Difference between revisions of "Aufgaben:Exercise 3.2: Spectrum with Angle Modulation"

From LNTwww
m (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
 
(16 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Phasenmodulation (PM)
+
{{quiz-Header|Buchseite=Modulation_Methods/Phase_Modulation_(PM)
 
}}
 
}}
  
[[File:P_ID1081__Mod_A_3_2.png|right|frame|Tabelle der Besselfunktionen]]
+
[[File:P_ID1081__Mod_A_3_2.png|right|frame|Table of Bessel functions]]
Es wird hier von folgenden Gleichungen ausgegangen:
+
The following equations are assumed here:
* Quellensignal:
+
* Source signal:
 
:$$q(t) = 2\,{\rm V} \cdot \sin(2 \pi \cdot 3\,{\rm kHz} \cdot t)\hspace{0.05cm},$$
 
:$$q(t) = 2\,{\rm V} \cdot \sin(2 \pi \cdot 3\,{\rm kHz} \cdot t)\hspace{0.05cm},$$
* Sendesignal:
+
* Transmitted signal:
:$$s(t) = 1\,{\rm V} \cdot \cos(2 \pi \cdot 100\,{\rm kHz} \cdot t + K_{\rm M} \cdot q(t))\hspace{0.05cm},$$
+
:$$s(t) = 1\,{\rm V} \cdot \cos\hspace{-0.1cm}\big[2 \pi \cdot 100\,{\rm kHz} \cdot t + K_{\rm M} \cdot q(t)\big ]\hspace{0.05cm},$$
* idealer Kanal, d.h. das Empfangssignal:
+
* Received signal (ideal channel):
:$$r(t)  =  s(t) =  1\,{\rm V} \cdot \cos(2 \pi \cdot 100\,{\rm kHz} \cdot t + \phi(t))\hspace{0.05cm},$$
+
:$$r(t)  =  s(t) =  1\,{\rm V} \cdot \cos\hspace{-0.1cm}\big[2 \pi \cdot 100\,{\rm kHz} \cdot t + \phi(t)\big ]\hspace{0.05cm},$$
* idealer Demodulator;
+
* ideal demodulator:
 
:$$ v(t) = \frac{1}{ K_{\rm M}} \cdot \phi(t)\hspace{0.05cm}.$$
 
:$$ v(t) = \frac{1}{ K_{\rm M}} \cdot \phi(t)\hspace{0.05cm}.$$
Die Grafik zeigt die Besselfunktionen erster Art und ''n''-ter Ordnung in tabellarischer Form.
+
The graphs shows the   $n$–th order Bessel functions of the first kind   ${\rm J}_n (\eta)$  in table form.
  
  
  
''Hinweise:''  
+
 
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/Phasenmodulation_(PM)|Phasenmodulation]].
+
 
*Bezug genommen wird insbesondere auf die Seiten [[Modulationsverfahren/Phasenmodulation_(PM)#Spektralfunktion_eines_phasenmodulierten_Sinussignals|Spektralfunktion eines phasenmodulierten Sinussignals]] sowie [[Modulationsverfahren/Phasenmodulation_(PM)#Interpretation_des_Besselspektrums|Interpretation des Besselspektrums]].
+
 
 +
 
 +
 
 +
 
 +
''Hints:''  
 +
*This exercise belongs to the chapter  [[Modulation_Methods/Phase_Modulation_(PM)|Phase Modulation]].
 +
*Particular reference is made to the pages  [[Modulation_Methods/Phasenmodulation_(PM)#Spectral_function_of_a_phase-modulated_sine_signal|Spectral function of a phase-modulated sine signal]]  and  [[Modulation_Methods/Phase_Modulation_(PM)#Interpretation_of_the_Bessel_spectrum|Interpretation of the Bessel spectrum]].
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welches Modulationsverfahren liegt hier vor?
+
{Which modulation method is used here?
|type="[]"}
+
|type="()"}
- Amplitudenmodulation.
+
- Amplitude modulation.
+ Phasenmodulation.
+
+ Phase modulation.
- Frequenzmodulation.
+
- Frequency modulation.
  
{Welches Modulationsverfahren würden Sie wählen, wenn die Kanalbandbreite nur $B_{\rm K} = 10 \ \rm kHz$ betragen würde?
+
{Which modulation method would you choose if the channel bandwidth was only &nbsp;$B_{\rm K} = 10 \ \rm kHz$&nbsp;?
|type="[]"}
+
|type="()"}
+ Amplitudenmodulation.
+
+ Amplitude modulation.
- Phasenmodulation.
+
- Phase modulation.
- Frequenzmodulation.
+
- Frequency modulation.
  
{Wie ist die Modulatorkonstante $K_{\rm M}$ zu wählen, damit der Phasenhub $η = 1$ beträgt?
+
{How should one choose the modulator constant&nbsp;$K_{\rm M}$&nbsp; for a phase deviation of &nbsp;$η = 1$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$K_{\rm M} \ = \ $ { 0.5 3% } $\ \rm 1/V$  
 
$K_{\rm M} \ = \ $ { 0.5 3% } $\ \rm 1/V$  
  
{Berechnen Sie das Spektrum $S_{\rm TP}(f)$ des äquivalenten Tiefpass–Signals $s_{\rm TP}(t)$.  
+
{Calculate the spectrum &nbsp;$S_{\rm TP}(f)$&nbsp; of the equivalent low-pass signal &nbsp;$s_{\rm TP}(t)$.&nbsp;
<br>Wie groß sind die Gewichte der Spektrallinien bei $f = 0$ und $f = -3 \ \rm kHz$?
+
What are the weights of the spectral lines at &nbsp;$f = 0$&nbsp; and &nbsp;$f = -3 \ \rm kHz$?
 
|type="{}"}
 
|type="{}"}
 
$S_{\rm TP}(f = 0)\ = \ $ { 0.765 3% } $\ \rm V$  
 
$S_{\rm TP}(f = 0)\ = \ $ { 0.765 3% } $\ \rm V$  
 
$S_{\rm TP}(f = -3\ \rm kHz) \ = \ $ { -0.453--0.427 } $\ \rm V$  
 
$S_{\rm TP}(f = -3\ \rm kHz) \ = \ $ { -0.453--0.427 } $\ \rm V$  
  
{Berechnen Sie die Spektren des analytischen Signals $s_{\rm +}(t)$sowie des physikalischen Signals $s(t)$.  
+
{Calculate the spectra of the analytical signal&nbsp;$s_{\rm +}(t)$&nbsp; and the physical signal &nbsp;$s(t)$.&nbsp; What are the weights of the spectral lines at &nbsp;$f = 97 \ \rm kHz$?
<br>Wie groß sind die Gewichte der Spektrallinien bei $f = 97 \ \rm kHz$?
 
 
|type="{}"}
 
|type="{}"}
 
$S_+(f = 97  \ \rm kHz)\ = \ $ { -0.453--0.427 } $\ \rm V$  
 
$S_+(f = 97  \ \rm kHz)\ = \ $ { -0.453--0.427 } $\ \rm V$  
Line 55: Line 60:
  
  
{Wie groß ist die erforderliche Kanalbandbreite $B_{\rm K}$ für $ η = 1$, wenn man (betragsmäßige) Impulsgewichte kleiner als $0.01$ vernachlässigt?
+
{What is the required channel bandwidth &nbsp;$B_{\rm K}$&nbsp; for &nbsp;$ η = 1$, if one ignores pulse weights smaller (in magnitude) than&nbsp;$0.01$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$η = 1\text{:} \ \  \ B_{\rm K}\ = \ $ { 18 3% } $\ \rm kHz$  
 
$η = 1\text{:} \ \  \ B_{\rm K}\ = \ $ { 18 3% } $\ \rm kHz$  
  
{Welche Kanalbandbreiten würden sich für $η = 2$ und $η = 3$ ergeben?
+
{What would be the channel bandwidths for &nbsp;$η = 2$&nbsp; and &nbsp;$η = 3$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$η = 2\text{:} \ \ \  B_{\rm K}\ = \ $ { 24 3% } $\ \rm kHz$  
 
$η = 2\text{:} \ \ \  B_{\rm K}\ = \ $ { 24 3% } $\ \rm kHz$  
Line 65: Line 70:
  
 
</quiz>
 
</quiz>
 +
 +
===Solution===
 +
{{ML-Kopf}}
 +
'''(1)'''&nbsp; The phase&nbsp; $ϕ(t)$&nbsp; is proportional to the source signal&nbsp; $q(t)$ &nbsp; ⇒ &nbsp; this is a phase modulation  &nbsp; ⇒ &nbsp; <u>Answer 2</u>.
 +
  
  
===Musterlösung===
+
'''(2)'''&nbsp; An angle modulation&nbsp; (PM, FM)&nbsp; always results in nonlinear distortion when the channel is bandlimited.
{{ML-Kopf}}
+
*In contrast, double-sideband amplitude modulation&nbsp; (DSB-AM)&nbsp; here enables distortion-free transmission with&nbsp; $B_{\rm K} = 6 \ \rm kHz$&nbsp;; ⇒ &nbsp; <u>Answer 1</u>.
'''(1)'''&nbsp; Die Phase $ϕ(t)$ ist proportional zum Quellensignal $q(t)$ &nbsp; &nbsp; es handelt sich um eine Phasenmodulation  &nbsp; ⇒ &nbsp; <u>Antwort 2</u>.
 
  
  
'''(2)'''&nbsp; Eine Winkelmodulation (PM, FM) führt bei bandbegrenztem Kanal stets zu nichtlinearen Verzerrungen. Bei Zweiseitenband-Amplitudenmodulation (ZSB-AM) ist hier dagegen bereits mit $B_{\rm K} = 6 \ \rm kHz$ eine verzerrungsfreie Übertragung möglich  &nbsp; ⇒ &nbsp; <u>Antwort 1</u>.
 
  
 +
'''(3)'''&nbsp; The modulation index (or phase deviation) is equal to&nbsp; $η = K_{\rm M} · A_{\rm N}$ for phase modulation.
 +
*Thus, the modulator constant must be set to&nbsp; $K_{\rm M} = 1/A_{\rm N}\hspace{0.15cm}\underline { = 0.5 \rm \cdot {1}/{V}}$&nbsp; to give &nbsp; $η = 1$&nbsp;.
  
'''(3)'''&nbsp; Der Modulationsindex (oder Phasenhub) ist bei Phasenmodulation gleich $η = K_{\rm M} · A_{\rm N}$. Somit ist die Modulatorkonstante $K_{\rm M} = 1/A_{\rm N}\hspace{0.15cm}\underline { = 0.5 \rm \cdot {1}/{V}}$ zu wählen, damit sich $η = 1$ ergibt.
 
  
  
'''(4)'''&nbsp; Es liegt ein sogenanntes Besselspektrum vor:
+
'''(4)'''&nbsp; A so-called Bessel spectrum is present:
 
:$$ S_{\rm TP}(f) = A_{\rm T} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta (f - n \cdot f_{\rm N})\hspace{0.05cm}.$$
 
:$$ S_{\rm TP}(f) = A_{\rm T} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta (f - n \cdot f_{\rm N})\hspace{0.05cm}.$$
Dieses ist ein diskretes Spektrum mit Anteilen bei $f = n · f_{\rm N}$, wobei $n$ ganzzahlig ist. Die Gewichte der Diracfunktionen sind durch die Besselfunktionen gegeben. Mit $A_{\rm T} = 1\ \rm  V$ erhält man:
+
*This is a discrete spectrum with components at &nbsp; $f = n · f_{\rm N}$, where&nbsp; $n$&nbsp; is an integer.  
[[File:P_ID1082__Mod_A_3_2_d.png|right|frame|PM–Spektrum im äquivalenten Tiefpass–Bereich]]
+
*The weights of the Dirac functions are given by the Bessel functions.&nbsp; When&nbsp; $A_{\rm T} = 1\ \rm  V$&nbsp;, one obtains:
 +
[[File:P_ID1082__Mod_A_3_2_d.png|right|frame|PM spectrum in the equivalent low-pass range]]
 
:$$ S_{\rm TP}(f = 0)  =  A_{\rm T} \cdot {\rm J}_0 (\eta = 1) \hspace{0.15cm}\underline {= 0.765\,{\rm V}},$$
 
:$$ S_{\rm TP}(f = 0)  =  A_{\rm T} \cdot {\rm J}_0 (\eta = 1) \hspace{0.15cm}\underline {= 0.765\,{\rm V}},$$
 
:$$ S_{\rm TP}(f = f_{\rm N})  =  A_{\rm T} \cdot {\rm J}_1 (\eta = 1)\hspace{0.15cm} = 0.440\,{\rm V},$$
 
:$$ S_{\rm TP}(f = f_{\rm N})  =  A_{\rm T} \cdot {\rm J}_1 (\eta = 1)\hspace{0.15cm} = 0.440\,{\rm V},$$
 
:$$ S_{\rm TP}(f = 2 \cdot f_{\rm N})  =  A_{\rm T} \cdot {\rm J}_2 (\eta = 1) = 0.115\,{\rm V} \hspace{0.05cm}.$$
 
:$$ S_{\rm TP}(f = 2 \cdot f_{\rm N})  =  A_{\rm T} \cdot {\rm J}_2 (\eta = 1) = 0.115\,{\rm V} \hspace{0.05cm}.$$
Aufgrund der Symmetrie ${\rm J}_{-n} (\eta) = (-1)^n \cdot {\rm J}_{n} (\eta)$ erhält man für die Spektrallinie bei $f = -3 \ \rm kHz$:
+
*Due to the symmetry &nbsp; ${\rm J}_{-n} (\eta) = (-1)^n \cdot {\rm J}_{n} (\eta)$&nbsp;, the spectral line at &nbsp; $f = -3 \ \rm kHz$ is obtained as:
 
:$$S_{\rm TP}(f = -f_{\rm N}) = -S_{\rm TP}(f = +f_{\rm N}) =\hspace{-0.01cm}\underline { -0.440\,{\rm V} \hspace{0.05cm}}.$$
 
:$$S_{\rm TP}(f = -f_{\rm N}) = -S_{\rm TP}(f = +f_{\rm N}) =\hspace{-0.01cm}\underline { -0.440\,{\rm V} \hspace{0.05cm}}.$$
''Anmerkung'': Eigentlich müsste man für den Spektralwert bei $f = 0$ schreiben:
+
''Note'':&nbsp; For the spectral value at&nbsp; $f = 0$&nbsp; we should actually write:
 
:$$S_{\rm TP}(f = 0) = 0.765\,{\rm V} \cdot \delta (f) \hspace{0.05cm}.$$
 
:$$S_{\rm TP}(f = 0) = 0.765\,{\rm V} \cdot \delta (f) \hspace{0.05cm}.$$
Dieser ist somit aufgrund der Diracfunktion unendlich groß, lediglich das Gewicht der Diracfunktion ist endlich. Gleiches gilt für alle diskreten Spektrallinien.
+
*This is therefore infinite due to the Dirac function, and only the weight of the Dirac function is finite.
 +
*The same applies for all discrete spectral lines.
  
  
'''(5)'''&nbsp; $S_+(f)$ ergibt sich aus $S_{\rm TP}(f)$ durch Verschiebung um $f_{\rm T}$ nach rechts. Deshalb ist
+
 
 +
'''(5)'''&nbsp; $S_+(f)$&nbsp; is obtained from &nbsp; $S_{\rm TP}(f)$&nbsp; by shifting &nbsp; $f_{\rm T}$&nbsp;to the right.&nbsp; Therefore
 
:$$S_{\rm +}(f = 97\,{\rm kHz}) = S_{\rm TP}(f = -3\,{\rm kHz}) \hspace{0.15cm}\underline {=-0.440\,{\rm V}} \hspace{0.05cm}.$$
 
:$$S_{\rm +}(f = 97\,{\rm kHz}) = S_{\rm TP}(f = -3\,{\rm kHz}) \hspace{0.15cm}\underline {=-0.440\,{\rm V}} \hspace{0.05cm}.$$
Das tatsächliche Spektrum unterscheidet sich von $S_+(f)$ bei positiven Frequenzen um den Faktor $1/2$:
+
*The actual spectrum differs from&nbsp; $S_+(f)$&nbsp; by a factor of &nbsp; $1/2$ at positive frequencies:
 
:$$S(f = 97\,{\rm kHz}) = {1}/{2} \cdot S_{\rm +}(f = 97\,{\rm kHz}) \hspace{0.15cm}\underline {=-0.220\,{\rm V}} \hspace{0.05cm}.$$
 
:$$S(f = 97\,{\rm kHz}) = {1}/{2} \cdot S_{\rm +}(f = 97\,{\rm kHz}) \hspace{0.15cm}\underline {=-0.220\,{\rm V}} \hspace{0.05cm}.$$
Allgemein kann geschrieben werden:
+
*In general, we can write:
 
:$$ S(f) = \frac{A_{\rm T}}{2} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta (f \pm (f_{\rm T}+ n \cdot f_{\rm N}))\hspace{0.05cm}.$$
 
:$$ S(f) = \frac{A_{\rm T}}{2} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta (f \pm (f_{\rm T}+ n \cdot f_{\rm N}))\hspace{0.05cm}.$$
  
'''(6)'''&nbsp; Unter der vorgeschlagenen Vernachlässigung können alle Bessellinien ${\rm J}_{|n|>3}$ außer Acht gelassen werden. Damit erhält man $B_{\rm K} = 2 · 3 · f_{\rm N}\hspace{0.15cm}\underline { = 18 \ \rm kHz}$.
 
  
  
'''(7)'''&nbsp; Die Zahlenwerte in der Tabelle auf der Angabenseite zeigen, dass nun folgende Kanalbandbreiten erforderlich wären:
+
'''(6)'''&nbsp; Under the suggested conditions, all the Bessel lines&nbsp; ${\rm J}_{|n|>3}$&nbsp; can be disregarded.
 +
* This gives&nbsp; $B_{\rm K} = 2 · 3 · f_{\rm N}\hspace{0.15cm}\underline { = 18 \ \rm kHz}$.
 +
 
 +
 
 +
 
 +
'''(7)'''&nbsp; The numerical values in the table given on the exercise page show that the following channel bandwidths would now be required:  
 
*für $η = 2$: &nbsp; &nbsp;  $B_{\rm K} \hspace{0.15cm}\underline { = 24 \ \rm kHz}$,
 
*für $η = 2$: &nbsp; &nbsp;  $B_{\rm K} \hspace{0.15cm}\underline { = 24 \ \rm kHz}$,
*für $η = 3$: &nbsp; &nbsp;  $B_{\rm K} \hspace{0.15cm}\underline { = 36 \ \rm kHz}$
+
*für $η = 3$: &nbsp; &nbsp;  $B_{\rm K} \hspace{0.15cm}\underline { = 36 \ \rm kHz}$.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 110: Line 126:
  
  
[[Category:Aufgaben zu Modulationsverfahren|^3.1 Phasenmodulation (PM)^]]
+
[[Category:Modulation Methods: Exercises|^3.1 Phase Modulation^]]

Latest revision as of 16:21, 23 January 2023

Table of Bessel functions

The following equations are assumed here:

  • Source signal:
$$q(t) = 2\,{\rm V} \cdot \sin(2 \pi \cdot 3\,{\rm kHz} \cdot t)\hspace{0.05cm},$$
  • Transmitted signal:
$$s(t) = 1\,{\rm V} \cdot \cos\hspace{-0.1cm}\big[2 \pi \cdot 100\,{\rm kHz} \cdot t + K_{\rm M} \cdot q(t)\big ]\hspace{0.05cm},$$
  • Received signal (ideal channel):
$$r(t) = s(t) = 1\,{\rm V} \cdot \cos\hspace{-0.1cm}\big[2 \pi \cdot 100\,{\rm kHz} \cdot t + \phi(t)\big ]\hspace{0.05cm},$$
  • ideal demodulator:
$$ v(t) = \frac{1}{ K_{\rm M}} \cdot \phi(t)\hspace{0.05cm}.$$

The graphs shows the   $n$–th order Bessel functions of the first kind   ${\rm J}_n (\eta)$  in table form.





Hints:


Questions

1

Which modulation method is used here?

Amplitude modulation.
Phase modulation.
Frequency modulation.

2

Which modulation method would you choose if the channel bandwidth was only  $B_{\rm K} = 10 \ \rm kHz$ ?

Amplitude modulation.
Phase modulation.
Frequency modulation.

3

How should one choose the modulator constant $K_{\rm M}$  for a phase deviation of  $η = 1$ ?

$K_{\rm M} \ = \ $

$\ \rm 1/V$

4

Calculate the spectrum  $S_{\rm TP}(f)$  of the equivalent low-pass signal  $s_{\rm TP}(t)$.  What are the weights of the spectral lines at  $f = 0$  and  $f = -3 \ \rm kHz$?

$S_{\rm TP}(f = 0)\ = \ $

$\ \rm V$
$S_{\rm TP}(f = -3\ \rm kHz) \ = \ $

$\ \rm V$

5

Calculate the spectra of the analytical signal $s_{\rm +}(t)$  and the physical signal  $s(t)$.  What are the weights of the spectral lines at  $f = 97 \ \rm kHz$?

$S_+(f = 97 \ \rm kHz)\ = \ $

$\ \rm V$
$S(f = 97 \ \rm kHz)\hspace{0.32cm} = \ $

$\ \rm V$

6

What is the required channel bandwidth  $B_{\rm K}$  for  $ η = 1$, if one ignores pulse weights smaller (in magnitude) than $0.01$ ?

$η = 1\text{:} \ \ \ B_{\rm K}\ = \ $

$\ \rm kHz$

7

What would be the channel bandwidths for  $η = 2$  and  $η = 3$ ?

$η = 2\text{:} \ \ \ B_{\rm K}\ = \ $

$\ \rm kHz$
$η = 3\text{:} \ \ \ B_{\rm K}\ = \ $

$\ \rm kHz$


Solution

(1)  The phase  $ϕ(t)$  is proportional to the source signal  $q(t)$   ⇒   this is a phase modulation   ⇒   Answer 2.


(2)  An angle modulation  (PM, FM)  always results in nonlinear distortion when the channel is bandlimited.

  • In contrast, double-sideband amplitude modulation  (DSB-AM)  here enables distortion-free transmission with  $B_{\rm K} = 6 \ \rm kHz$ ; ⇒   Answer 1.


(3)  The modulation index (or phase deviation) is equal to  $η = K_{\rm M} · A_{\rm N}$ for phase modulation.

  • Thus, the modulator constant must be set to  $K_{\rm M} = 1/A_{\rm N}\hspace{0.15cm}\underline { = 0.5 \rm \cdot {1}/{V}}$  to give   $η = 1$ .


(4)  A so-called Bessel spectrum is present:

$$ S_{\rm TP}(f) = A_{\rm T} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta (f - n \cdot f_{\rm N})\hspace{0.05cm}.$$
  • This is a discrete spectrum with components at   $f = n · f_{\rm N}$, where  $n$  is an integer.
  • The weights of the Dirac functions are given by the Bessel functions.  When  $A_{\rm T} = 1\ \rm V$ , one obtains:
PM spectrum in the equivalent low-pass range
$$ S_{\rm TP}(f = 0) = A_{\rm T} \cdot {\rm J}_0 (\eta = 1) \hspace{0.15cm}\underline {= 0.765\,{\rm V}},$$
$$ S_{\rm TP}(f = f_{\rm N}) = A_{\rm T} \cdot {\rm J}_1 (\eta = 1)\hspace{0.15cm} = 0.440\,{\rm V},$$
$$ S_{\rm TP}(f = 2 \cdot f_{\rm N}) = A_{\rm T} \cdot {\rm J}_2 (\eta = 1) = 0.115\,{\rm V} \hspace{0.05cm}.$$
  • Due to the symmetry   ${\rm J}_{-n} (\eta) = (-1)^n \cdot {\rm J}_{n} (\eta)$ , the spectral line at   $f = -3 \ \rm kHz$ is obtained as:
$$S_{\rm TP}(f = -f_{\rm N}) = -S_{\rm TP}(f = +f_{\rm N}) =\hspace{-0.01cm}\underline { -0.440\,{\rm V} \hspace{0.05cm}}.$$

Note:  For the spectral value at  $f = 0$  we should actually write:

$$S_{\rm TP}(f = 0) = 0.765\,{\rm V} \cdot \delta (f) \hspace{0.05cm}.$$
  • This is therefore infinite due to the Dirac function, and only the weight of the Dirac function is finite.
  • The same applies for all discrete spectral lines.


(5)  $S_+(f)$  is obtained from   $S_{\rm TP}(f)$  by shifting   $f_{\rm T}$ to the right.  Therefore

$$S_{\rm +}(f = 97\,{\rm kHz}) = S_{\rm TP}(f = -3\,{\rm kHz}) \hspace{0.15cm}\underline {=-0.440\,{\rm V}} \hspace{0.05cm}.$$
  • The actual spectrum differs from  $S_+(f)$  by a factor of   $1/2$ at positive frequencies:
$$S(f = 97\,{\rm kHz}) = {1}/{2} \cdot S_{\rm +}(f = 97\,{\rm kHz}) \hspace{0.15cm}\underline {=-0.220\,{\rm V}} \hspace{0.05cm}.$$
  • In general, we can write:
$$ S(f) = \frac{A_{\rm T}}{2} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta (f \pm (f_{\rm T}+ n \cdot f_{\rm N}))\hspace{0.05cm}.$$


(6)  Under the suggested conditions, all the Bessel lines  ${\rm J}_{|n|>3}$  can be disregarded.

  • This gives  $B_{\rm K} = 2 · 3 · f_{\rm N}\hspace{0.15cm}\underline { = 18 \ \rm kHz}$.


(7)  The numerical values in the table given on the exercise page show that the following channel bandwidths would now be required:

  • für $η = 2$:     $B_{\rm K} \hspace{0.15cm}\underline { = 24 \ \rm kHz}$,
  • für $η = 3$:     $B_{\rm K} \hspace{0.15cm}\underline { = 36 \ \rm kHz}$.