Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 4.5: Irrelevance Theorem"

From LNTwww
m (Textersetzung - „\*\s*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0\.” ein.“ durch „ “)
 
(13 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Struktur des optimalen Empfängers}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Structure_of_the_Optimal_Receiver}}
  
[[File:P_ID2014__Dig_A_4_5.png|right|frame|Betrachtetes Optimalsystem mit Detektor und Entscheider]]
+
[[File:EN_Dig_A_4_5.png|right|frame|Considered optimal system with  "detector"  and  "decision"]]
Untersucht werden soll das durch die Grafik vorgegebene Kommunikationssystem. Die binäre Nachricht m ∈ \{m_0, m_1\} mit gleichen Auftrittswahrscheinlichkeiten
+
The communication system given by the graph is to be investigated.  The binary message  m ∈ \{m_0, m_1\}  with equal occurrence probabilities
 
:Pr(m0)=Pr(m1)=0.5
 
:Pr(m0)=Pr(m1)=0.5
  
wird durch die beiden Signale
+
is represented by the two signals
 
:s0=Es,s1=Es
 
:s0=Es,s1=Es
  
dargestellt, wobei die Zuordnungen m_0 ⇔ s_0 und m_1 ⇔ s_1 eineindeutig sind. Der Detektor (im Bild grün hinterlegt) liefert zwei Entscheidungswerte
+
where the assignments  m_0 ⇔ s_0  and  m_1 ⇔ s_1  are one-to-one.
 +
 
 +
The detector  $(highlightedingreeninthefigure)$  provides two decision values
 
:r1 = s+n1,
 
:r1 = s+n1,
 
:r2 = n1+n2,
 
:r2 = n1+n2,
  
aus denen der Entscheider die Schätzwerte \mu ∈ \{m_0, m_1\} für die gesendete Nachricht m bildet. Der Entscheider beinhaltet
+
from which the decision forms the estimated values  $\mu ∈ \{m_0,\ m_1\}$  for the transmitted message  m.  The decision includes
*zwei Gewichtungsfaktoren K1 und K2,  
+
*two weighting factors  K1  and  K2,
*eine Summationsstelle, und
+
*einen Schwellenwertentscheider mit der Schwelle bei 0.
+
*a summation point,  and
 +
 +
*a threshold decision with the threshold at  0.
 +
 
 +
 
 +
Three evaluations are considered in this exercises:
 +
# Decision based on  r1   (K_1 ≠ 0,\ K_2 = 0),
 +
# decision based on  r2   $(K_1 = 0,\ K_2 ≠ 0)$,
 +
# joint evaluation of  r1  und  r2   $(K_1 ≠ 0,\ K_2 ≠ 0)$.
 +
 
 +
 
  
 +
<u>Notes:</u>
 +
* The exercise belongs to the chapter&nbsp;  [[Digital_Signal_Transmission/Structure_of_the_Optimal_Receiver|"Structure of the Optimal Receiver"]]&nbsp; of this book.
  
Betrachtet werden in dieser Aufgabe drei Auswertungen:
+
* In particular,&nbsp; [[Digital_Signal_Transmission/Structure_of_the_Optimal_Receiver#The_irrelevance_theorem|"the irrelevance theorem"]]&nbsp; is referred to here,&nbsp; but besides that also the&nbsp; [[Digital_Signal_Transmission/Structure_of_the_Optimal_Receiver#Optimal_receiver_for_the_AWGN_channel|"Optimal receiver for the AWGN channel"]].
* Entscheidung basierend auf r1  ($K_1 &ne; 0, K_2 = 0$),
+
* Entscheidung basierend auf r2  ($K_1 = 0, K_2 &ne; 0$),
+
* For more information on topics relevant to this exercise, see the following links:
* gemeinsame Auswertung von r1 und r2  (K_1 &ne; 0, K_2 &ne; 0).
+
** [[Digital_Signal_Transmission/Structure_of_the_Optimal_Receiver#Fundamental_approach_to_optimal_receiver_design|"Decision rules for MAP and ML receivers"]],
 +
** [[Digital_Signal_Transmission/Structure_of_the_Optimal_Receiver#Implementation_aspects|"Realization as correlation receiver or matched filter receiver"]],
 +
** [[Digital_Signal_Transmission/Structure_of_the_Optimal_Receiver#Probability_density_function_of_the_received_values|"Conditional Gaussian probability density functions"]].
  
 +
* For the error probability of a system&nbsp; r=s+n&nbsp; (because of&nbsp; N=1&nbsp; here &nbsp;s, n, r&nbsp; are scalars)&nbsp; is valid:
 +
::pS=Pr(symbol  error)=Q(2Es/N0),
  
Die zwei Rauschquellen n1 und n2 seien voneinander unabhängig und auch unabhängig vom Sendesignal s &#8712; \{s_0, s_1\}. n1 und n2 können jeweils durch AWGN&ndash;Rauschquellen (weiß, gaußverteilt, mittelwertfrei, Varianz σ2=N0/2) modelliert werden. Verwenden Sie für numerische Berechnungen die Werte
+
:where a binary message signal&nbsp; s &#8712; \{s_0,\ s_1\}&nbsp; with&nbsp; s0=Es,s1=Es&nbsp; is assumed.
 +
*Let the two noise sources&nbsp; n1&nbsp; and&nbsp; n2&nbsp; be independent of each other and also independent of the transmitted signal&nbsp; $s &#8712; \{s_0,\ s_1\}$.  
 +
 
 +
*n1&nbsp; and&nbsp; n2&nbsp; can each be modeled by AWGN noise sources&nbsp; $($white,&nbsp; Gaussian distributed,&nbsp; mean-free,&nbsp; variance&nbsp; $\sigma^2 = N_0/2)$. &nbsp;
 +
 
 +
*For numerical calculations, use the values
 
:Es=8106Ws,N0=106W/Hz.
 
:Es=8106Ws,N0=106W/Hz.
  
Die [[Stochastische_Signaltheorie/Gaußverteilte_Zufallsgrößen#.C3.9Cberschreitungswahrscheinlichkeit|komplementäre Gaußsche Fehlerfunktion]] liefert folgende Ergebnisse:
+
*The&nbsp; [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables#Exceedance_probability|"complementary Gaussian error function"]]&nbsp; gives the following results:
 
:Q(0) = 0.5,Q(20.5)=0.786101,Q(2)=0.227101,
 
:Q(0) = 0.5,Q(20.5)=0.786101,Q(2)=0.227101,
 
:$${\rm Q}(2 \cdot 2^{0.5}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.234 \cdot 10^{-2}\hspace{0.05cm},\hspace{0.2cm}{\rm Q}(4) = 0.317 \cdot 10^{-4}
 
:$${\rm Q}(2 \cdot 2^{0.5}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.234 \cdot 10^{-2}\hspace{0.05cm},\hspace{0.2cm}{\rm Q}(4) = 0.317 \cdot 10^{-4}
Line 35: Line 58:
  
  
''Hinweise:''
+
 
* Die Aufgabe gehört zum  Kapitel  [[Digitalsignal%C3%BCbertragung/Struktur_des_optimalen_Empf%C3%A4ngers| Struktur des optimalen Empfängers]] dieses Buches.
 
* Insbesondere wird hier auf das [[Digitalsignal%C3%BCbertragung/Struktur_des_optimalen_Empf%C3%A4ngers#Das_Theorem_der_Irrelevanz| Theorem der Irrelevanz]] Bezug genommen, daneben aber auch auf den [[Digitalsignal%C3%BCbertragung/Struktur_des_optimalen_Empf%C3%A4ngers#Optimaler_Empf.C3.A4nger_f.C3.BCr_den_AWGN-Kanal|Optimalen Empfänger für den AWGN&ndash;Kanal]].
 
 
   
 
   
* Weitere Informationen zu den für diese Aufgabe relevanten Themen finden Sie unter folgenden Links:
 
** [[Digitalsignal%C3%BCbertragung/Struktur_des_optimalen_Empf%C3%A4ngers#Fundamentaler_Ansatz_zum_optimalen_Empf.C3.A4ngerentwurf|Entscheidungsregeln für MAP&ndash; und ML&ndash;Empfänger]],
 
** [[Digitalsignal%C3%BCbertragung/Struktur_des_optimalen_Empf%C3%A4ngers#Implementierungsaspekte|Realisierung als Korrelationsempfänger bzw. Matched&ndash;Filter&ndash;Empfänger]],
 
** [[Digitalsignal%C3%BCbertragung/Struktur_des_optimalen_Empf%C3%A4ngers#Wahrscheinlichkeitsdichtefunktion_der_Empfangswerte|Bedingte Gaußsche Wahrscheinlichkeitsdichtefunktionen]].
 
 
* Für die Fehlerwahrscheinlichkeit eines Systems r=s+n (wegen N=1 sind hier s,n,r Skalare) gilt
 
:pS=Pr(Symbolfehler)=Q(2Es/N0),
 
 
wobei ein binäres Nachrichtensignal s &#8712; \{s_0, s_1\} mit
 
:s0=Es,s1=Es
 
 
vorausgesetzt wird und die zweiseitige Rauschleistungsdichte der Größe n konstant gleich σ2=N0/2 ist.
 
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Aussagen gelten hier bezüglich des Empfängers?
+
{What statements apply here regarding the receiver?
 
|type="()"}
 
|type="()"}
- Der ML&ndash;Empfänger ist hier besser als der MAP&ndash;Empfänger.
+
- The ML receiver is better than the MAP receiver.
- Der MAP&ndash;Empfänger ist hier besser als der ML&ndash;Empfänger.
+
- The MAP receiver is better than the ML receiver.
+ Beide Empfänger liefern hier das gleiche Ergebnis.
+
+ Both receivers deliver the same result.
  
{Welche Fehlerwahrscheinlichkeit ergibt sich mit K2=0?
+
{What is the error probability with&nbsp; K2=0?
 
|type="{}"}
 
|type="{}"}
${\rm Pr(Symbolfehler)}$ = { 0.00317 3% }  %
+
${\rm Pr(symbol\hspace{0.15cm} error)}\ = \ $ { 0.00317 3% }  %
  
{Welche Fehlerwahrscheinlichkeit ergibt sich mit K1=0?
+
{What is the error probability with&nbsp; K1=0?
 
|type="{}"}
 
|type="{}"}
${\rm Pr(Symbolfehler)}$ = { 50 3% }  %
+
${\rm Pr(symbol\hspace{0.15cm}error)}\ = \ { 50 3% }\ \%$
  
{Kann durch die Verwendung von r1 <b>und</b> r2 eine Verbesserung erzielt werden?
+
{Can an improvement be achieved by using&nbsp; r1&nbsp; <b>and</b> &nbsp;r2?&nbsp;
 
|type="()"}
 
|type="()"}
+ Ja.
+
+ Yes.
- Nein.
+
- No.
  
{Welche Gleichungen gelten für den Schätzwert ($\mu$) bei AWGN&ndash;Rauschen?
+
{What are the equations for the estimated value &nbsp;$(\mu)$&nbsp; for AWGN noise?
 
|type="[]"}
 
|type="[]"}
- μ=arg min[(ρ1+ρ2)si],
+
- $\mu = {\rm arg \ min} \, \big[(\rho_1 + \rho_2) \cdot s_i \big]$,
+ μ=arg min[(ρ22ρ1)si],
+
+ $\mu = {\rm arg \ min} \, \big[(\rho_2 \, - 2 \rho_1) \cdot s_i \big]$,
+ μ=arg max[(ρ1ρ2/2)si].
+
+ $\mu = {\rm arg \ max} \, \big[(\rho_1 - \rho_2/2) \cdot s_i \big]$.
  
{Wie kann diese Regel mit dem vorgegebenen Entscheider (Schwelle bei 0) exakt umgesetzt werden? Es gelte K1=1.
+
{How can this rule be implemented exactly with the given decision&nbsp; (threshold at zero)?&nbsp; Let &nbsp;K1=1.
 
|type="{}"}
 
|type="{}"}
 
K2 =  { -0.515--0.485 }  
 
K2 =  { -0.515--0.485 }  
  
{Welche (minimale) Fehlerwahrscheinlichkeit ergibt sich mit der Realisierung entsprechend der Teilaufgabe (6)?
+
{What is the&nbsp; (minimum)&nbsp; error probability with the realization according to subtask&nbsp; '''(6)'''?
 
|type="{}"}
 
|type="{}"}
${\rm Minimum \ [Pr(Symbolfehler)]} \ = \ { 0.771 3% }\ \cdot 10^{\rm &ndash;8}$
+
${\rm Minimum \ \big[Pr(symbol\hspace{0.15cm}error)\big]} \ = \ { 0.771 3% }\ \cdot 10^{\rm -8}$
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig ist die <u>letzte Lösungsalternative</u>:  
+
'''(1)'''&nbsp; The&nbsp; <u>last alternative solution</u>&nbsp; is correct:  
*Im Allgemeinen führt der MAP&ndash;Empfänger zu einer kleineren Fehlerwahrscheinlichkeit.  
+
*In general,&nbsp; the MAP receiver leads to a smaller error probability.
*Sind aber die Auftrittswahrscheinlichkeiten Pr(m=m0)=Pr(m=m1)=0.5 gleich, so liefern beide Empfänger das gleiche Ergebnis.
+
*However,&nbsp; if the occurrence probabilities&nbsp; Pr(m=m0)=Pr(m=m1)=0.5&nbsp; are equal,&nbsp; both receivers yield the same result.
  
  
'''(2)'''&nbsp; Mit K2=0 und K1=1 ergibt sich
+
'''(2)'''&nbsp; With&nbsp; K2=0&nbsp; and&nbsp; K1=1&nbsp; the result is
 
:r=r1=s+n1.
 
:r=r1=s+n1.
  
Bei bipolarem (antipodischem) Sendesignal und AWGN&ndash;Rauschen ist die Fehlerwahrscheinlichkeit des optimalen Empfängers (egal, ob als Korrelations&ndash; oder Matched&ndash;Filter&ndash;Empfänger realisiert) gleich
+
*With bipolar&nbsp; (antipodal)&nbsp; transmitted signal and AWGN noise,&nbsp; the error probability of the optimal receiver&nbsp; (whether implemented as a correlation or matched filter receiver)&nbsp; is equal to
:$$p_{\rm S} = {\rm Pr} ({\rm Symbolfehler} ) = {\rm Q} \left ( \sqrt{ E_s /{\sigma}}\right )
+
:$$p_{\rm S} = {\rm Pr} ({\rm symbol\hspace{0.15cm} error} ) = {\rm Q} \left ( \sqrt{ E_s /{\sigma}}\right )
 
  = {\rm Q} \left ( \sqrt{2 E_s /N_0}\right ) \hspace{0.05cm}.$$
 
  = {\rm Q} \left ( \sqrt{2 E_s /N_0}\right ) \hspace{0.05cm}.$$
  
Mit E_s = 8 \cdot 10^{\rm &ndash;6} \ \rm Ws und N_0 = 10^{\rm &ndash;6} \ \rm W/Hz erhält man weiter:
+
*With &nbsp; E_s = 8 \cdot 10^{\rm &ndash;6} \ \rm Ws and N_0 = 10^{\rm &ndash;6} \ \rm W/Hz,&nbsp; we further obtain:
:$$p_{\rm S}  = {\rm Pr} ({\rm Symbolfehler} ) = {\rm Q} \left ( \sqrt{\frac{2 \cdot 8 \cdot 10^{-6}\,{\rm Ws}}{10^{-6}\,{\rm W/Hz} }}\right ) = {\rm Q}  (4)  \hspace{0.05cm}\hspace{0.15cm}\underline {= 0.00317 \%}\hspace{0.05cm}.$$
+
:$$p_{\rm S}  = {\rm Pr} ({\rm symbol\hspace{0.15cm}error} ) = {\rm Q} \left ( \sqrt{\frac{2 \cdot 8 \cdot 10^{-6}\,{\rm Ws}}{10^{-6}\,{\rm W/Hz} }}\right ) = {\rm Q}  (4)  \hspace{0.05cm}\hspace{0.15cm}\underline {= 0.00317 \%}\hspace{0.05cm}.$$
  
Dieses Ergebnis ist unabhängig von K1, da durch eine Verstärkung oder Dämpfung die Nutzleistung in gleicher Weise verändert wird wie die Rauschleistung.
+
*This result is independent of&nbsp; K1,&nbsp; since amplification or attenuation changes the useful power in the same way as the noise power.
  
  
'''(3)'''&nbsp; Mit K1=0 und K2=1 gilt für die Entscheidungsgröße:
+
'''(3)'''&nbsp; With&nbsp; K1=0&nbsp; and&nbsp; K2=1,&nbsp; the decision variable is:
 
:r=r2=n1+n2.
 
:r=r2=n1+n2.
  
Diese beinhaltet keine Informationen über das Nutzsignal, sondern nur Rauschen, und es gilt unabhängig von K2:
+
*This contains no information about the useful signal,&nbsp; only noise,&nbsp; and it holds independently of&nbsp; K2:
:$$p_{\rm S}  = {\rm Pr} ({\rm Symbolfehler} ) =  {\rm Q}  (0) \hspace{0.15cm}\underline {= 50\%} \hspace{0.05cm}.$$
+
:$$p_{\rm S}  = {\rm Pr} ({\rm symbol\hspace{0.15cm}error} ) =  {\rm Q}  (0) \hspace{0.15cm}\underline {= 50\%} \hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; Die Entscheidungsregel des optimalen Empfängers (egal, ob als MAP oder als ML realisiert) lautet wegen Pr(m=m0)=Pr(m=m1):
+
'''(4)'''&nbsp; Because of&nbsp; Pr(m=m0)=Pr(m=m1),&nbsp; the decision rule of the optimal receiver&nbsp; (whether realized as MAP or as ML)&nbsp; is:
 
:$$\hat{m} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm arg} \max_i \hspace{0.1cm} [  p_{m \hspace{0.05cm}|\hspace{0.05cm}r_1, \hspace{0.05cm}r_2  } \hspace{0.05cm} (m_i \hspace{0.05cm}|\hspace{0.05cm}\rho_1, \hspace{0.05cm}\rho_2  ) ] =  {\rm arg} \max_i \hspace{0.1cm} [  p_{r_1, \hspace{0.05cm}r_2  \hspace{0.05cm}|\hspace{0.05cm} m} \hspace{0.05cm} ( \rho_1, \hspace{0.05cm}\rho_2 \hspace{0.05cm}|\hspace{0.05cm} m_i ) \cdot  {\rm Pr} (m = m_i)] = {\rm arg} \max_i \hspace{0.1cm} [  p_{r_1, \hspace{0.05cm}r_2  \hspace{0.05cm}|\hspace{0.05cm} s} \hspace{0.05cm} ( \rho_1, \hspace{0.05cm}\rho_2 \hspace{0.05cm}|\hspace{0.05cm} s_i ) ]
 
:$$\hat{m} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm arg} \max_i \hspace{0.1cm} [  p_{m \hspace{0.05cm}|\hspace{0.05cm}r_1, \hspace{0.05cm}r_2  } \hspace{0.05cm} (m_i \hspace{0.05cm}|\hspace{0.05cm}\rho_1, \hspace{0.05cm}\rho_2  ) ] =  {\rm arg} \max_i \hspace{0.1cm} [  p_{r_1, \hspace{0.05cm}r_2  \hspace{0.05cm}|\hspace{0.05cm} m} \hspace{0.05cm} ( \rho_1, \hspace{0.05cm}\rho_2 \hspace{0.05cm}|\hspace{0.05cm} m_i ) \cdot  {\rm Pr} (m = m_i)] = {\rm arg} \max_i \hspace{0.1cm} [  p_{r_1, \hspace{0.05cm}r_2  \hspace{0.05cm}|\hspace{0.05cm} s} \hspace{0.05cm} ( \rho_1, \hspace{0.05cm}\rho_2 \hspace{0.05cm}|\hspace{0.05cm} s_i ) ]
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Diese Verbundwahrscheinlichkeitsdichte kann wie folgt umgeschrieben werden:
+
*This composite probability density can be rewritten as follows:
 
:$$\hat{m} ={\rm arg} \max_i \hspace{0.1cm} [  p_{r_1  \hspace{0.05cm}|\hspace{0.05cm} s} \hspace{0.05cm} ( \rho_1 \hspace{0.05cm}|\hspace{0.05cm} s_i ) \cdot p_{r_2  \hspace{0.05cm}|\hspace{0.05cm} r_1, \hspace{0.05cm}s} \hspace{0.05cm} ( \rho_2 \hspace{0.05cm}|\hspace{0.05cm} \rho_1, \hspace{0.05cm}s_i ) ]
 
:$$\hat{m} ={\rm arg} \max_i \hspace{0.1cm} [  p_{r_1  \hspace{0.05cm}|\hspace{0.05cm} s} \hspace{0.05cm} ( \rho_1 \hspace{0.05cm}|\hspace{0.05cm} s_i ) \cdot p_{r_2  \hspace{0.05cm}|\hspace{0.05cm} r_1, \hspace{0.05cm}s} \hspace{0.05cm} ( \rho_2 \hspace{0.05cm}|\hspace{0.05cm} \rho_1, \hspace{0.05cm}s_i ) ]
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Da nun auch der zweite Multiplikand von der Nachricht (si) abhängt, sollte r2 auf jeden Fall in den Entscheidungsprozess eingebunden werden. Richtig ist also: <u>JA</u>.
+
*Now,&nbsp; since the second multiplicand also depends on the message&nbsp; (si),&nbsp; r2&nbsp; should definitely be included in the decision process.&nbsp; Thus,&nbsp; the correct answer is:&nbsp; <u>YES</u>.
  
  
'''(5)'''&nbsp; Bei AWGN&ndash;Rauschen mit der Varianz σ2 ergeben sich für die beiden in (4) eingeführten Verbunddichten und deren Produkt P:
+
'''(5)'''&nbsp; For AWGN noise with variance&nbsp; σ2,&nbsp; the two composite densities introduced in&nbsp; '''(4)'''&nbsp; together with their product&nbsp; P&nbsp; give:
 
:$$p_{r_1\hspace{0.05cm}|\hspace{0.05cm} s}(\rho_1\hspace{0.05cm}|\hspace{0.05cm}s_i) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2\pi} \cdot \sigma}\cdot {\rm exp} \left [ - \frac{(\rho_1 - s_i)^2}{2 \sigma^2}\right ]\hspace{0.05cm},\hspace{1cm}
 
:$$p_{r_1\hspace{0.05cm}|\hspace{0.05cm} s}(\rho_1\hspace{0.05cm}|\hspace{0.05cm}s_i) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2\pi} \cdot \sigma}\cdot {\rm exp} \left [ - \frac{(\rho_1 - s_i)^2}{2 \sigma^2}\right ]\hspace{0.05cm},\hspace{1cm}
 
p_{r_2\hspace{0.05cm}|\hspace{0.05cm}r_1,\hspace{0.05cm} s}(\rho_2\hspace{0.05cm}|\hspace{0.05cm}\rho_1, \hspace{0.05cm}s_i) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2\pi} \cdot \sigma}\cdot {\rm exp} \left [ - \frac{(\rho_2 - (\rho_1 - s_i))^2}{2 \sigma^2}\right ]\hspace{0.05cm}$$
 
p_{r_2\hspace{0.05cm}|\hspace{0.05cm}r_1,\hspace{0.05cm} s}(\rho_2\hspace{0.05cm}|\hspace{0.05cm}\rho_1, \hspace{0.05cm}s_i) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2\pi} \cdot \sigma}\cdot {\rm exp} \left [ - \frac{(\rho_2 - (\rho_1 - s_i))^2}{2 \sigma^2}\right ]\hspace{0.05cm}$$
Line 134: Line 143:
 
+ (\rho_2 - (\rho_1 - s_i))^2\right \}\right ]\hspace{0.05cm}.$$
 
+ (\rho_2 - (\rho_1 - s_i))^2\right \}\right ]\hspace{0.05cm}.$$
  
Gesucht wird dasjenige Argument, das dieses Produkt P maximiert, was gleichzeitig bedeutet, dass der Ausdruck in den geschweiften Klammern den kleinstmöglichen Wert annehmen soll:
+
*We are looking for the argument that maximizes this product&nbsp; P,&nbsp; which at the same time means that the expression in the curly brackets should take the smallest possible value:
 
:$$\mu = \hat{m} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}{\rm arg} \max_i \hspace{0.1cm} P  = {\rm arg} \min _i \hspace{0.1cm} \left \{ (\rho_1 - s_i)^2
 
:$$\mu = \hat{m} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}{\rm arg} \max_i \hspace{0.1cm} P  = {\rm arg} \min _i \hspace{0.1cm} \left \{ (\rho_1 - s_i)^2
 
+ (\rho_2 - (\rho_1 - s_i))^2\right \} $$
 
+ (\rho_2 - (\rho_1 - s_i))^2\right \} $$
Line 141: Line 150:
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Dabei bezeichnet μ den Schätzwert der Nachricht. Bei dieser Minimierung kann nun auf alle Terme verzichtet werden, die nicht von der Nachricht si abhängen. Ebenso unberücksichtigt bleiben die Terme s2i, da s20=s21 gilt. Somit erhält man die deutlich einfachere Entscheidungsregel:
+
*Here&nbsp; μ&nbsp; denotes the estimated value of the message.&nbsp; In this minimization,&nbsp; all terms that do not depend on the message&nbsp; si&nbsp; can now be omitted.&nbsp; Likewise,&nbsp; the terms&nbsp; s2i&nbsp; are disregarded,&nbsp; since&nbsp; s20=s21&nbsp; holds.&nbsp; Thus,&nbsp; the much simpler decision rule is obtained:
 
:$$\mu  = {\rm arg} \min _i \hspace{0.1cm}\left \{  - 4\rho_1 s_i + 2\rho_2 s_i  \right \}={\rm arg} \min _i \hspace{0.1cm}\left \{  (\rho_2 - 2\rho_1) \cdot  s_i \right \}
 
:$$\mu  = {\rm arg} \min _i \hspace{0.1cm}\left \{  - 4\rho_1 s_i + 2\rho_2 s_i  \right \}={\rm arg} \min _i \hspace{0.1cm}\left \{  (\rho_2 - 2\rho_1) \cdot  s_i \right \}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Richtig ist also schon mal der Lösungsvorschlag 2. Aber nach Multiplikation mit &ndash;1/2 erhält man auch die zuletzt genannte Entscheidungsregel:
+
*So,&nbsp; correct is already the proposed solution 2.&nbsp; But after multiplication by&nbsp; &ndash;1/2,&nbsp; we also get the last mentioned decision rule:
 
:$$\mu  = {\rm arg} \max_i \hspace{0.1cm}\left \{  (\rho_1 - \rho_2/2) \cdot  s_i \right \}
 
:$$\mu  = {\rm arg} \max_i \hspace{0.1cm}\left \{  (\rho_1 - \rho_2/2) \cdot  s_i \right \}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Richtig sind somit die <u>Lösungsvorschläge 2 und 3</u>.
+
*Thus,&nbsp; the <u>solutions 2 and 3</u>&nbsp; are correct.
  
  
'''(6)'''&nbsp; Setzt man K1=1 und $\underline {K_2 = \, &ndash;1/2}$, so lautet die optimale Entscheidungsregel mit der Realisierung \rho = \rho_1 \, &ndash; \rho_2/2:
+
'''(6)'''&nbsp; Setting K1=1&nbsp; and&nbsp; $\underline {K_2 = \, -0.5}$,&nbsp; the optimal decision rule with realization&nbsp; \rho = \rho_1 \, &ndash; \rho_2/2 is:
 
:$$\mu =  
 
:$$\mu =  
 
\left\{ \begin{array}{c} m_0 \\
 
\left\{ \begin{array}{c} m_0 \\
 
  m_1  \end{array} \right.\quad
 
  m_1  \end{array} \right.\quad
  \begin{array}{*{1}c} {\rm f{\rm \ddot{u}r}}  \hspace{0.15cm} \rho > 0 \hspace{0.05cm},
+
  \begin{array}{*{1}c} {\rm f{or}}  \hspace{0.15cm} \rho > 0 \hspace{0.05cm},
\\  {\rm f{\rm \ddot{u}r}}  \hspace{0.15cm} \rho < 0 \hspace{0.05cm}.\\ \end{array}$$
+
\\  {\rm f{or}}  \hspace{0.15cm} \rho < 0 \hspace{0.05cm}.\\ \end{array}$$
  
Da ρ=0 nur mit der Wahrscheinlichkeit 0 auftritt, ist es im Sinne der Wahrscheinlichkeitsrechnung egal, ob man diesem Ereignis &bdquo;$\rho = 0$&rdquo; die Nachricht $\mu = m_0$ oder $\mu = m_1$ zuordnet.
+
*Since&nbsp; ρ=0&nbsp; only occurs with probability&nbsp; 0,&nbsp; it does not matter in the sense of probability theory whether one assigns the message&nbsp; $\mu = m_0$&nbsp; or&nbsp; $\mu = m_1$&nbsp; to this event&nbsp; "$\rho = 0$".
  
  
'''(7)'''&nbsp; Mit $K_2 = \, &ndash;1/2$ erhält man für den Eingangswert des Entscheiders:
+
'''(7)'''&nbsp; With&nbsp; $K_2 = \, -0.5$&nbsp; one obtains for the input value of the decision:
 
:$$r = r_1 - r_2/2 = s + n_1 - (n_1 + n_2)/2 = s + n \hspace{0.3cm}
 
:$$r = r_1 - r_2/2 = s + n_1 - (n_1 + n_2)/2 = s + n \hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm} n = \frac{n_1 - n_2}{2}\hspace{0.05cm}.$$
 
\Rightarrow \hspace{0.3cm} n = \frac{n_1 - n_2}{2}\hspace{0.05cm}.$$
  
Die Varianz dieser Zufallsgröße ist
+
*The variance of this random variable is
 
:σ2n=1/4[σ2+σ2]=σ2/2=N0/4.
 
:σ2n=1/4[σ2+σ2]=σ2/2=N0/4.
  
Daraus ergibt sich für die Fehlerwahrscheinlichkeit analog zur Teilaufgabe (2):
+
*From this,&nbsp; the error probability is analogous to subtask&nbsp; '''(2)''':
:$${\rm Pr} ({\rm Symbolfehler} )  = {\rm Q} \left ( \sqrt{\frac{E_s}{N_0/4}}\right ) =  
+
:$${\rm Pr} ({\rm symbol\hspace{0.15cm}error} )  = {\rm Q} \left ( \sqrt{\frac{E_s}{N_0/4}}\right ) =  
 
{\rm Q} \left ( 4 \cdot \sqrt{2}\right ) = {1}/{2} \cdot {\rm erfc}(4) \hspace{0.05cm}\hspace{0.15cm}\underline {= 0.771 \cdot 10^{-8}}
 
{\rm Q} \left ( 4 \cdot \sqrt{2}\right ) = {1}/{2} \cdot {\rm erfc}(4) \hspace{0.05cm}\hspace{0.15cm}\underline {= 0.771 \cdot 10^{-8}}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*Durch Berücksichtigung von r2 lässt sich also die Fehlerwahrscheinlichkeit von 0.317 \cdot 10^{\rm &ndash;4} auf den deutlich kleineren Wert 0.771108 absenken, obwohl die Entscheidungskomponente r2 nur Rauschen beinhaltet. Dieses Rauschen r2 erlaubt aber eine Schätzung der Rauschkomponente n1 von r1.
+
*Thus,&nbsp; by taking&nbsp; r2&nbsp; into account,&nbsp; the error probability can be lowered from&nbsp; 0.317 \cdot 10^{\rm &ndash;4}&nbsp; to the much smaller value of&nbsp; 0.771108,&nbsp; although the decision component&nbsp; r2&nbsp; contains only noise.&nbsp; However,&nbsp; this noise&nbsp; r2&nbsp; allows an estimate of the noise component&nbsp; n1&nbsp; of&nbsp; r1.
  
*Halbiert man die Sendeenergie von 8 \cdot 10^{\rm &ndash;6} \ \rm Ws auf 4 \cdot 10^{\rm &ndash;6} \ \rm Ws, so ergibt sich hier immer noch die Fehlerwahrscheinlichkeit 0.317 \cdot 10^{\rm &ndash;4}, wie in der Teilaufgabe (2) berechnet. Bei alleiniger Auswertung von r1 würde die Fehlerwahrscheinlichkeit dagegen 0.234 \cdot 10^{\rm &ndash;2} betragen.
+
*Halving the transmit energy from&nbsp; 8 \cdot 10^{\rm &ndash;6} \ \rm Ws&nbsp; to&nbsp; 4 \cdot 10^{\rm &ndash;6} \ \rm Ws,&nbsp; we still get the error probability&nbsp; 0.317 \cdot 10^{\rm &ndash;4}&nbsp; here,&nbsp; as calculated in subtask&nbsp; '''(2)'''.&nbsp; When evaluating&nbsp; r1&nbsp; alone,&nbsp; on the other hand,&nbsp; the error probability would be&nbsp; 0.234 \cdot 10^{\rm &ndash;2}.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^4.2 Struktur des optimalen Empfängers^]]
+
[[Category:Digital Signal Transmission: Exercises|^4.2 Structure of the Optimal Receiver^]]

Latest revision as of 13:38, 18 July 2022

Considered optimal system with  "detector"  and  "decision"

The communication system given by the graph is to be investigated.  The binary message  m{m0,m1}  with equal occurrence probabilities

Pr(m0)=Pr(m1)=0.5

is represented by the two signals

s0=Es,s1=Es

where the assignments  m0s0  and  m1s1  are one-to-one.

The detector  (highlighted in green in the figure)  provides two decision values

r1 = s+n1,
r2 = n1+n2,

from which the decision forms the estimated values  μ{m0, m1}  for the transmitted message  m.  The decision includes

  • two weighting factors  K1  and  K2,
  • a summation point,  and
  • a threshold decision with the threshold at  0.


Three evaluations are considered in this exercises:

  1. Decision based on  r1  (K10, K2=0),
  2. decision based on  r2  (K1=0, K20),
  3. joint evaluation of  r1  und  r2  (K10, K20).


Notes:

  • For the error probability of a system  r=s+n  (because of  N=1  here  s, n, r  are scalars)  is valid:
pS=Pr(symbol  error)=Q(2Es/N0),
where a binary message signal  s{s0, s1}  with  s0=Es,s1=Es  is assumed.
  • Let the two noise sources  n1  and  n2  be independent of each other and also independent of the transmitted signal  s{s0, s1}.
  • n1  and  n2  can each be modeled by AWGN noise sources  (white,  Gaussian distributed,  mean-free,  variance  σ2=N0/2).  
  • For numerical calculations, use the values
Es=8106Ws,N0=106W/Hz.
Q(0) = 0.5,Q(20.5)=0.786101,Q(2)=0.227101,
Q(220.5) = 0.234102,Q(4)=0.317104,Q(420.5)=0.771108.




Questions

1

What statements apply here regarding the receiver?

The ML receiver is better than the MAP receiver.
The MAP receiver is better than the ML receiver.
Both receivers deliver the same result.

2

What is the error probability with  K2=0?

Pr(symbolerror) = 

 %

3

What is the error probability with  K1=0?

Pr(symbolerror) = 

 %

4

Can an improvement be achieved by using  r1  and  r2

Yes.
No.

5

What are the equations for the estimated value  (μ)  for AWGN noise?

μ=arg min[(ρ1+ρ2)si],
μ=arg min[(ρ22ρ1)si],
μ=arg max[(ρ1ρ2/2)si].

6

How can this rule be implemented exactly with the given decision  (threshold at zero)?  Let  K1=1.

K2 = 

7

What is the  (minimum)  error probability with the realization according to subtask  (6)?

Minimum [Pr(symbolerror)] = 

 108


Solution

(1)  The  last alternative solution  is correct:

  • In general,  the MAP receiver leads to a smaller error probability.
  • However,  if the occurrence probabilities  Pr(m=m0)=Pr(m=m1)=0.5  are equal,  both receivers yield the same result.


(2)  With  K2=0  and  K1=1  the result is

r=r1=s+n1.
  • With bipolar  (antipodal)  transmitted signal and AWGN noise,  the error probability of the optimal receiver  (whether implemented as a correlation or matched filter receiver)  is equal to
pS=Pr(symbolerror)=Q(Es/σ)=Q(2Es/N0).
  • With   E_s = 8 \cdot 10^{\rm –6} \ \rm Ws and N_0 = 10^{\rm –6} \ \rm W/Hz,  we further obtain:
p_{\rm S} = {\rm Pr} ({\rm symbol\hspace{0.15cm}error} ) = {\rm Q} \left ( \sqrt{\frac{2 \cdot 8 \cdot 10^{-6}\,{\rm Ws}}{10^{-6}\,{\rm W/Hz} }}\right ) = {\rm Q} (4) \hspace{0.05cm}\hspace{0.15cm}\underline {= 0.00317 \%}\hspace{0.05cm}.
  • This result is independent of  K_1,  since amplification or attenuation changes the useful power in the same way as the noise power.


(3)  With  K_1 = 0  and  K_2 = 1,  the decision variable is:

r = r_2 = n_1 + n_2\hspace{0.05cm}.
  • This contains no information about the useful signal,  only noise,  and it holds independently of  K_2:
p_{\rm S} = {\rm Pr} ({\rm symbol\hspace{0.15cm}error} ) = {\rm Q} (0) \hspace{0.15cm}\underline {= 50\%} \hspace{0.05cm}.


(4)  Because of  {\rm Pr}(m = m_0) = {\rm Pr}(m = m_1),  the decision rule of the optimal receiver  (whether realized as MAP or as ML)  is:

\hat{m} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm arg} \max_i \hspace{0.1cm} [ p_{m \hspace{0.05cm}|\hspace{0.05cm}r_1, \hspace{0.05cm}r_2 } \hspace{0.05cm} (m_i \hspace{0.05cm}|\hspace{0.05cm}\rho_1, \hspace{0.05cm}\rho_2 ) ] = {\rm arg} \max_i \hspace{0.1cm} [ p_{r_1, \hspace{0.05cm}r_2 \hspace{0.05cm}|\hspace{0.05cm} m} \hspace{0.05cm} ( \rho_1, \hspace{0.05cm}\rho_2 \hspace{0.05cm}|\hspace{0.05cm} m_i ) \cdot {\rm Pr} (m = m_i)] = {\rm arg} \max_i \hspace{0.1cm} [ p_{r_1, \hspace{0.05cm}r_2 \hspace{0.05cm}|\hspace{0.05cm} s} \hspace{0.05cm} ( \rho_1, \hspace{0.05cm}\rho_2 \hspace{0.05cm}|\hspace{0.05cm} s_i ) ] \hspace{0.05cm}.
  • This composite probability density can be rewritten as follows:
\hat{m} ={\rm arg} \max_i \hspace{0.1cm} [ p_{r_1 \hspace{0.05cm}|\hspace{0.05cm} s} \hspace{0.05cm} ( \rho_1 \hspace{0.05cm}|\hspace{0.05cm} s_i ) \cdot p_{r_2 \hspace{0.05cm}|\hspace{0.05cm} r_1, \hspace{0.05cm}s} \hspace{0.05cm} ( \rho_2 \hspace{0.05cm}|\hspace{0.05cm} \rho_1, \hspace{0.05cm}s_i ) ] \hspace{0.05cm}.
  • Now,  since the second multiplicand also depends on the message  (s_i),  r_2  should definitely be included in the decision process.  Thus,  the correct answer is:  YES.


(5)  For AWGN noise with variance  \sigma^2,  the two composite densities introduced in  (4)  together with their product  P  give:

p_{r_1\hspace{0.05cm}|\hspace{0.05cm} s}(\rho_1\hspace{0.05cm}|\hspace{0.05cm}s_i) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2\pi} \cdot \sigma}\cdot {\rm exp} \left [ - \frac{(\rho_1 - s_i)^2}{2 \sigma^2}\right ]\hspace{0.05cm},\hspace{1cm} p_{r_2\hspace{0.05cm}|\hspace{0.05cm}r_1,\hspace{0.05cm} s}(\rho_2\hspace{0.05cm}|\hspace{0.05cm}\rho_1, \hspace{0.05cm}s_i) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2\pi} \cdot \sigma}\cdot {\rm exp} \left [ - \frac{(\rho_2 - (\rho_1 - s_i))^2}{2 \sigma^2}\right ]\hspace{0.05cm}
\Rightarrow \hspace{0.3cm} P \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{{2\pi} \cdot \sigma^2}\cdot {\rm exp} \left [ - \frac{1}{2 \sigma^2} \cdot \left \{ (\rho_1 - s_i)^2 + (\rho_2 - (\rho_1 - s_i))^2\right \}\right ]\hspace{0.05cm}.
  • We are looking for the argument that maximizes this product  P,  which at the same time means that the expression in the curly brackets should take the smallest possible value:
\mu = \hat{m} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}{\rm arg} \max_i \hspace{0.1cm} P = {\rm arg} \min _i \hspace{0.1cm} \left \{ (\rho_1 - s_i)^2 + (\rho_2 - (\rho_1 - s_i))^2\right \}
\Rightarrow \hspace{0.3cm} \mu = \hat{m} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}{\rm arg} \min _i \hspace{0.1cm}\left \{ \rho_1^2 - 2\rho_1 s_i + s_i^2 + \rho_2^2 - 2\rho_1 \rho_2 + 2\rho_2 s_i+ \rho_1^2 - 2\rho_1 s_i + s_i^2\right \} \hspace{0.05cm}.
  • Here  \mu  denotes the estimated value of the message.  In this minimization,  all terms that do not depend on the message  s_i  can now be omitted.  Likewise,  the terms  s_i^2  are disregarded,  since  s_0^2 = s_1^2  holds.  Thus,  the much simpler decision rule is obtained:
\mu = {\rm arg} \min _i \hspace{0.1cm}\left \{ - 4\rho_1 s_i + 2\rho_2 s_i \right \}={\rm arg} \min _i \hspace{0.1cm}\left \{ (\rho_2 - 2\rho_1) \cdot s_i \right \} \hspace{0.05cm}.
  • So,  correct is already the proposed solution 2.  But after multiplication by  –1/2,  we also get the last mentioned decision rule:
\mu = {\rm arg} \max_i \hspace{0.1cm}\left \{ (\rho_1 - \rho_2/2) \cdot s_i \right \} \hspace{0.05cm}.
  • Thus,  the solutions 2 and 3  are correct.


(6)  Setting K_1 = 1  and  \underline {K_2 = \, -0.5},  the optimal decision rule with realization  \rho = \rho_1 \, – \rho_2/2 is:

\mu = \left\{ \begin{array}{c} m_0 \\ m_1 \end{array} \right.\quad \begin{array}{*{1}c} {\rm f{or}} \hspace{0.15cm} \rho > 0 \hspace{0.05cm}, \\ {\rm f{or}} \hspace{0.15cm} \rho < 0 \hspace{0.05cm}.\\ \end{array}
  • Since  \rho = 0  only occurs with probability  0,  it does not matter in the sense of probability theory whether one assigns the message  \mu = m_0  or  \mu = m_1  to this event  "\rho = 0".


(7)  With  K_2 = \, -0.5  one obtains for the input value of the decision:

r = r_1 - r_2/2 = s + n_1 - (n_1 + n_2)/2 = s + n \hspace{0.3cm} \Rightarrow \hspace{0.3cm} n = \frac{n_1 - n_2}{2}\hspace{0.05cm}.
  • The variance of this random variable is
\sigma_n^2 = {1}/{4} \cdot \left [ \sigma^2 + \sigma^2 \right ] = {\sigma^2}/{2}= {N_0}/{4}\hspace{0.05cm}.
  • From this,  the error probability is analogous to subtask  (2):
{\rm Pr} ({\rm symbol\hspace{0.15cm}error} ) = {\rm Q} \left ( \sqrt{\frac{E_s}{N_0/4}}\right ) = {\rm Q} \left ( 4 \cdot \sqrt{2}\right ) = {1}/{2} \cdot {\rm erfc}(4) \hspace{0.05cm}\hspace{0.15cm}\underline {= 0.771 \cdot 10^{-8}} \hspace{0.05cm}.
  • Thus,  by taking  r_2  into account,  the error probability can be lowered from  0.317 \cdot 10^{\rm –4}  to the much smaller value of  0.771 \cdot 10^{-8},  although the decision component  r_2  contains only noise.  However,  this noise  r_2  allows an estimate of the noise component  n_1  of  r_1.
  • Halving the transmit energy from  8 \cdot 10^{\rm –6} \ \rm Ws  to  4 \cdot 10^{\rm –6} \ \rm Ws,  we still get the error probability  0.317 \cdot 10^{\rm –4}  here,  as calculated in subtask  (2).  When evaluating  r_1  alone,  on the other hand,  the error probability would be  0.234 \cdot 10^{\rm –2}.