Difference between revisions of "Aufgaben:Exercise 4.5Z: Impulse Response once again"

From LNTwww
 
(14 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Koaxialkabel
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Properties_of_Coaxial_Cables
 
}}
 
}}
  
[[File:P_ID1815__LZI_Z_4_5.png|right|frame|Impulsantwort eines Koaxialkabels (Darstellung mit bzw. ohne Laufzeit)]]
+
[[File:EN_LZI_Z_4_5.png|right|frame|Impulse response of a coaxial cable (representation with or without running time)]]
Wir betrachten wieder wie in der [[Aufgaben:4.5_Koaxialkabel_–_Impulsantwort|Aufgabe 4.5]] ein binäres Übertragungssystem mit der Bitrate $R$ und der Symboldauer $T= 1/R$.  
+
As in  [[Aufgaben:Exercise_4.5:_Coaxial_Cable_-_Impulse_Response|Exercise 4.5]] , we consider a binary transmission system with bit rate  $R$  ⇒   symbol duration  $T= 1/R$.  
  
Als Übertragungsmedium wird ein Normalkoaxialkabel (Innendurchmesser: 2.6 mm, Außendurchmesser: 9.5 mm) der Länge $l = 1 \ \rm km$ mit folgendem Frequenzgang verwendet:
+
A  "standard coaxial cable"  $\text{(2.6 mm}$  core diameter,  $\text{9.5 mm}$  outer diameter$)$  of length  $l = 1 \ \rm km$  with the following frequency response is used as transmission medium:
 
:$$H_{\rm K}(f)    =  {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \beta_1 \hspace{0.05cm}\cdot \hspace{0.05cm}  f
 
:$$H_{\rm K}(f)    =  {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \beta_1 \hspace{0.05cm}\cdot \hspace{0.05cm}  f
 
   \hspace{0.05cm}\cdot \hspace{0.05cm}l}
 
   \hspace{0.05cm}\cdot \hspace{0.05cm}l}
Line 17: Line 17:
 
  =  H_1(f) \cdot H_2(f) \cdot H_3(f)$$
 
  =  H_1(f) \cdot H_2(f) \cdot H_3(f)$$
  
Die Teilfrequenzgänge $H_1(f)$, $H_2(f)$ und $H_3(f)$ dienen hier nur als Abkürzung. Die Leitungsparameter lauten:
+
The partial frequency responses  $H_1(f)$,  $H_2(f)$  and  $H_3(f)$  are used here only as abbreviations.  The line parameters are:
:$$\beta_1 = 21.78\, \frac{\rm rad}{\rm km \cdot MHz}\hspace{0.05cm}, \hspace{0.2cm}
+
:$$\beta_1 = 21.78\, \frac{\rm rad}{\rm km \cdot MHz}\hspace{0.05cm}, $$
\alpha_2 = 0.2722\, \frac{\rm Np}{\rm km \cdot \sqrt{MHz}}\hspace{0.05cm},\hspace{0.2cm}
+
:$$ \alpha_2 = 0.2722\, \frac{\rm Np}{\rm km \cdot \sqrt{MHz}}\hspace{0.05cm},$$
\beta_2 = 0.2722\, \frac{\rm rad}{\rm km \cdot \sqrt{MHz}}
+
:$$ \beta_2 = 0.2722\, \frac{\rm rad}{\rm km \cdot \sqrt{MHz}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Die Grafik zeigt die resultierende Impulsantwort $h_{\rm K}(t\hspace{0.03cm}')$, wobei $t\hspace{0.03cm}' = t/T$ die normierte Zeit darstellt. Ohne Berücksichtigung der (normierten) Phasenlaufzeit $\tau\hspace{0.03cm}' = \tau/T$ kann $h_{\rm K}(t\hspace{0.03cm}')$ wie folgt geschrieben werden:
+
The graph shows the resulting impulse response  $h_{\rm K}(t\hspace{0.05cm}')$, where  $t\hspace{0.05cm}' = t/T$  represents the normalized time. Without considering the (normalized) phase running time  $\tau\hspace{0.05cm}' = \tau/T$ ,  $h_{\rm K}(t\hspace{0.05cm}')$  can be written as follows:
:$$h_{\rm K}(t')  = \frac {1}{T} \cdot \frac {a_\rm \star/\pi}{ \sqrt{2
+
:$$h_{\rm K}(t\hspace{0.05cm}')  = \frac {1}{T} \cdot \frac {a_\rm \star/\pi}{ \sqrt{2
   \hspace{0.05cm}t'^3}}\cdot {\rm exp} \left [ -\frac {a_\rm \star^2}{ {2\pi
+
   \hspace{0.05cm}t\hspace{0.05cm}'^3}}\cdot {\rm e}^{ -{a_\rm \star^2}/( {2\pi
  \hspace{0.05cm}t'}} \right ] \hspace{0.05cm}, \hspace{0.2cm} \hspace{0.15cm}
+
  \hspace{0.05cm}t\hspace{0.05cm}')} } \hspace{0.05cm}, \hspace{0.2cm} \hspace{0.15cm}
  {\rm mit}\hspace{0.15cm}{a}_{\rm \star}\hspace{0.15cm}
+
  {\rm with}\hspace{0.15cm}{a}_{\rm \star}\hspace{0.15cm}
 
  {\rm in}\hspace{0.15cm}
 
  {\rm in}\hspace{0.15cm}
 
  {\rm Neper}\hspace{0.05cm}.$$
 
  {\rm Neper}\hspace{0.05cm}.$$
Diese Gleichung gibt die Fourierrücktransformierte des Produkts $H_2(f) \cdot H_3(f)$ an. Verwendet ist dabei die charakteristische Kabeldämpfung ${a}_{\rm \star} =  \alpha_2 \cdot \sqrt {R/2} \cdot l \hspace{0.05cm}.$
+
*This equation gives the Fourier retransform of the product  $H_2(f) \cdot H_3(f)$ .  
 +
*The characteristic cable attenuation  ${a}_{\rm \star} =  \alpha_2 \cdot \sqrt {R/2} \cdot l \hspace{0.05cm}$ is used here.
  
  
Line 36: Line 37:
  
  
''Hinweise:''  
+
 
*Die Aufgabe gehört zum Kapitel   [[Lineare_zeitinvariante_Systeme/Eigenschaften_von_Koaxialkabeln|Eigenschaften von Koaxialkabeln]].
+
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
+
''Notes:''  
*Sie können zur Überprüfung Ihrer Ergebnisse das interaktive Applet [[Applets:Zeitverhalten_von_Kupferkabeln|Zeitverhalten von Kupferkabeln]] benutzen.
+
*The exercise belongs to the chapter    [[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Koaxialkabeln|Properties of Coaxial Cables]].
*In der [[Aufgaben:4.5_Koaxialkabel_–_Impulsantwort|Aufgabe 4.5]] wurde der Maximalwert der normierten Impulsantwort wie folgt berechnet:
+
:$${\rm Max}\, [T \cdot h_{\rm K}(t)]  = \frac {\sqrt{13.5 \pi} \cdot {\rm e}^{-1.5} }{{a}_{\rm \star}^2} \approx
+
*You can use the  (German language)  interactive SWF applet  [[Applets:Zeitverhalten_von_Kupferkabeln|"Zeitverhalten von Kupferkabeln"]]   ⇒   "Time behavior of copper cables"  to check your results.
 +
*In  [[Aufgaben:Exercise_4.5:_Coaxial_Cable_-_Impulse_Response|Exercise 4.5]]  the maximum value of the normalized impulse response was calculated as follows:
 +
:$${\rm Max}\, \big[T \cdot h_{\rm K}(t)\big ]  = \frac {\sqrt{13.5 \pi} \cdot {\rm e}^{-1.5} }{{a}_{\rm \star}^2} \approx
 
  \frac {1.453 }{{a}_{\rm \star}^2} \hspace{0.05cm}, \hspace{0.2cm} \hspace{0.15cm}
 
  \frac {1.453 }{{a}_{\rm \star}^2} \hspace{0.05cm}, \hspace{0.2cm} \hspace{0.15cm}
  {\rm mit}\hspace{0.15cm}{a}_{\rm \star}\hspace{0.15cm}
+
  {\rm with}\hspace{0.15cm}{a}_{\rm \star}\hspace{0.15cm}
 
  {\rm in}\hspace{0.15cm}
 
  {\rm in}\hspace{0.15cm}
 
  {\rm Neper}\hspace{0.05cm}.$$
 
  {\rm Neper}\hspace{0.05cm}.$$
Line 50: Line 53:
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welcher Teilfrequenzgang ist für die Phasenlaufzeit $\tau$ verantwortlich?
+
{Which partial frequency response is responsible for the phase running time &nbsp;$\tau$&nbsp;?
 
|type="()"}
 
|type="()"}
 
+ $H_1(f)$,
 
+ $H_1(f)$,
Line 60: Line 63:
  
  
{Bestimmen Sie die Bitrate des Binärsystems, wenn $\tau\hspace{0.03cm}' = \tau/T = 694$ beträgt.
+
{Determine the bit rate of the binary system when &nbsp;$\tau\hspace{0.05cm}' = \tau/T = 694$&nbsp;.
 
|type="{}"}
 
|type="{}"}
 
$R \ = \ $  { 20 3% } $\ \rm Mbit/s$
 
$R \ = \ $  { 20 3% } $\ \rm Mbit/s$
  
  
{Geben Sie die charakteristische Kabeldämpfung ${a}_{\rm \star}$ zur gemeinsamen Beschreibung der Frequenzgänge $H_2(f)$ und $H_3(f)$ an.
+
{Give the characteristic cable attenuation &nbsp;${a}_{\rm \star}$&nbsp; for the combined description of the frequency responses &nbsp;$H_2(f)$&nbsp; and &nbsp;$H_3(f)$&nbsp;.
 
|type="{}"}
 
|type="{}"}
 
${a}_{\rm \star} \ = \ $  { 8.6 3% } $\ \rm Np$
 
${a}_{\rm \star} \ = \ $  { 8.6 3% } $\ \rm Np$
  
  
{Bestimmen Sie den (normierten) Maximalwert der Impulsantwort.
+
{Determine the (normalized) maximum value of the impulse response.
 
|type="{}"}
 
|type="{}"}
${\rm Max}\, [T \cdot h_{\rm K}(t)] \ = \ $ { 0.02 3% }
+
${\rm Max}\, \big[T \cdot h_{\rm K}(t)\big] \ = \ $ { 0.02 3% }
  
  
{Welche der nachfolgenden Aussagen sind zutreffend?
+
{Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
+ Verzerrungen werden ohne $H_1(f)$ richtig wiedergegeben.
+
+ Distortions are reproduced correctly without &nbsp;$H_1(f)$&nbsp;.
- Verzerrungen werden ohne $H_2(f)$ richtig wiedergegeben.
+
- Distortions are reproduced correctly without &nbsp;$H_2(f)$&nbsp;.
- Verzerrungen werden ohne $H_3(f)$ richtig wiedergegeben.
+
- Distortions are reproduced correctly without &nbsp;$H_3(f)$&nbsp;.
  
  
Line 85: Line 88:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die Spektraldarstellung eines Laufzeitgliedes lautet ${\rm e}^{-{\rm j} 2 \pi f \tau}$. Ein Vergleich mit der Angabenseite zeigt, dass $H_1(f)$ genau diesem Ansatz genügt &nbsp; &#8658; &nbsp;<u>Alternative 1</u>.
+
'''(1)'''&nbsp; <u>Only solution 1</u> is correct:
 +
*The spectral representation of a running time term is&nbsp; ${\rm e}^{-{\rm j} \hspace{0.05cm}\cdot\hspace{0.05cm}  2 \pi \hspace{0.05cm}\cdot\hspace{0.05cm} f \hspace{0.05cm}\cdot\hspace{0.05cm}\tau}$.  
 +
*A comparison with the information provided shows that&nbsp; $H_1(f)$&nbsp; exactly satisfies this approach.
  
'''(2)'''&nbsp; Entsprechend dem Angabenblatt gilt:
+
 
$$2\pi \cdot f \cdot \tau = \beta_1 \cdot f \cdot l \Rightarrow \hspace{0.3cm}\tau= \frac {\beta_1 \cdot l}{2\pi} =
+
 
 +
'''(2)'''&nbsp; According to the information provided, the following applies:
 +
:$$2\pi \cdot f \cdot \tau = \beta_1 \cdot f \cdot l \Rightarrow \hspace{0.3cm}\tau= \frac {\beta_1 \cdot l}{2\pi} =
 
  \frac {21.78\, {\rm rad}/{({\rm km \cdot MHz})}\cdot 10\,{\rm km}}{2\pi} =
 
  \frac {21.78\, {\rm rad}/{({\rm km \cdot MHz})}\cdot 10\,{\rm km}}{2\pi} =
  34.7\,{\rm \mu s}$$
+
  34.7\,{\rm &micro; s}$$
$$\Rightarrow \hspace{0.3cm}\tau '=  {\tau}/{T}  = 694 \Rightarrow \hspace{0.3cm}
+
:$$\Rightarrow \hspace{0.3cm}\tau '=  {\tau}/{T}  = 694 \Rightarrow \hspace{0.3cm}
  T = \frac {34.7\,{\rm \mu s}}{700} \approx
+
  T = \frac {34.7\,{\rm &micro; s}}{700} \approx
  0.05\,{\rm \mu s}\hspace{0.05cm}.$$
+
  0.05\,{\rm &micro; s}\hspace{0.05cm}.$$
Die Bitrate ist gleich dem Kehrwert der Symboldauer: $\underline{R = 20 \ \rm Mbit/s}$.
+
*The bit rate is equal to the reciprocal of the symbol duration:
 +
:$$\underline{R = 20 \ \rm Mbit/s}.$$
  
  
'''(3)'''&nbsp; Für die charakteristische Kabeldämpfung erhält man somit:
+
 
$${\rm a}_{\rm \star} =  \alpha_2 \cdot \sqrt {R/2} \cdot l =
+
'''(3)'''&nbsp; For the characteristic cable attenuation one obtains:
 +
:$${a}_{\rm \star} =  \alpha_2 \cdot \sqrt {R/2} \cdot l =
 
  0.2722\, \frac{\rm Np}{\rm km \cdot \sqrt{MHz}} \cdot \sqrt {10\,{\rm MHz}} \cdot 10\,{\rm km} \hspace{0.15cm}\underline{\approx
 
  0.2722\, \frac{\rm Np}{\rm km \cdot \sqrt{MHz}} \cdot \sqrt {10\,{\rm MHz}} \cdot 10\,{\rm km} \hspace{0.15cm}\underline{\approx
 
  8.6\,{\rm Np}}\hspace{0.05cm}.$$
 
  8.6\,{\rm Np}}\hspace{0.05cm}.$$
Der entsprechende dB&ndash;Wert ist $75 \ \rm dB$.
+
*The corresponding dB value is&nbsp; ${a}_{\rm \star} = 75 \ \rm dB$.
  
'''(4)'''&nbsp; Mit der angegebenen Gleichung und dem Ergebnis der Teilaufgabe (3) ergibt sich:
+
 
$${\rm Max}[T \cdot h_{\rm K}(t)]  \approx
+
 
  \frac {1.453 }{{\rm a}_{\rm \star}^2} = \frac {1.453 }{8.6^2}
+
'''(4)'''&nbsp; Using the given equation and the result of subtask&nbsp; '''(3)'''&nbsp;, we obtain:
 +
:$${\rm Max}\, \big[T \cdot h_{\rm K}(t)\big]  \approx
 +
  \frac {1.453 }{{a}_{\rm \star}^2} = \frac {1.453 }{8.6^2}
 
\hspace{0.15cm}\underline{ \approx 0.02}\hspace{0.05cm}.$$
 
\hspace{0.15cm}\underline{ \approx 0.02}\hspace{0.05cm}.$$
  
'''(5)'''&nbsp; Richtig ist <u>nur Aussage 1</u>: $H_1(f)$ beschreibt die frequenzunabhängige Laufzeit, die keine Verzerrung zur Folge hat.
 
  
Dagegen sollte man zur Berechnung der Impulsantwort auf keinen Fall auf $H_2(f)$ oder $H_3(f)$ verzichten, da es sonst es zu gravierenden Fehlern kommen würde:
+
 
* Die Impulsantwort $h_2(t)$ als die Fourierrücktransformierte von $H_2(f)$ ist eine gerade Funktion mit dem Maximum bei $t = 0$ und erstreckt sich in beide Richtungen über Hunderte von Symbolen.
+
'''(5)'''&nbsp; <u>Only solution 1</u> is correct: &nbsp; $H_1(f)$&nbsp; describes the frequency-independent running time which does not result in any distortion.
* Dagegen ist die Fourierrücktransformierte von $H_3(f)$ eine ungerade Funktion mit einer Sprungstelle bei $t = 0$. Für $t > 0$ fällt $h_3(t)$ ähnlich &ndash; aber nicht exakt &ndash; wie eine Exponentialfunktion ab. Für negative Zeiten $t$ gilt $h_3(t) = - h_3(|t|)$.
+
 
* Erst die Faltung $h_2(t) \star h_3(t)$ liefert die kausale Impulsantwort, allerdings ohne die Phasenlaufzeit $\tau$, die durch $H_1(f)$ berücksichtigt wird.
+
On the other hand,&nbsp; $H_2(f)$&nbsp; or&nbsp; $H_3(f)$&nbsp; should never be omitted for the calculation of the impulse response, otherwise serious errors would occur:
 +
* The impulse response&nbsp; $h_2(t)$&nbsp; as the Fourier retransform of&nbsp; $H_2(f)$&nbsp; is an even function with the maximum at&nbsp; $t = 0$&nbsp; and extends in both directions over hundreds of symbols.
 +
* In contrast, the Fourier retransform of&nbsp; $H_3(f)$&nbsp; is an odd function with a point of discontinuity at&nbsp; $t = 0$.  
 +
*For&nbsp; $t > 0$&nbsp;, &nbsp; $h_3(t)$&nbsp; drops similarly &ndash; but not exactly &ndash; to an exponential function. For negative times&nbsp; $t$&nbsp;, &nbsp; $h_3(t) = - h_3(|t|)$ is valid.
 +
* Only the convolution&nbsp; $h_2(t) \star h_3(t)$&nbsp; yields the causal impulse response, but without the phase running time&nbsp; $\tau$, which is considered in this model by&nbsp; $H_1(f)$&nbsp;.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^4.2 Koaxialkabel^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^4.2 Coaxial Cable^]]

Latest revision as of 10:14, 18 November 2021

Impulse response of a coaxial cable (representation with or without running time)

As in  Exercise 4.5 , we consider a binary transmission system with bit rate  $R$  ⇒   symbol duration  $T= 1/R$.

A  "standard coaxial cable"  $\text{(2.6 mm}$  core diameter,  $\text{9.5 mm}$  outer diameter$)$  of length  $l = 1 \ \rm km$  with the following frequency response is used as transmission medium:

$$H_{\rm K}(f) = {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \beta_1 \hspace{0.05cm}\cdot \hspace{0.05cm} f \hspace{0.05cm}\cdot \hspace{0.05cm}l} \cdot {\rm e}^{- \alpha_2 \hspace{0.01cm} \sqrt{f} \hspace{0.05cm}l} \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2 \hspace{0.05cm}\cdot \hspace{0.05cm} \sqrt{f} \hspace{0.05cm}\cdot \hspace{0.05cm}l} = H_1(f) \cdot H_2(f) \cdot H_3(f)$$

The partial frequency responses  $H_1(f)$,  $H_2(f)$  and  $H_3(f)$  are used here only as abbreviations.  The line parameters are:

$$\beta_1 = 21.78\, \frac{\rm rad}{\rm km \cdot MHz}\hspace{0.05cm}, $$
$$ \alpha_2 = 0.2722\, \frac{\rm Np}{\rm km \cdot \sqrt{MHz}}\hspace{0.05cm},$$
$$ \beta_2 = 0.2722\, \frac{\rm rad}{\rm km \cdot \sqrt{MHz}} \hspace{0.05cm}.$$

The graph shows the resulting impulse response  $h_{\rm K}(t\hspace{0.05cm}')$, where  $t\hspace{0.05cm}' = t/T$  represents the normalized time. Without considering the (normalized) phase running time  $\tau\hspace{0.05cm}' = \tau/T$ ,  $h_{\rm K}(t\hspace{0.05cm}')$  can be written as follows:

$$h_{\rm K}(t\hspace{0.05cm}') = \frac {1}{T} \cdot \frac {a_\rm \star/\pi}{ \sqrt{2 \hspace{0.05cm}t\hspace{0.05cm}'^3}}\cdot {\rm e}^{ -{a_\rm \star^2}/( {2\pi \hspace{0.05cm}t\hspace{0.05cm}')} } \hspace{0.05cm}, \hspace{0.2cm} \hspace{0.15cm} {\rm with}\hspace{0.15cm}{a}_{\rm \star}\hspace{0.15cm} {\rm in}\hspace{0.15cm} {\rm Neper}\hspace{0.05cm}.$$
  • This equation gives the Fourier retransform of the product  $H_2(f) \cdot H_3(f)$ .
  • The characteristic cable attenuation  ${a}_{\rm \star} = \alpha_2 \cdot \sqrt {R/2} \cdot l \hspace{0.05cm}$ is used here.





Notes:

  • You can use the  (German language)  interactive SWF applet  "Zeitverhalten von Kupferkabeln"   ⇒   "Time behavior of copper cables"  to check your results.
  • In  Exercise 4.5  the maximum value of the normalized impulse response was calculated as follows:
$${\rm Max}\, \big[T \cdot h_{\rm K}(t)\big ] = \frac {\sqrt{13.5 \pi} \cdot {\rm e}^{-1.5} }{{a}_{\rm \star}^2} \approx \frac {1.453 }{{a}_{\rm \star}^2} \hspace{0.05cm}, \hspace{0.2cm} \hspace{0.15cm} {\rm with}\hspace{0.15cm}{a}_{\rm \star}\hspace{0.15cm} {\rm in}\hspace{0.15cm} {\rm Neper}\hspace{0.05cm}.$$



Questions

1

Which partial frequency response is responsible for the phase running time  $\tau$ ?

$H_1(f)$,
$H_2(f)$,
$H_3(f)$.

2

Determine the bit rate of the binary system when  $\tau\hspace{0.05cm}' = \tau/T = 694$ .

$R \ = \ $

$\ \rm Mbit/s$

3

Give the characteristic cable attenuation  ${a}_{\rm \star}$  for the combined description of the frequency responses  $H_2(f)$  and  $H_3(f)$ .

${a}_{\rm \star} \ = \ $

$\ \rm Np$

4

Determine the (normalized) maximum value of the impulse response.

${\rm Max}\, \big[T \cdot h_{\rm K}(t)\big] \ = \ $

5

Which of the following statements are true?

Distortions are reproduced correctly without  $H_1(f)$ .
Distortions are reproduced correctly without  $H_2(f)$ .
Distortions are reproduced correctly without  $H_3(f)$ .


Solution

(1)  Only solution 1 is correct:

  • The spectral representation of a running time term is  ${\rm e}^{-{\rm j} \hspace{0.05cm}\cdot\hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot\hspace{0.05cm} f \hspace{0.05cm}\cdot\hspace{0.05cm}\tau}$.
  • A comparison with the information provided shows that  $H_1(f)$  exactly satisfies this approach.


(2)  According to the information provided, the following applies:

$$2\pi \cdot f \cdot \tau = \beta_1 \cdot f \cdot l \Rightarrow \hspace{0.3cm}\tau= \frac {\beta_1 \cdot l}{2\pi} = \frac {21.78\, {\rm rad}/{({\rm km \cdot MHz})}\cdot 10\,{\rm km}}{2\pi} = 34.7\,{\rm µ s}$$
$$\Rightarrow \hspace{0.3cm}\tau '= {\tau}/{T} = 694 \Rightarrow \hspace{0.3cm} T = \frac {34.7\,{\rm µ s}}{700} \approx 0.05\,{\rm µ s}\hspace{0.05cm}.$$
  • The bit rate is equal to the reciprocal of the symbol duration:
$$\underline{R = 20 \ \rm Mbit/s}.$$


(3)  For the characteristic cable attenuation one obtains:

$${a}_{\rm \star} = \alpha_2 \cdot \sqrt {R/2} \cdot l = 0.2722\, \frac{\rm Np}{\rm km \cdot \sqrt{MHz}} \cdot \sqrt {10\,{\rm MHz}} \cdot 10\,{\rm km} \hspace{0.15cm}\underline{\approx 8.6\,{\rm Np}}\hspace{0.05cm}.$$
  • The corresponding dB value is  ${a}_{\rm \star} = 75 \ \rm dB$.


(4)  Using the given equation and the result of subtask  (3) , we obtain:

$${\rm Max}\, \big[T \cdot h_{\rm K}(t)\big] \approx \frac {1.453 }{{a}_{\rm \star}^2} = \frac {1.453 }{8.6^2} \hspace{0.15cm}\underline{ \approx 0.02}\hspace{0.05cm}.$$


(5)  Only solution 1 is correct:   $H_1(f)$  describes the frequency-independent running time which does not result in any distortion.

On the other hand,  $H_2(f)$  or  $H_3(f)$  should never be omitted for the calculation of the impulse response, otherwise serious errors would occur:

  • The impulse response  $h_2(t)$  as the Fourier retransform of  $H_2(f)$  is an even function with the maximum at  $t = 0$  and extends in both directions over hundreds of symbols.
  • In contrast, the Fourier retransform of  $H_3(f)$  is an odd function with a point of discontinuity at  $t = 0$.
  • For  $t > 0$ ,   $h_3(t)$  drops similarly – but not exactly – to an exponential function. For negative times  $t$ ,   $h_3(t) = - h_3(|t|)$ is valid.
  • Only the convolution  $h_2(t) \star h_3(t)$  yields the causal impulse response, but without the phase running time  $\tau$, which is considered in this model by  $H_1(f)$ .