Difference between revisions of "Aufgaben:Exercise 3.8: General Packet Radio Service"

From LNTwww
 
(14 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Beispiele von Nachrichtensystemen/Weiterentwicklungen des GSM
+
{{quiz-Header|Buchseite=Examples_of_Communication_Systems/Further_Developments_of_the_GSM
 
}}  
 
}}  
  
[[File:P_ID1241__Bei_A_3_8.png|right|frame|Schaubild ''General Packet Radio Service'']]
+
[[File:P_ID1241__Bei_A_3_8.png|right|frame|Scheme  "General Packet Radio Service"]]
In der $\rm GSM–Phase \ 2+$ wurde zur Verbesserung der Datendienste die GSM–Erweiterung $\rm GPRS$ (''General Packet Radio Service'') entwickelt und standardisiert. Diese
+
In the  $\rm GSM phase \ 2+$  the GSM extension  $\rm GPRS$  $($"General Packet Radio Service"$)$  was developed and standardized to improve data services.  This
*unterstützt mehrere Übertragungsprotokolle,
+
#supports several transmission protocols,
*bietet paketorientierte Datenübertragung an,
+
#offers packet-oriented data transmission,
*erlaubt es Nutzer, mit fremden Datennetzen (zum Beispiel: dem ''Internet'') zu kommunizieren.
+
#allows users to communicate with foreign data networks,  e.g. the  "Internet".
  
  
Ein GPRS–Mobilfunkteilnehmer profitiert von kürzeren Zugriffszeiten und der höheren Datenrate gegenüber der Datenübertragung im herkömmlichen GSM oder bei HSCSD, das ebenfalls in der Phase $2+$ entstanden ist.
+
A GPRS mobile subscriber benefits from shorter access times and the higher data rate compared to data transmission in traditional GSM or HSCSD, which also emerged in the  "$2+$"  standardization phase.
  
Vor der Einführung von GPRS waren einige Modifikationen und Ergänzungen im GSM–Netz notwendig:
+
Before the introduction of GPRS,  some modifications and additions to the GSM network were necessary:
*Um GPRS–Anwendungen in die bestehende GSM–Systemarchitektur integrieren zu können, mussten ''Serving GPRS Support Nodes'' (SGSN) und ''Gateway GPRS Support Nodes'' (GGSN) implementiert werden (siehe Grafik).
+
*In order to integrate GPRS applications into the existing GSM system architecture,  "serving GPRS support nodes"  $\rm (SGSN)$  and  "gateway GPRS support nodes"    $\rm (GGSN)$  had to be implemented  $($see diagram$)$.
*Bei GPRS können bis zu acht Zeitschlitze miteinander kombiniert werden („Multislot Capability”). Außerdem sind vier Codierschemata mit unterschiedlichen Datenraten definiert, die als $\rm CS–1$ (mit $9.05 \ \rm kbit/s$), ... , $\rm CS–4$ (mit $21.4 \ \rm kbit/s$) bezeichnet werden.
 
*Zur Faltungscodierung wird ein Code der Rate $1/2$ benutzt, der die $294$ Bits auf $588$ Bits verdoppelt. Durch die Punktierung von $132$ Bits kommt man schließlich zu Bursts der Länge $456$ Bit. Unter Berücksichtigung der Rahmendauer von $20 \ \rm ms$ resultiert daraus die Bitrate $22.8 \ \rm kbit/s$.
 
*Ein GPRS–Handy führt beim Einschalten als erstes eine so genannte „Cell Selection” durch. Wird dabei ein Frequenzkanal mit GPRS–Daten gefunden, dann kann auf die GPRS–Dienste je nach Handyklasse zugegriffen werden.
 
*Man unterscheidet zwischen drei Klassen von Endgeräten. Ein Handy der Klasse '''C''' muss manuell auf GPRS-Dienste umgestellt werden. Dagegen geschieht die Umschaltung zwischen GPRS und GSM bei Klasse '''A''' und '''B''' automatisch und dynamisch.
 
  
 +
*For GPRS,  up to eight time slots can be combined  $($"multislot capability"$)$.  In addition,  four coding schemes with different data rates are defined as  $\text{CS - 1}$  $($with  $9.05\ \rm kbit/s)$, ... ,   $\text{CS - 4}$  $($with  $21.4 \ \rm kbit/s$).
  
 +
*For convolutional coding,   a code of rate  $1/2$  is used,   which doubles the  $294$  bits to  $588$  bits.   Finally,   by puncturing  $132$  bits,   one arrives at bursts of length  $456$  bits.   Considering the frame duration of  $20 \ \rm ms$  this results in the bit rate  $22.8 \ \rm kbit/s$.
  
 +
*The first thing a GPRS cell phone does when it is switched on is to perform a   "cell selection".  If a frequency channel with GPRS data is found,  then the GPRS services can be accessed depending on the cell phone class.
  
 +
*A distinction is made between three classes of terminal devices. A cell phone of the class  $\rm C$  must be manually switched to GPRS services.  In contrast,  switching between GPRS and GSM happens automatically and dynamically for class  $\rm A$  and  $\rm B$.
  
''Hinweise:''
 
  
*Die Aufgabe gehört zum Kapitel [[Beispiele_von_Nachrichtensystemen/Weiterentwicklungen_des_GSM|Weiterentwicklungen des GSM
 
]].
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
*Die obige Grafik ist dem nachfolgend genannten Artikel entnommen. Wir bedanken uns bei den Autoren für die Freigabe:
 
::Bettstetter, C.; Vögel, H.J.; Eberspächer, J.: ''GSM Phase 2+ General Packet Radio Service GPRS: Architecture, Protocols, and Air Interface''. <br>In: IEEE Communications Surveys & Tutorials, Vol. 2 (1999) No. 3, S. 2-14.
 
  
  
===Fragebogen===
+
 
 +
 
 +
 
 +
<u>Hint:</u>
 +
 
 +
*This exercise belongs to the chapter&nbsp; [[Examples_of_Communication_Systems/Further_Developments_of_the_GSM|"Further Developments of the GSM
 +
"]].
 +
 +
*The above graphic is taken from the article mentioned below.&nbsp; We thank the authors for the release:
 +
::Bettstetter, C.; Vögel, H.J.; Eberspächer, J.:&nbsp; GSM Phase 2+ General Packet Radio Service GPRS: Architecture, Protocols, and Air Interface.&nbsp; <br>In: IEEE Communications Surveys & Tutorials, Vol. 2 (1999) No. 3, S. 2-14.
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie kann die GPRS–Datenübertragung charakterisiert werden?
+
{How can the GPRS data transmission be characterized?
|type="[]"}
+
|type="()"}
- leitungsvermittelt,
+
- Circuit-switched,
+ paketvermittelt,
+
+ packet-switched.
- durchschaltevermittelt.
 
  
{Welche Netzknoten waren zur Integration von GPRS in die bestehende GSM–Systemarchitektur erforderlich?
+
{Which network nodes were required to integrate GPRS into the existing GSM system architecture?
 
|type="[]"}
 
|type="[]"}
 
+ GGSN,
 
+ GGSN,
Line 48: Line 53:
 
- SMSS.
 
- SMSS.
  
{Wie können die GPRS–Dienste eingestellt werden?
+
{How to set the GPRS services?
 
|type="[]"}
 
|type="[]"}
- Durch Durchführung der Prozedur „Cell Selection”.
+
+ By performing the&nbsp; "Cell Selection"&nbsp; procedure.
+ Die Umschaltung hängt von der Handy-Klasse ab.
+
+ Switching depends on the cell phone class.
- Alle Handys schalten dynamisch zwischen GSM und GPRS um.
+
- All cell phones switch dynamically between GSM and GPRS.
  
{Welche Vorteile bietet GPRS gegenüber GSM?
+
{What are the advantages of GPRS over GSM?
 
|type="[]"}
 
|type="[]"}
+ Bei GPRS kann man bis zu $8$ Zeitschlitze kombinieren.
+
+ With GPRS,&nbsp; you can combine up to eight time slots.
- Der physikalische Kanal bleibt für die Rufdauer reserviert.
+
- The physical channel remains reserved for the call duration.
+ Uplink und Downlink werden separat zugewiesen.
+
+ Uplink and downlink are assigned separately.
  
{Wie groß ist theoretisch die maximale GPRS–Bitrate?
+
{What is the theoretical maximum GPRS bit rate?
 
|type="{}"}
 
|type="{}"}
$R_{\rm Brutto} \ = \ $ { 171.2 3% } $ \ \rm kbit/s$
+
$R_{\rm gross} \ = \ $ { 171.2 3% } $ \ \rm kbit/s$
  
{Wie groß ist die resultierende GPRS–Coderate (Faltungscode + Punktierung)?
+
{What is the resulting GPRS code&nbsp; $($convolutional code + puncturing$)$?
 
|type="{}"}
 
|type="{}"}
$R\hspace{0.05cm}'_{\rm C} \ = \ $ { 0.644 3% }  
+
$R_{\rm C}\hspace{0.05cm}' \ = \ $ { 0.644 3% }  
  
{Wie groß ist die Netto-Datenrate eines GPRS–Benutzers?
+
{ What is the net data rate of a single GPRS user?
 
|type="{}"}
 
|type="{}"}
$R_{\rm Netto} \ = \ $ { 22.8 3% } $ \ \rm kbit/s$
+
$R_{\rm net} \ = \ $ { 22.8 3% } $ \ \rm kbit/s$
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Mit „GPRS” wurde erstmals eine paketorientierte Datenübertragung realisiert $\Rightarrow$ <u>Vorschlag 2</u>.
+
'''(1)'''&nbsp; Correct is the&nbsp; <u>proposed solution 2</u>:
 +
:With "GPRS",&nbsp; packet-oriented data transmission was realized for the first time.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; Correct are the&nbsp; <u>proposed solutions 1 and 3</u>:
 +
*In order to integrate GPRS,&nbsp; the existing GSM system architecture had to be extended by&nbsp; "GPRS Support Nodes"&nbsp; $\rm (GSN)$.
 +
 
 +
*A distinction is made between&nbsp; "Gateway GSN"&nbsp; $\rm  (GGSN)$ and&nbsp; "Serving GSN" $\rm  (SGSN)$,&nbsp; which communicate with each other over an IP-based GPRS backbone network.
 +
 +
*SGSN is responsible for mobility management and performs a similar function for packet data services as the&nbsp;  "Mobile Switching Center"&nbsp; $\rm (MSC)$&nbsp; does for connection-oriented speech transmission.
 +
 +
*GGSN,&nbsp; on the other hand,&nbsp; is the interface to the supported foreign packet-oriented data networks.
 +
 +
 
 +
 
 +
'''(3)'''&nbsp; Correct are the&nbsp; <u>proposed solutions 1 and 2</u>:
 +
*The first thing a GPRS cell phone does when it is turned on is to perform a&nbsp; "cell selection"&nbsp; by searching for a frequency channel containing GPRS data.
 +
 
 +
*A cell phone of class&nbsp; $\rm C$&nbsp; must be manually switched to GPRS services afterwards.&nbsp;
 +
 
 +
*Automatic and dynamic switching between GPRS and GSM is only possible with a class&nbsp; $\rm A$&nbsp; or&nbsp; $\rm B$&nbsp; cell phone.
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; Correct are the&nbsp; <u>answers 1 and 3</u>:
 +
*With GPRS,&nbsp; up to eight time slots can be combined&nbsp; $($"multi-slot capability"$)$.
 +
 
 +
*The uplink and the downlink are allocated separately and the physical channels are reserved only for the duration of the transmission of data packets and then released again.
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; In GPRS,&nbsp; up to eight time slots can be combined.
 +
*With the coding scheme&nbsp; $\text{ CS-4}$,&nbsp; which,&nbsp; however,&nbsp; is only used with a very good channel,&nbsp; the data rate per time slot is $21.4 \ \rm kbit/s$.
 +
 
 +
*This allows a maximum gross data rate of&nbsp; $21.4 \ {\rm kbit/s} \cdot 8 \hspace{0.15cm}\underline{ = 171.2 \ \rm  kbit/s}$.
  
'''(2)'''&nbsp; ur Integration von GPRS musste die bestehende GSM–Systemarchitektur um GPRS ''Support Nodes'' (GSN) erweitert werden. Man unterscheidet zwischen ''Gateway'' GSN (GGSN) und ''Serving GSN'' (SGSN), die miteinander über ein IP–basiertes GPRS–Backbone–Netz kommunizieren. SGSN ist für das Mobilitätsmanagement zuständig und übernimmt für die Paketdatendienste eine ähnliche Funktion wie das ''Mobile Switching Center'' (MSC) für die verbindungsorientierte Sprachübertragung. GGSN ist dagegen die Schnittstelle zu den unterstützten fremden paketorientierten Datennetzen. Richtig sind die <u>Lösungsvorschläge 1 und 3</u>.
 
  
'''(3)'''&nbsp; Ein GPRS–Handy führt beim Einschalten als erstes eine „Cell Selection” durch, indem es nach einem Frequenzkanal mit GPRS–Daten sucht. Ein Handy der Klasse C muss man danach manuell auf GPRS–Dienste umstellen. Eine automatische und dynamische Umschaltung zwischen GPRS und GSM ist nur bei einem Handy der Klasse A oder B möglich. Richtig sind die <u>Antworten 1 und 2</u>.
 
  
'''(4)'''&nbsp; Bei GPRS können bis zu acht Zeitschlitze miteinander kombiniert werden (''Multislot Capability''). Der Uplink und der Downlink werden separat zugewiesen und die physikalischen Kanäle werden nur für die Dauer der Übertragung von Datenpaketen reserviert und anschließend wieder freigegeben. Richtig sind die <u>Antworten 1 und 3</u>.
+
'''(6)'''&nbsp; For convolutional coding,&nbsp; a code with code rate&nbsp; $R_{\rm C} = 1/2$&nbsp; is used.&nbsp; This doubles&nbsp; $294$&nbsp; bits to&nbsp; $588$&nbsp; bits result.
 +
 +
*After that,&nbsp; $132$&nbsp; bits are punctured,&nbsp; so that finally a code word of length&nbsp; $456$&nbsp; bits.
 +
 +
*This gives a resulting code rate of convolutional code including puncturing of about&nbsp; $R_{\rm C}\hspace{0.05cm}' = 294/456 \hspace{0.15cm}\underline{ = 0.644} \approx 2/3$.
  
'''(5)'''&nbsp; Bei GPRS können bis zu acht Zeitschlitze kombiniert werden. Mit dem Codierschema CS–4, das allerdings nur bei sehr gutem Kanal angewendet wird, beträgt die Datenrate pro Zeitschlitz $21.4 \ \rm kbit/s$. Damit kann man eine maximale Datenrate von $21.4 \ {\rm kbit/s} \cdot 8 \underline{ = 171.2 \ \rm  kbit/s}$ erreichen.
 
  
'''(6)'''&nbsp; Zur Faltungscodierung wird ein Code mit der Coderate $R_{\rm C} = 1/2$ benutzt. Dieser verdoppelt die $294 \ \rm Bits$ auf $588 \ \rm Bits$. Danach werden $132 \ \rm Bits$ der resultierenden $588 \ \rm Bits$ punktiert, so dass schließlich ein Codewort der Länge $456 \ \rm Bits$ resultiert. Damit ergibt sich eine resultierende Coderate von Faltungscode inklusive Punktierung von etwa $R´_{\rm C} = 294/456 \underline{ = 0.644} \approx 2/3$.
 
  
'''(7)'''&nbsp; Die Netto–Datenrate eines GPRS–Benutzers ist genau die gleiche wie die Netto–Datenrate eines GSM–Benutzers, nämlich $456 \ {\rm  Bits}/20 \ \rm ms$ pro Sprachrahmen $\underline{= 22.8 \ \rm kbit/s}$.
+
'''(7)'''&nbsp; The net data rate of a GPRS user is exactly the same as the net data rate of a GSM user:
 +
* This is&nbsp; $456 \ {\rm  bit}/20 \ \rm ms$&nbsp; per speech frame &nbsp; &rArr; &nbsp; $R_{\rm net} \underline{= 22.8 \ \rm kbit/s}$.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 94: Line 135:
  
  
[[Category:Aufgaben zu Beispiele von Nachrichtensystemen|^3.5 Weiterentwicklungen des GSM^]]
+
[[Category:Examples of Communication Systems: Exercises|^3.5 Further Developments of GSM^]]

Latest revision as of 18:30, 28 January 2023

Scheme  "General Packet Radio Service"

In the  $\rm GSM phase \ 2+$  the GSM extension  $\rm GPRS$  $($"General Packet Radio Service"$)$  was developed and standardized to improve data services.  This

  1. supports several transmission protocols,
  2. offers packet-oriented data transmission,
  3. allows users to communicate with foreign data networks,  e.g. the  "Internet".


A GPRS mobile subscriber benefits from shorter access times and the higher data rate compared to data transmission in traditional GSM or HSCSD, which also emerged in the  "$2+$"  standardization phase.

Before the introduction of GPRS,  some modifications and additions to the GSM network were necessary:

  • In order to integrate GPRS applications into the existing GSM system architecture,  "serving GPRS support nodes"  $\rm (SGSN)$  and  "gateway GPRS support nodes"    $\rm (GGSN)$  had to be implemented  $($see diagram$)$.
  • For GPRS,  up to eight time slots can be combined  $($"multislot capability"$)$.  In addition,  four coding schemes with different data rates are defined as  $\text{CS - 1}$  $($with  $9.05\ \rm kbit/s)$, ... ,   $\text{CS - 4}$  $($with  $21.4 \ \rm kbit/s$).
  • For convolutional coding,  a code of rate  $1/2$  is used,  which doubles the  $294$  bits to  $588$  bits.  Finally,  by puncturing  $132$  bits,  one arrives at bursts of length  $456$  bits.  Considering the frame duration of  $20 \ \rm ms$  this results in the bit rate  $22.8 \ \rm kbit/s$.
  • The first thing a GPRS cell phone does when it is switched on is to perform a  "cell selection".  If a frequency channel with GPRS data is found,  then the GPRS services can be accessed depending on the cell phone class.
  • A distinction is made between three classes of terminal devices. A cell phone of the class  $\rm C$  must be manually switched to GPRS services.  In contrast,  switching between GPRS and GSM happens automatically and dynamically for class  $\rm A$  and  $\rm B$.




Hint:

  • The above graphic is taken from the article mentioned below.  We thank the authors for the release:
Bettstetter, C.; Vögel, H.J.; Eberspächer, J.:  GSM Phase 2+ General Packet Radio Service GPRS: Architecture, Protocols, and Air Interface. 
In: IEEE Communications Surveys & Tutorials, Vol. 2 (1999) No. 3, S. 2-14.


Questions

1

How can the GPRS data transmission be characterized?

Circuit-switched,
packet-switched.

2

Which network nodes were required to integrate GPRS into the existing GSM system architecture?

GGSN,
GMSC,
SGSN,
SMSS.

3

How to set the GPRS services?

By performing the  "Cell Selection"  procedure.
Switching depends on the cell phone class.
All cell phones switch dynamically between GSM and GPRS.

4

What are the advantages of GPRS over GSM?

With GPRS,  you can combine up to eight time slots.
The physical channel remains reserved for the call duration.
Uplink and downlink are assigned separately.

5

What is the theoretical maximum GPRS bit rate?

$R_{\rm gross} \ = \ $

$ \ \rm kbit/s$

6

What is the resulting GPRS code  $($convolutional code + puncturing$)$?

$R_{\rm C}\hspace{0.05cm}' \ = \ $

7

What is the net data rate of a single GPRS user?

$R_{\rm net} \ = \ $

$ \ \rm kbit/s$


Solution

(1)  Correct is the  proposed solution 2:

With "GPRS",  packet-oriented data transmission was realized for the first time.


(2)  Correct are the  proposed solutions 1 and 3:

  • In order to integrate GPRS,  the existing GSM system architecture had to be extended by  "GPRS Support Nodes"  $\rm (GSN)$.
  • A distinction is made between  "Gateway GSN"  $\rm (GGSN)$ and  "Serving GSN" $\rm (SGSN)$,  which communicate with each other over an IP-based GPRS backbone network.
  • SGSN is responsible for mobility management and performs a similar function for packet data services as the  "Mobile Switching Center"  $\rm (MSC)$  does for connection-oriented speech transmission.
  • GGSN,  on the other hand,  is the interface to the supported foreign packet-oriented data networks.


(3)  Correct are the  proposed solutions 1 and 2:

  • The first thing a GPRS cell phone does when it is turned on is to perform a  "cell selection"  by searching for a frequency channel containing GPRS data.
  • A cell phone of class  $\rm C$  must be manually switched to GPRS services afterwards. 
  • Automatic and dynamic switching between GPRS and GSM is only possible with a class  $\rm A$  or  $\rm B$  cell phone.


(4)  Correct are the  answers 1 and 3:

  • With GPRS,  up to eight time slots can be combined  $($"multi-slot capability"$)$.
  • The uplink and the downlink are allocated separately and the physical channels are reserved only for the duration of the transmission of data packets and then released again.


(5)  In GPRS,  up to eight time slots can be combined.

  • With the coding scheme  $\text{ CS-4}$,  which,  however,  is only used with a very good channel,  the data rate per time slot is $21.4 \ \rm kbit/s$.
  • This allows a maximum gross data rate of  $21.4 \ {\rm kbit/s} \cdot 8 \hspace{0.15cm}\underline{ = 171.2 \ \rm kbit/s}$.


(6)  For convolutional coding,  a code with code rate  $R_{\rm C} = 1/2$  is used.  This doubles  $294$  bits to  $588$  bits result.

  • After that,  $132$  bits are punctured,  so that finally a code word of length  $456$  bits.
  • This gives a resulting code rate of convolutional code including puncturing of about  $R_{\rm C}\hspace{0.05cm}' = 294/456 \hspace{0.15cm}\underline{ = 0.644} \approx 2/3$.


(7)  The net data rate of a GPRS user is exactly the same as the net data rate of a GSM user:

  • This is  $456 \ {\rm bit}/20 \ \rm ms$  per speech frame   ⇒   $R_{\rm net} \underline{= 22.8 \ \rm kbit/s}$.