {\rm tanh}(L_2/2) \cdot {\rm tanh}(L_3/2) = (+0.1974) \cdot (-0.4621) = - 0.0912 | + | :$$\pi = {\rm tanh}(L_2/2) \cdot {\rm tanh}(L_3/2) = (+0.1974) \cdot (-0.4621) = - 0.0912\hspace{0.3cm} |
− | + | \Rightarrow \hspace{0.3cm} L_{\rm E}(1) = {\rm ln} \hspace{0.2cm} \frac{1 -0.0912}{1 +0.0912}\hspace{0.15cm}\underline{=-0.1829} | |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | * | + | * Calculation of $L_{\rm E}(2)$: |
− | :$$\pi = {\rm tanh}(L_1/2) \cdot {\rm tanh}(L_3/2) = (+0.4621) \cdot (-0.4621) = - 0.2135 | + | :$$\pi = {\rm tanh}(L_1/2) \cdot {\rm tanh}(L_3/2) = (+0.4621) \cdot (-0.4621) = - 0.2135\hspace{0.3cm} |
− | + | \Rightarrow \hspace{0.3cm} L_{\rm E}(2) = {\rm ln} \hspace{0.2cm} \frac{1 -0.2135}{1 +0.2135}\hspace{0.15cm}\underline{=-0.4337} | |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | * | + | * Calculation of $L_{\rm E}(3)$: |
− | :$$\pi = {\rm tanh}(L_1/2) \cdot {\rm tanh}(L_2/2) = (+0.4621) \cdot (+0.1974) = + 0.0912 | + | :$$\pi = {\rm tanh}(L_1/2) \cdot {\rm tanh}(L_2/2) = (+0.4621) \cdot (+0.1974) = + 0.0912\hspace{0.3cm} |
− | + | \Rightarrow \hspace{0.3cm} L_{\rm E}(3) = {\rm ln} \hspace{0.2cm} \frac{1 +0.0912}{1 -0.0912}\hspace{0.15cm}\underline{=+0.1829}= - L_{\rm E}(1) | |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | '''(2)''' <u> | + | |
+ | '''(2)''' Correct are the <u>solutions 1, 2, 3, and 5</u>: The function | ||
:$$y ={\rm tanh}(x) = \frac{{\rm e}^{x}-{\rm e}^{-x}}{{\rm e}^{x}+{\rm e}^{-x}} | :$$y ={\rm tanh}(x) = \frac{{\rm e}^{x}-{\rm e}^{-x}}{{\rm e}^{x}+{\rm e}^{-x}} | ||
= \frac{1-{\rm e}^{-2x}}{1+{\rm e}^{-2x}}$$ | = \frac{1-{\rm e}^{-2x}}{1+{\rm e}^{-2x}}$$ | ||
+ | is computable for all $x$ values and $\tanh(-x) = -\tanh(x)$ holds. | ||
+ | |||
+ | *For large values of $x$: ${\rm e}^{-2x}$ becomes very small, so that in the limiting case $x → ∞$ the limit $y = 1$ is obtained. | ||
− | |||
− | '''(3)''' | + | '''(3)''' Since the "hyperbolic tangent" only yields values between $±1$, the inverse function $x = \tanh^{-1}(y)$ can also only be evaluated for $|y| ≤ 1$. |
+ | |||
+ | *By rearranging the given equation | ||
:$$x ={\rm tanh}^{-1}(y) = 1/2 \cdot {\rm ln} \hspace{0.2cm} \frac{1+y}{1-y}$$ | :$$x ={\rm tanh}^{-1}(y) = 1/2 \cdot {\rm ln} \hspace{0.2cm} \frac{1+y}{1-y}$$ | ||
− | + | :one obtains: | |
:$${\rm e}^{2x} = \frac{1+y}{1-y} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} | :$${\rm e}^{2x} = \frac{1+y}{1-y} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} | ||
{\rm e}^{-2x} = \frac{1-y}{1+y} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} | {\rm e}^{-2x} = \frac{1-y}{1+y} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} | ||
− | (1+y) \cdot {\rm e}^{-2x} = 1-y | + | (1+y) \cdot {\rm e}^{-2x} = 1-y \hspace{0.3cm} |
− | + | \Rightarrow \hspace{0.3cm}y = \frac{1-{\rm e}^{-2x}}{1+{\rm e}^{-2x}} = | |
{\rm tanh}(x) \hspace{0.05cm}.$$ | {\rm tanh}(x) \hspace{0.05cm}.$$ | ||
− | + | *This means: | |
− | + | # The equation given in the <u>proposed solution 2</u> is correct. | |
− | + | # In the limiting case $y → 1$, $x = \tanh^{-1}(y) → ∞$ holds. | |
− | + | # Also the inverse function is odd ⇒ in the limiting case $y → -1$ goes $x → -∞$. | |
+ | *Accordingly, the <u>proposed solutions 2 and 4</u> are correct. | ||
− | |||
− | '''(4)''' | + | '''(4)''' Starting from the equation. |
:$$L_{\rm E}(i) = {\rm ln} \hspace{0.2cm} \frac{1 + \pi}{1 - \pi}$$ | :$$L_{\rm E}(i) = {\rm ln} \hspace{0.2cm} \frac{1 + \pi}{1 - \pi}$$ | ||
− | + | one arrives with the result of '''(3)''' at the equivalent equation corresponding to <u>proposed solution 2</u>: | |
:$$L_{\rm E}(i) = 2 \cdot {\rm tanh}^{-1}(\pi)\hspace{0.05cm}.$$ | :$$L_{\rm E}(i) = 2 \cdot {\rm tanh}^{-1}(\pi)\hspace{0.05cm}.$$ | ||
− | '''(5)''' | + | |
− | * | + | '''(5)''' With the result of the subtask '''(1)''' we get |
+ | * for the first extrinsic $L$ value, since $\pi_1 = -0.0912$: | ||
:$$L_{\rm E}(1) = 2 \cdot {\rm tanh}^{-1}(-0.0912)= -2 \cdot {\rm tanh}^{-1}(0.0912) | :$$L_{\rm E}(1) = 2 \cdot {\rm tanh}^{-1}(-0.0912)= -2 \cdot {\rm tanh}^{-1}(0.0912) | ||
= -2 \cdot 0.0915\hspace{0.15cm}\underline{=-0.1830} | = -2 \cdot 0.0915\hspace{0.15cm}\underline{=-0.1830} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | * | + | * for the second extrinsic $L$ value, since $\pi_2 = -0.2135$: |
:$$L_{\rm E}(2) = -2 \cdot {\rm tanh}^{-1}(0.2135) | :$$L_{\rm E}(2) = -2 \cdot {\rm tanh}^{-1}(0.2135) | ||
= -2 \cdot 0.2168\hspace{0.15cm}\underline{=-0.4336} | = -2 \cdot 0.2168\hspace{0.15cm}\underline{=-0.4336} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | * | + | * for the third extrinsic $L$ value, since $\pi_3 = +0.0912 = -\pi_1$: |
:$$L_{\rm E}(3) = -L_{\rm E}(1) \hspace{0.15cm}\underline{=+0.1830} | :$$L_{\rm E}(3) = -L_{\rm E}(1) \hspace{0.15cm}\underline{=+0.1830} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | <u>Note:</u> | |
+ | *The result was determined using the red table entries on the information section. | ||
+ | |||
+ | * Except for rounding errors $($multiplication/division by $2)$, the result agrees with the results of subtask '''(1)'''. | ||
{{ML-Fuß}} | {{ML-Fuß}} | ||
− | [[Category: | + | [[Category:Channel Coding: Exercises|^4.1 Soft–in Soft–out Decoder^]] |
Latest revision as of 16:52, 4 December 2022
In the "Theory Part" it was shown, using the example of a "single parity–check code" that the extrinsic $L$ value with respect to the $i^{th}$ symbol is defined as follows:
- $$L_{\rm E}(i) = {\rm ln} \hspace{0.2cm}\frac{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm is \hspace{0.15cm} even} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]}{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm is \hspace{0.15cm} odd} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]} \hspace{0.05cm}.$$
- This equation is also applicable to many other channel codes.
- The code word $\underline{x}^{(-i)}$ in this definition includes all symbols except $x_i$ and has thus only length $n-1$.
In the $\text{Exercise 4.4}$ it was shown that the extrinsic $L$ value can also be written as follows:
- $$L_{\rm E}(i) = {\rm ln} \hspace{0.2cm} \frac{1 + \pi}{1 - \pi}\hspace{0.05cm}, \hspace{0.3cm} {\rm with} \hspace{0.3cm} \pi = \prod\limits_{j \ne i}^{n} \hspace{0.15cm}{\rm tanh}(L_j/2) \hspace{0.05cm}.$$
In this exercise, we will now look for another calculation possibility.
Hints:
- This exercise belongs to the chapter "Soft–in Soft–out Decoder".
- Reference is made in particular to the "Calculations of extrinsic log likelihood ratios" section.
- Above you can see a table with the numerical values of the function $y = \tanh(x)$ ⇒ "hyperbolic tangent".
- With the rows highlighted in red you can read the values of the inverse function $x = \tanh^{-1}(y)$ needed for subtask (5).
Questions
Solution
- $$L_{\rm E}(i) = {\rm ln} \hspace{0.2cm} \frac{1 + \pi}{1 - \pi}\hspace{0.05cm}, \hspace{0.3cm} {\rm with} \hspace{0.3cm} \pi = \prod\limits_{j \ne i}^{3} \hspace{0.15cm}{\rm tanh}(L_j/2) \hspace{0.05cm}.$$
- From the table on the specification section can be read:
- $$\tanh {(L_1/2)} = \tanh {(0.5)} = 0.4621,$$
- $$\tanh {(L_2/2)} = \tanh {(0.2)} = 0.1974.$$
- Since the hyperbolic tangent is an odd function, the following applies further
- $$\tanh {(L_3/2)} = -\tanh {(0.5)} = -0.4621.$$
- Calculation of $L_{\rm E}(1)$:
- $$\pi = {\rm tanh}(L_2/2) \cdot {\rm tanh}(L_3/2) = (+0.1974) \cdot (-0.4621) = - 0.0912\hspace{0.3cm} \Rightarrow \hspace{0.3cm} L_{\rm E}(1) = {\rm ln} \hspace{0.2cm} \frac{1 -0.0912}{1 +0.0912}\hspace{0.15cm}\underline{=-0.1829} \hspace{0.05cm}.$$
- Calculation of $L_{\rm E}(2)$:
- $$\pi = {\rm tanh}(L_1/2) \cdot {\rm tanh}(L_3/2) = (+0.4621) \cdot (-0.4621) = - 0.2135\hspace{0.3cm} \Rightarrow \hspace{0.3cm} L_{\rm E}(2) = {\rm ln} \hspace{0.2cm} \frac{1 -0.2135}{1 +0.2135}\hspace{0.15cm}\underline{=-0.4337} \hspace{0.05cm}.$$
- Calculation of $L_{\rm E}(3)$:
- $$\pi = {\rm tanh}(L_1/2) \cdot {\rm tanh}(L_2/2) = (+0.4621) \cdot (+0.1974) = + 0.0912\hspace{0.3cm} \Rightarrow \hspace{0.3cm} L_{\rm E}(3) = {\rm ln} \hspace{0.2cm} \frac{1 +0.0912}{1 -0.0912}\hspace{0.15cm}\underline{=+0.1829}= - L_{\rm E}(1) \hspace{0.05cm}.$$
(2) Correct are the solutions 1, 2, 3, and 5: The function
- $$y ={\rm tanh}(x) = \frac{{\rm e}^{x}-{\rm e}^{-x}}{{\rm e}^{x}+{\rm e}^{-x}} = \frac{1-{\rm e}^{-2x}}{1+{\rm e}^{-2x}}$$
is computable for all $x$ values and $\tanh(-x) = -\tanh(x)$ holds.
- For large values of $x$: ${\rm e}^{-2x}$ becomes very small, so that in the limiting case $x → ∞$ the limit $y = 1$ is obtained.
(3) Since the "hyperbolic tangent" only yields values between $±1$, the inverse function $x = \tanh^{-1}(y)$ can also only be evaluated for $|y| ≤ 1$.
- By rearranging the given equation
- $$x ={\rm tanh}^{-1}(y) = 1/2 \cdot {\rm ln} \hspace{0.2cm} \frac{1+y}{1-y}$$
- one obtains:
- $${\rm e}^{2x} = \frac{1+y}{1-y} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} {\rm e}^{-2x} = \frac{1-y}{1+y} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} (1+y) \cdot {\rm e}^{-2x} = 1-y \hspace{0.3cm} \Rightarrow \hspace{0.3cm}y = \frac{1-{\rm e}^{-2x}}{1+{\rm e}^{-2x}} = {\rm tanh}(x) \hspace{0.05cm}.$$
- This means:
- The equation given in the proposed solution 2 is correct.
- In the limiting case $y → 1$, $x = \tanh^{-1}(y) → ∞$ holds.
- Also the inverse function is odd ⇒ in the limiting case $y → -1$ goes $x → -∞$.
- Accordingly, the proposed solutions 2 and 4 are correct.
(4) Starting from the equation.
- $$L_{\rm E}(i) = {\rm ln} \hspace{0.2cm} \frac{1 + \pi}{1 - \pi}$$
one arrives with the result of (3) at the equivalent equation corresponding to proposed solution 2:
- $$L_{\rm E}(i) = 2 \cdot {\rm tanh}^{-1}(\pi)\hspace{0.05cm}.$$
(5) With the result of the subtask (1) we get
- for the first extrinsic $L$ value, since $\pi_1 = -0.0912$:
- $$L_{\rm E}(1) = 2 \cdot {\rm tanh}^{-1}(-0.0912)= -2 \cdot {\rm tanh}^{-1}(0.0912) = -2 \cdot 0.0915\hspace{0.15cm}\underline{=-0.1830} \hspace{0.05cm}.$$
- for the second extrinsic $L$ value, since $\pi_2 = -0.2135$:
- $$L_{\rm E}(2) = -2 \cdot {\rm tanh}^{-1}(0.2135) = -2 \cdot 0.2168\hspace{0.15cm}\underline{=-0.4336} \hspace{0.05cm}.$$
- for the third extrinsic $L$ value, since $\pi_3 = +0.0912 = -\pi_1$:
- $$L_{\rm E}(3) = -L_{\rm E}(1) \hspace{0.15cm}\underline{=+0.1830} \hspace{0.05cm}.$$
Note:
- The result was determined using the red table entries on the information section.
- Except for rounding errors $($multiplication/division by $2)$, the result agrees with the results of subtask (1).