Difference between revisions of "Aufgaben:Exercise 4.15: PDF and Covariance Matrix"
m (Textersetzung - „\*\s*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0\.” ein.“ durch „ “) |
|||
(14 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Generalization_to_N-Dimensional_Random_Variables |
}} | }} | ||
− | [[File:P_ID669__Sto_A_4_15.png |right| | + | [[File:P_ID669__Sto_A_4_15.png |right|frame|Two covariance matrices]] |
− | + | We consider here the three-dimensional random variable $\mathbf{x}$, whose commonly represented covariance matrix $\mathbf{K}_{\mathbf{x}}$ is given in the upper graph. The random variable has the following properties: | |
− | * | + | * The three components are Gaussian distributed and it holds for the elements of the covariance matrix: |
:$$K_{ij} = \sigma_i \cdot \sigma_j \cdot \rho_{ij}.$$ | :$$K_{ij} = \sigma_i \cdot \sigma_j \cdot \rho_{ij}.$$ | ||
− | * | + | * Let the elements on the main diagonal be known: |
− | :$$ K_{11} =1, K_{22} =0, K_{33} =0.25.$$ | + | :$$ K_{11} =1, \ K_{22} =0, \ K_{33} =0.25.$$ |
− | * | + | * The correlation coefficient between the coefficients $x_1$ and $x_3$ is $\rho_{13} = 0.8$. |
− | |||
− | + | In the second part of the exercise, consider the random variable $\mathbf{y}$ with the two components $y_1$ and $y_2$ whose covariance matrix $\mathbf{K}_{\mathbf{y}}$ is determined by the given numerical values $(1, \ 0.4, \ 0.25)$ . | |
− | |||
− | |||
− | In | + | The probability density function $\rm (PDF)$ of a zero mean Gaussian two-dimensional random variable $\mathbf{y}$ is as specified on page [[Theory_of_Stochastic_Signals/Generalization_to_N-Dimensional_Random_Variables#Relationship_between_covariance_matrix_and_PDF|"Relationship between covariance matrix and PDF"]] with $N = 2$: |
+ | :$$\mathbf{f_y}(\mathbf{y}) = \frac{1}{{2 \pi \cdot | ||
+ | \sqrt{|\mathbf{K_y}|}}}\cdot {\rm e}^{-{1}/{2} \hspace{0.05cm}\cdot\hspace{0.05cm} \mathbf{y} ^{\rm T}\hspace{0.05cm}\cdot\hspace{0.05cm}\mathbf{K_y}^{-1} \hspace{0.05cm}\cdot\hspace{0.05cm} \mathbf{y} }= C \cdot {\rm e}^{-\gamma_1 \hspace{0.05cm}\cdot\hspace{0.05cm} y_1^2 \hspace{0.1cm}+\hspace{0.1cm} \gamma_2 \hspace{0.05cm}\cdot\hspace{0.05cm} y_2^2 \hspace{0.1cm}+\hspace{0.1cm}\gamma_{12} \hspace{0.05cm}\cdot\hspace{0.05cm} y_1 \hspace{0.05cm}\cdot\hspace{0.05cm} y_2 }.$$ | ||
+ | |||
+ | *In the subtasks '''(5)''' and '''(6)''' the prefactor $C$ and the further PDF coefficients $\gamma_1$, $\gamma_2$ and $\gamma_{12}$ are to be calculated according to this vector representation. | ||
+ | *In contrast, the corresponding equation in conventional approach according to the chapter [[Theory_of_Stochastic_Signals/Two-Dimensional_Gaussian_Random_Variables#Probability_density_function_and_cumulative_distribution_function|"Two-dimensional Gaussian Random Variables"]] would be: | ||
:$$f_{y_1,\hspace{0.1cm}y_2}(y_1,y_2)=\frac{\rm 1}{\rm 2\pi \sigma_1 | :$$f_{y_1,\hspace{0.1cm}y_2}(y_1,y_2)=\frac{\rm 1}{\rm 2\pi \sigma_1 | ||
\sigma_2 \sqrt{\rm 1-\rho^2}}\cdot\exp\Bigg[-\frac{\rm 1}{\rm 2 | \sigma_2 \sqrt{\rm 1-\rho^2}}\cdot\exp\Bigg[-\frac{\rm 1}{\rm 2 | ||
Line 26: | Line 28: | ||
− | + | ||
− | * | + | |
− | * | + | |
− | * | + | Hints: |
+ | *The exercise belongs to the chapter [[Theory_of_Stochastic_Signals/Generalization_to_N-Dimensional_Random_Variables|Generalization to N-Dimensional Random Variables]]. | ||
+ | *Some basics on the application of vectors and matrices can be found in the sections [[Theory_of_Stochastic_Signals/Generalization_to_N-Dimensional_Random_Variables#Basics_of_matrix_operations:_Determinant_of_a_matrix|"Determinant of a Matrix"]] and [[Theory_of_Stochastic_Signals/Generalization_to_N-Dimensional_Random_Variables#Basics_of_matrix_operations:_Inverse_of_a_matrix|Inverse of a Matrix]] . | ||
+ | *Reference is also made to the chapter [[Theory_of_Stochastic_Signals/Two-Dimensional_Gaussian_Random_Variables|"Two-Dimensional Gaussian Random Variables"]]. | ||
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Which of the following statements are true? |
|type="[]"} | |type="[]"} | ||
− | - | + | - The random variable $\mathbf{x}$ is zero mean with certainty. |
− | + | + | + The matrix elements $K_{12}$, $K_{21}$, $K_{23}$ and $K_{32}$ are zero. |
− | - | + | - It holds that $K_{31} = -K_{13}$. |
− | { | + | {Calculate the matrix element of the last row and first column. |
|type="{}"} | |type="{}"} | ||
− | $K_\text{31} \ = $ { 0.4 3% } | + | $K_\text{31} \ = \ $ { 0.4 3% } |
− | { | + | {Calculate the determinant $|\mathbf{K}_{\mathbf{y}}|$. |
|type="{}"} | |type="{}"} | ||
− | $|\mathbf{K}_{\mathbf{y}}| \ = $ { 0.09 3% } | + | $|\mathbf{K}_{\mathbf{y}}| \ = \ $ { 0.09 3% } |
− | { | + | {Calculate the inverse matrix $\mathbf{I}_{\mathbf{y}} = \mathbf{K}_{\mathbf{y}}^{-1}$ with matrix elements. |
$I_{ij}$ : | $I_{ij}$ : | ||
|type="{}"} | |type="{}"} | ||
− | $I_\text{11} \ = $ { 2.777 3% } | + | $I_\text{11} \ = \ $ { 2.777 3% } |
− | $I_\text{12} \ = $ { | + | $I_\text{12} \ = \ $ { -4.454--4.434 } |
− | $I_\text{21} \ = $ { | + | $I_\text{21} \ = \ $ { -4.454--4.434 } |
− | $I_\text{22} \ = $ { 11.111 3% } | + | $I_\text{22} \ = \ $ { 11.111 3% } |
− | { | + | {Calculate the prefactor $C$ of the two-dimensional probability density function. Compare the result |
− | + | with the formula given in the theory section. | |
|type="{}"} | |type="{}"} | ||
− | $C\ = $ { 0.531 3% } | + | $C\ = \ $ { 0.531 3% } |
− | { | + | {Determine the coefficients in the argument of the exponential function. Compare the result with the two-dimensional PDF equation. |
|type="{}"} | |type="{}"} | ||
− | $\gamma_1 \ = $ { 1.389 3% } | + | $\gamma_1 \ = \ $ { 1.389 3% } |
− | $\gamma_2 \ = $ { 5.556 3% } | + | $\gamma_2 \ = \ $ { 5.556 3% } |
− | $\gamma_{12}\ = $ { -4.454--4.434 } | + | $\gamma_{12}\ = \ $ { -4.454--4.434 } |
Line 79: | Line 84: | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' Only <u>the proposed solution 2</u> is correct: |
− | * | + | *On the basis of the covariance matrix $\mathbf{K}_{\mathbf{x}}$ it is not possible to make any statement about whether the underlying random variable $\mathbf{x}$ is zero mean or mean-invariant, since any mean value $\mathbf{m}$ is factored out. |
− | * | + | *To make statements about the mean, the correlation matrix $\mathbf{R}_{\mathbf{x}}$ would have to be known. |
− | * | + | *From $K_{22} = \sigma_2^2 = 0$ it follows necessarily that all other elements in the second row $(K_{21}, K_{23})$ and the second column $(K_{12}, K_{32})$ are also zero. |
− | * | + | *On the other hand, the third statement is false: The elements are symmetric about the main diagonal, so that always $K_{31} = K_{13}$ must hold. |
− | |||
− | |||
− | |||
− | '''(3)''' | + | [[File:P_ID2915__Sto_A_4_15a.png|right|frame|Complete covariance matrix]] |
+ | '''(2)''' From $K_{11} = 1$ and $K_{33} = 0.25$ follow directly $\sigma_1 = 1$ and $\sigma_3 = 0.5$. | ||
+ | *Taken together with the correlation coefficient $\rho_{13} = 0.8$ (see specification sheet), we thus obtain: | ||
+ | :$$K_{13} = K_{31} = \sigma_1 \cdot \sigma_2 \cdot \rho_{13}\hspace{0.15cm}\underline{= 0.4}.$$ | ||
+ | |||
+ | |||
+ | |||
+ | '''(3)''' The determinant of the matrix $\mathbf{K_y}$ is: | ||
:$$|{\mathbf{K_y}}| = 1 \cdot 0.25 - 0.4 \cdot 0.4 \hspace{0.15cm}\underline{= 0.09}.$$ | :$$|{\mathbf{K_y}}| = 1 \cdot 0.25 - 0.4 \cdot 0.4 \hspace{0.15cm}\underline{= 0.09}.$$ | ||
− | '''(4)''' | + | |
+ | '''(4)''' According to the statements on the pages "Determinant of a Matrix" and "Inverse of a Matrix" holds: | ||
:$${\mathbf{I_y}} = {\mathbf{K_y}}^{-1} = | :$${\mathbf{I_y}} = {\mathbf{K_y}}^{-1} = | ||
\frac{1}{|{\mathbf{K_y}}|}\cdot \left[ | \frac{1}{|{\mathbf{K_y}}|}\cdot \left[ | ||
Line 103: | Line 113: | ||
\end{array} \right].$$ | \end{array} \right].$$ | ||
− | + | *With $|\mathbf{K_y}|= 0.09$ therefore holds further: | |
:$$I_{11} = {25}/{9}\hspace{0.15cm}\underline{ = 2.777};\hspace{0.3cm} I_{12} = I_{21} = -40/9 \hspace{0.15cm}\underline{ = -4.447};\hspace{0.3cm}I_{22} = {100}/{9} \hspace{0.15cm}\underline{= | :$$I_{11} = {25}/{9}\hspace{0.15cm}\underline{ = 2.777};\hspace{0.3cm} I_{12} = I_{21} = -40/9 \hspace{0.15cm}\underline{ = -4.447};\hspace{0.3cm}I_{22} = {100}/{9} \hspace{0.15cm}\underline{= | ||
11.111}.$$ | 11.111}.$$ | ||
− | |||
− | |||
− | |||
− | + | '''(5)''' A comparison of $\mathbf{K_y}$ and $\mathbf{K_x}$ with constraint $K_{22} = 0$ shows that $\mathbf{x}$ and $\mathbf{y}$ are identical random variables if one sets $y_1 = x_1$ and $y_2 = x_3$ . | |
− | :$$C =\frac{\rm 1}{\rm 2\pi \sigma_1 \sigma_2 \sqrt{\rm 1-\rho^2}}= | + | *Thus, for the PDF parameters: |
+ | :$$\sigma_1 =1, \hspace{0.3cm} \sigma_2 =0.5, \hspace{0.3cm} \rho =0.8.$$ | ||
+ | |||
+ | *The prefactor according to the general PDF definition is thus: | ||
+ | :$$C =\frac{\rm 1}{\rm 2\pi \cdot \sigma_1 \cdot \sigma_2 \cdot \sqrt{\rm 1-\rho^2}}= | ||
\frac{\rm 1}{\rm 2\pi \cdot 1 \cdot 0.5 \cdot 0.6}= \frac{1}{0.6 | \frac{\rm 1}{\rm 2\pi \cdot 1 \cdot 0.5 \cdot 0.6}= \frac{1}{0.6 | ||
\cdot \pi} \hspace{0.15cm}\underline{\approx 0.531}.$$ | \cdot \pi} \hspace{0.15cm}\underline{\approx 0.531}.$$ | ||
− | + | *With the determinant calculated in subtask '''(3)''' we get the same result: | |
:$$C =\frac{\rm 1}{\rm 2\pi \sqrt{|{\mathbf{K_y}}|}}= \frac{\rm | :$$C =\frac{\rm 1}{\rm 2\pi \sqrt{|{\mathbf{K_y}}|}}= \frac{\rm | ||
1}{\rm 2\pi \sqrt{0.09}} = \frac{1}{0.6 \cdot \pi}.$$ | 1}{\rm 2\pi \sqrt{0.09}} = \frac{1}{0.6 \cdot \pi}.$$ | ||
− | '''(6)''' | + | |
+ | |||
+ | '''(6)''' The inverse matrix computed in subtask '''(4)''' can also be written as follows: | ||
:$${\mathbf{I_y}} = \frac{5}{9}\cdot \left[ | :$${\mathbf{I_y}} = \frac{5}{9}\cdot \left[ | ||
\begin{array}{cc} | \begin{array}{cc} | ||
Line 128: | Line 141: | ||
\end{array} \right].$$ | \end{array} \right].$$ | ||
− | + | *So the argument $A$ of the exponential function is: | |
:$$A = \frac{5}{18}\cdot{\mathbf{y}}^{\rm T}\cdot \left[ | :$$A = \frac{5}{18}\cdot{\mathbf{y}}^{\rm T}\cdot \left[ | ||
\begin{array}{cc} | \begin{array}{cc} | ||
Line 136: | Line 149: | ||
y_2\right).$$ | y_2\right).$$ | ||
− | + | *By comparing coefficients, we get: | |
:$$\gamma_1 = \frac{25}{18} \approx 1.389; \hspace{0.3cm} \gamma_2 = | :$$\gamma_1 = \frac{25}{18} \approx 1.389; \hspace{0.3cm} \gamma_2 = | ||
\frac{100}{18} \approx 5.556; \hspace{0.3cm} \gamma_{12} = - | \frac{100}{18} \approx 5.556; \hspace{0.3cm} \gamma_{12} = - | ||
− | \frac{80}{18} \approx -4 | + | \frac{80}{18} \approx -4,444.$$ |
− | + | *According to the conventional procedure, the same numerical values result: | |
:$$\gamma_1 =\frac{\rm 1}{\rm 2\cdot \sigma_1^2 \cdot ({\rm | :$$\gamma_1 =\frac{\rm 1}{\rm 2\cdot \sigma_1^2 \cdot ({\rm | ||
1-\rho^2})}= | 1-\rho^2})}= | ||
Line 147: | Line 160: | ||
1 \cdot 0.36} \hspace{0.15cm}\underline{ \approx 1.389},$$ | 1 \cdot 0.36} \hspace{0.15cm}\underline{ \approx 1.389},$$ | ||
:$$\gamma_2 =\frac{\rm 1}{\rm 2 \cdot\sigma_2^2 \cdot ({\rm | :$$\gamma_2 =\frac{\rm 1}{\rm 2 \cdot\sigma_2^2 \cdot ({\rm | ||
− | 1-\rho^2})}= \frac{\rm 1}{\rm 2 \cdot 0.25 \cdot 0.36} | + | 1-\rho^2})}= \frac{\rm 1}{\rm 2 \cdot 0.25 \cdot 0.36} = |
− | 4 \cdot \gamma_1 | + | 4 \cdot \gamma_1 \hspace{0.15cm}\underline{\approx 5.556},$$ |
− | :$$\gamma_{12} =-\frac{\rho}{ \sigma_1 | + | :$$\gamma_{12} =-\frac{\rho}{ \sigma_1 \cdot \sigma_2 \cdot ({\rm 1-\rho^2})}= |
-\frac{\rm 0.8}{\rm 1 \cdot 0.5 \cdot 0.36} \hspace{0.15cm}\underline{ \approx -4.444}.$$ | -\frac{\rm 0.8}{\rm 1 \cdot 0.5 \cdot 0.36} \hspace{0.15cm}\underline{ \approx -4.444}.$$ | ||
{{ML-Fuß}} | {{ML-Fuß}} | ||
Line 155: | Line 168: | ||
− | [[Category: | + | [[Category:Theory of Stochastic Signals: Exercises|^4.7 N-dimensionale Zufallsgrößen^]] |
Latest revision as of 12:20, 28 March 2022
We consider here the three-dimensional random variable $\mathbf{x}$, whose commonly represented covariance matrix $\mathbf{K}_{\mathbf{x}}$ is given in the upper graph. The random variable has the following properties:
- The three components are Gaussian distributed and it holds for the elements of the covariance matrix:
- $$K_{ij} = \sigma_i \cdot \sigma_j \cdot \rho_{ij}.$$
- Let the elements on the main diagonal be known:
- $$ K_{11} =1, \ K_{22} =0, \ K_{33} =0.25.$$
- The correlation coefficient between the coefficients $x_1$ and $x_3$ is $\rho_{13} = 0.8$.
In the second part of the exercise, consider the random variable $\mathbf{y}$ with the two components $y_1$ and $y_2$ whose covariance matrix $\mathbf{K}_{\mathbf{y}}$ is determined by the given numerical values $(1, \ 0.4, \ 0.25)$ .
The probability density function $\rm (PDF)$ of a zero mean Gaussian two-dimensional random variable $\mathbf{y}$ is as specified on page "Relationship between covariance matrix and PDF" with $N = 2$:
- $$\mathbf{f_y}(\mathbf{y}) = \frac{1}{{2 \pi \cdot \sqrt{|\mathbf{K_y}|}}}\cdot {\rm e}^{-{1}/{2} \hspace{0.05cm}\cdot\hspace{0.05cm} \mathbf{y} ^{\rm T}\hspace{0.05cm}\cdot\hspace{0.05cm}\mathbf{K_y}^{-1} \hspace{0.05cm}\cdot\hspace{0.05cm} \mathbf{y} }= C \cdot {\rm e}^{-\gamma_1 \hspace{0.05cm}\cdot\hspace{0.05cm} y_1^2 \hspace{0.1cm}+\hspace{0.1cm} \gamma_2 \hspace{0.05cm}\cdot\hspace{0.05cm} y_2^2 \hspace{0.1cm}+\hspace{0.1cm}\gamma_{12} \hspace{0.05cm}\cdot\hspace{0.05cm} y_1 \hspace{0.05cm}\cdot\hspace{0.05cm} y_2 }.$$
- In the subtasks (5) and (6) the prefactor $C$ and the further PDF coefficients $\gamma_1$, $\gamma_2$ and $\gamma_{12}$ are to be calculated according to this vector representation.
- In contrast, the corresponding equation in conventional approach according to the chapter "Two-dimensional Gaussian Random Variables" would be:
- $$f_{y_1,\hspace{0.1cm}y_2}(y_1,y_2)=\frac{\rm 1}{\rm 2\pi \sigma_1 \sigma_2 \sqrt{\rm 1-\rho^2}}\cdot\exp\Bigg[-\frac{\rm 1}{\rm 2 (1-\rho^{\rm 2})}\cdot(\frac { y_1^{\rm 2}}{\sigma_1^{\rm 2}}+\frac { y_2^{\rm 2}}{\sigma_2^{\rm 2}}-\rm 2\rho \frac{{\it y}_1{\it y}_2}{\sigma_1 \cdot \sigma_2}) \rm \Bigg].$$
Hints:
- The exercise belongs to the chapter Generalization to N-Dimensional Random Variables.
- Some basics on the application of vectors and matrices can be found in the sections "Determinant of a Matrix" and Inverse of a Matrix .
- Reference is also made to the chapter "Two-Dimensional Gaussian Random Variables".
Questions
Solution
- On the basis of the covariance matrix $\mathbf{K}_{\mathbf{x}}$ it is not possible to make any statement about whether the underlying random variable $\mathbf{x}$ is zero mean or mean-invariant, since any mean value $\mathbf{m}$ is factored out.
- To make statements about the mean, the correlation matrix $\mathbf{R}_{\mathbf{x}}$ would have to be known.
- From $K_{22} = \sigma_2^2 = 0$ it follows necessarily that all other elements in the second row $(K_{21}, K_{23})$ and the second column $(K_{12}, K_{32})$ are also zero.
- On the other hand, the third statement is false: The elements are symmetric about the main diagonal, so that always $K_{31} = K_{13}$ must hold.
(2) From $K_{11} = 1$ and $K_{33} = 0.25$ follow directly $\sigma_1 = 1$ and $\sigma_3 = 0.5$.
- Taken together with the correlation coefficient $\rho_{13} = 0.8$ (see specification sheet), we thus obtain:
- $$K_{13} = K_{31} = \sigma_1 \cdot \sigma_2 \cdot \rho_{13}\hspace{0.15cm}\underline{= 0.4}.$$
(3) The determinant of the matrix $\mathbf{K_y}$ is:
- $$|{\mathbf{K_y}}| = 1 \cdot 0.25 - 0.4 \cdot 0.4 \hspace{0.15cm}\underline{= 0.09}.$$
(4) According to the statements on the pages "Determinant of a Matrix" and "Inverse of a Matrix" holds:
- $${\mathbf{I_y}} = {\mathbf{K_y}}^{-1} = \frac{1}{|{\mathbf{K_y}}|}\cdot \left[ \begin{array}{cc} 0.25 & -0.4 \\ -0.4 & 1 \end{array} \right].$$
- With $|\mathbf{K_y}|= 0.09$ therefore holds further:
- $$I_{11} = {25}/{9}\hspace{0.15cm}\underline{ = 2.777};\hspace{0.3cm} I_{12} = I_{21} = -40/9 \hspace{0.15cm}\underline{ = -4.447};\hspace{0.3cm}I_{22} = {100}/{9} \hspace{0.15cm}\underline{= 11.111}.$$
(5) A comparison of $\mathbf{K_y}$ and $\mathbf{K_x}$ with constraint $K_{22} = 0$ shows that $\mathbf{x}$ and $\mathbf{y}$ are identical random variables if one sets $y_1 = x_1$ and $y_2 = x_3$ .
- Thus, for the PDF parameters:
- $$\sigma_1 =1, \hspace{0.3cm} \sigma_2 =0.5, \hspace{0.3cm} \rho =0.8.$$
- The prefactor according to the general PDF definition is thus:
- $$C =\frac{\rm 1}{\rm 2\pi \cdot \sigma_1 \cdot \sigma_2 \cdot \sqrt{\rm 1-\rho^2}}= \frac{\rm 1}{\rm 2\pi \cdot 1 \cdot 0.5 \cdot 0.6}= \frac{1}{0.6 \cdot \pi} \hspace{0.15cm}\underline{\approx 0.531}.$$
- With the determinant calculated in subtask (3) we get the same result:
- $$C =\frac{\rm 1}{\rm 2\pi \sqrt{|{\mathbf{K_y}}|}}= \frac{\rm 1}{\rm 2\pi \sqrt{0.09}} = \frac{1}{0.6 \cdot \pi}.$$
(6) The inverse matrix computed in subtask (4) can also be written as follows:
- $${\mathbf{I_y}} = \frac{5}{9}\cdot \left[ \begin{array}{cc} 5 & -8 \\ -8 & 20 \end{array} \right].$$
- So the argument $A$ of the exponential function is:
- $$A = \frac{5}{18}\cdot{\mathbf{y}}^{\rm T}\cdot \left[ \begin{array}{cc} 5 & -8 \\ -8 & 20 \end{array} \right]\cdot{\mathbf{y}} =\frac{5}{18}\left( 5 \cdot y_1^2 + 20 \cdot y_2^2 -16 \cdot y_1 \cdot y_2\right).$$
- By comparing coefficients, we get:
- $$\gamma_1 = \frac{25}{18} \approx 1.389; \hspace{0.3cm} \gamma_2 = \frac{100}{18} \approx 5.556; \hspace{0.3cm} \gamma_{12} = - \frac{80}{18} \approx -4,444.$$
- According to the conventional procedure, the same numerical values result:
- $$\gamma_1 =\frac{\rm 1}{\rm 2\cdot \sigma_1^2 \cdot ({\rm 1-\rho^2})}= \frac{\rm 1}{\rm 2 \cdot 1 \cdot 0.36} \hspace{0.15cm}\underline{ \approx 1.389},$$
- $$\gamma_2 =\frac{\rm 1}{\rm 2 \cdot\sigma_2^2 \cdot ({\rm 1-\rho^2})}= \frac{\rm 1}{\rm 2 \cdot 0.25 \cdot 0.36} = 4 \cdot \gamma_1 \hspace{0.15cm}\underline{\approx 5.556},$$
- $$\gamma_{12} =-\frac{\rho}{ \sigma_1 \cdot \sigma_2 \cdot ({\rm 1-\rho^2})}= -\frac{\rm 0.8}{\rm 1 \cdot 0.5 \cdot 0.36} \hspace{0.15cm}\underline{ \approx -4.444}.$$