Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 4.14: Phase Progression of the MSK"

From LNTwww
m (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
m
 
(17 intermediate revisions by 3 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1740__Mod_A_4_13.png|right|frame|Quellensignal und Tiefpass–Signale in den beiden Zweigen der MSK]]
+
[[File:P_ID1740__Mod_A_4_13.png|right|frame|Source signal and low-pass signals <br>in both branches of the MSK]]
Eine Realisierungsmöglichkeit für ''Minimum Shift Keying'' (MSK) bietet die Offset–QPSK, wie aus dem [[Modulationsverfahren/Nichtlineare_digitale_Modulation#Realisierung_der_MSK_als_Offset.E2.80.93QPSK|Blockschaltbild]] im Theorieteil hervorgeht.  
+
One possible implementation of&nbsp; ''Minimum Shift Keying''&nbsp; $\rm (MSK)&nbsp; is offered by &nbsp;\rm Offset–QPSK$, as shown in the [[Modulation_Methods/Nonlinear_Digital_Modulation#Realizing_MSK_as_Offset.E2.80.93QPSK|block diagram]]&nbsp; in the theory section.  
*Hierzu ist zunächst eine Umcodierung der Quellensymbole q_k ∈ \{+1, –1\} in die ebenfalls binären Amplitudenkoeffizienten a_k ∈ \{+1, –1\} vorzunehmen.  
+
*For this, a recoding of the source symbols &nbsp;q_k ∈ \{+1, –1\}&nbsp;  into the similarly binary amplitude coefficients &nbsp;a_k ∈ \{+1, –1\}&nbsp; must first be undertaken.  
*Diese Umcodierung wird in der [[Aufgaben:4.14Z_Offset–QPSK_vs._MSK|Zusatzaufgabe 4.14Z]] eingehend behandelt.
+
*This recoding is discussed in detail in  &nbsp;[[Aufgaben:Exercise_4.14Z:_Offset_QPSK_vs._MSK|Exercise 4.14Z]]&nbsp;.
  
  
Die Grafik zeigt unten die beiden äquivalenten Tiefpass–Signale s_{\rm I}(t) und s_{\rm Q}(t) in den beiden Zweigen, die sich nach der Umcodierung a_k = (-1)^{k+1} \cdot a_{k-1} \cdot q_k aus dem oben skizzierten Quellensignal q(t) für den Inphase– und den Quadraturzweig ergeben. Berücksichtigt ist hierbei der MSK–Grundimpuls
+
The graph shows the two equivalent low-pass signals &nbsp;s_{\rm I}(t)&nbsp; and &nbsp;s_{\rm Q}(t)&nbsp; in the two branches below, which are obtained for the inphase and quadrature branches after recoding &nbsp;a_k = (-1)^{k+1} \cdot a_{k-1} \cdot q_k &nbsp;from the source signal &nbsp;q(t)&nbsp; sketched above.&nbsp; Considered here is the MSK fundamental pulse,
:$$ g_{\rm MSK}(t) = \left\{ \begin{array}{l} \cos (\frac{\pi \cdot t}{2 \cdot T}) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{f\ddot{u}r}} \\{\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{10}c} -T \le t \le +T \hspace{0.05cm}, \\ {\rm sonst}\hspace{0.05cm}. \\ \end{array}$$
+
:$$ g_{\rm MSK}(t) = \left\{ \begin{array}{l} \cos \big ({\pi \hspace{0.05cm} t}/({2 \hspace{0.05cm} T})\big ) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{for}} \\{\rm{for}} \\ \end{array}\begin{array}{*{10}c} -T \le t \le +T \hspace{0.05cm}, \\ {\rm otherwise}\hspace{0.05cm}. \\ \end{array}$$
Dieser ist ebenso wie die Signale s_{\rm I}(t) und s_{\rm Q}(t) auf 1 normiert. Für das äquivalente Tiefpass–Signal gilt entsprechend dem  Kapitel [[Signaldarstellung/Äquivalentes_Tiefpass-Signal_und_zugehörige_Spektralfunktion|Äquivalentes Tiefpass-Signal und zugehörige Spektralfunktion]] im Buch „Signaldarstellung”:
+
This is normalized to &nbsp;1&nbsp;, as are the signals &nbsp;s_{\rm I}(t)&nbsp; and &nbsp;s_{\rm Q}(t)&nbsp;.  
: s_{\rm TP}(t) = s_{\rm I}(t) + {\rm j} \cdot s_{\rm Q}(t) = |s_{\rm TP}(t)| \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}\phi(t)}
+
 
mit dem Betrag
+
In keeping with the chapter &nbsp;[[Signal_Representation/Equivalent_Low_Pass_Signal_and_Its_Spectral_Function|Equivalent Low-Pass Signal and its Spectral Function]]&nbsp;in the book "Signal Representation", the equivalent low-pass signal is:
 +
:$$ s_{\rm TP}(t) = s_{\rm I}(t) + {\rm j} \cdot s_{\rm Q}(t) = |s_{\rm TP}(t)| \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}\phi(t)}\hspace{0.05cm},$$
 +
*with magnitude
 
:|s_{\rm TP}(t)| = \sqrt{s_{\rm I}^2(t) + s_{\rm Q}^2(t)}
 
:|s_{\rm TP}(t)| = \sqrt{s_{\rm I}^2(t) + s_{\rm Q}^2(t)}
und der Phase
+
*and phase
 
: \phi(t) = {\rm arc} \hspace{0.15cm}s_{\rm TP}(t) = {\rm arctan}\hspace{0.1cm} \frac{s_{\rm Q}(t)}{s_{\rm I}(t)} \hspace{0.05cm}.
 
: \phi(t) = {\rm arc} \hspace{0.15cm}s_{\rm TP}(t) = {\rm arctan}\hspace{0.1cm} \frac{s_{\rm Q}(t)}{s_{\rm I}(t)} \hspace{0.05cm}.
Das physikalische MSK–Sendesignal ergibt sich dann zu
+
The physical MSK transmitted signal is then given by
 
: s(t) = |s_{\rm TP}(t)| \cdot \cos (2 \pi \cdot f_{\rm T} \cdot t + \phi(t)) \hspace{0.05cm}.
 
: s(t) = |s_{\rm TP}(t)| \cdot \cos (2 \pi \cdot f_{\rm T} \cdot t + \phi(t)) \hspace{0.05cm}.
  
  
''Hinweise:''  
+
 
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/Nichtlineare_digitale_Modulation|Nichtlineare digitale Modulation]].
+
 
*Bezug genommen wird insbesondere auf den Abschnitt [[Modulationsverfahren/Nichtlineare_digitale_Modulation#Realisierung_der_MSK_als_Offset.E2.80.93QPSK|Realisierung der MSK als Offset-QPSK]].
+
 
 +
 
 +
 
 +
 
 +
''Hints:''  
 +
*This exercise belongs to the chapter&nbsp; [[Modulation_Methods/Nonlinear_Digital_Modulation|Nonlinear Digital Modulation]].
 +
*Particular reference is made to the section&nbsp; [[Modulation_Methods/Nonlinear_Digital_Modulation#Realizing_MSK_as_Offset.E2.80.93QPSK|Realizing MSK as Offset–QPSK]].
 
   
 
   
*Gehen Sie davon aus, dass ϕ(t = 0) = ϕ_0 = 0 ist.
+
*Assume &nbsp;ϕ(t = 0) = ϕ_0 = 0&nbsp;.
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Aussagen gelten für die Hüllkurve |s_{TP}(t)| der MSK?
+
{Which statements are true for the envelope curve &nbsp;$|s_{\rm TP}(t)|$&nbsp; of MSK?
 
|type="[]"}
 
|type="[]"}
- Die Hüllkurve schwankt cosinusförmig.
+
- The envelope curve is a cosine oscillation.
+ Die Hüllkurve ist konstant.
+
+ The envelope curve is constant.
+ Die Hüllkurve ist unabhängig von der gesendeten Folge.
+
+ The envelope curve is independent of the transmitted sequence.
  
{Es gelte $T = 1 \ \rm μs$. Berechnen Sie den Phasenverlauf im Intervall 0 ≤ t ≤ T.  
+
{Let &nbsp;$T = 1 \ \rm &micro;s$.&nbsp; Calculate the phase response in the interval &nbsp;0 ≤ t ≤ T.  
<br>Welche Phasenwerte ergeben sich für t = T/2 und t = T?
+
<br>What are the phase values for &nbsp;t = T/2&nbsp; and &nbsp;t = T?
 
|type="{}"}
 
|type="{}"}
ϕ(t = T/2)\ = \ { 45 3%  } $\ \rm Grad$  
+
ϕ(t = T/2)\ = \ { 45 3%  } $\ \rm degrees$  
ϕ(t = T) \hspace{0.63cm}  = \ { 90 3% } $\ \rm Grad$
+
ϕ(t = T) \hspace{0.63cm}  = \ { 90 3% } $\ \rm degrees$
  
{Bestimmen Sie die Phasenwerte bei t = 2T, t = 3T und t = 4T.
+
{Determine the phase values at &nbsp;t = 2T, &nbsp;t = 3T &nbsp;and&nbsp; t = 4T.
 
|type="{}"}
 
|type="{}"}
ϕ(t = 2T) \ = \ { 0. } $\ \rm Grad$
+
ϕ(t = 2T) \ = \ { 0. } $\ \rm degrees$
ϕ(t = 3T) \ = \ { -92.7--87.3 } $\ \rm Grad$
+
ϕ(t = 3T) \ = \ { -92.7--87.3 } $\ \rm degrees$
ϕ(t = 4T) \ = \ { -185.4--174.6 } $\ \rm Grad$
+
ϕ(t = 4T) \ = \ { -185.4--174.6 } $\ \rm degrees$
  
{Skizzieren und interpretieren Sie den Phasenverlauf ϕ(t) im Bereich von 0 bis 8T. Welche Phasenwerte ergeben sich zu den folgenden Zeiten?
+
{Sketch and interpret the phase response &nbsp;ϕ(t)&nbsp; in the range from &nbsp;0 &nbsp;to&nbsp; 8T. <br>What are the phase values at the following times?
 
|type="{}"}
 
|type="{}"}
ϕ(t = 5T) \ = \ { -92.7--87.3 } $\ \rm Grad$
+
ϕ(t = 5T) \ = \ { -92.7--87.3 } $\ \rm degrees$
ϕ(t = 6T) \ = \ { 0. } $\ \rm Grad$
+
ϕ(t = 6T) \ = \ { 0. } $\ \rm degrees$
ϕ(t = 7T) \ = \ { -92.7--87.3 } $\ \rm Grad$
+
ϕ(t = 7T) \ = \ { -92.7--87.3 } $\ \rm degrees$
ϕ(t = 8T) \ = \ { 0. } $\ \rm Grad$
+
ϕ(t = 8T) \ = \ { 0. } $\ \rm degrees$
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2 und 3</u>:  
+
'''(1)'''&nbsp; <u>Answers 2 and 3</u> are correct:  
*Beispielsweise gilt im Bereich 0 ≤ t ≤ T, wenn man berücksichtigt,  dass a_0^2 = a_1^2 = 1 ist:
+
*For example, in the range &nbsp; 0 ≤ t ≤ T, considering that &nbsp; a_0^2 = a_1^2 = 1&nbsp;:
 
: |s_{\rm TP}(t)| = \sqrt{a_0^2 \cdot \cos^2 (\frac{\pi \cdot t}{2 \cdot T}) + a_1^2 \cdot \sin^2 (\frac{\pi \cdot t}{2 \cdot T})} = 1 \hspace{0.05cm}.
 
: |s_{\rm TP}(t)| = \sqrt{a_0^2 \cdot \cos^2 (\frac{\pi \cdot t}{2 \cdot T}) + a_1^2 \cdot \sin^2 (\frac{\pi \cdot t}{2 \cdot T})} = 1 \hspace{0.05cm}.
*Richtig ist damit die Aussage 2, während die Aussage 1 falsch.
+
*Thus, statement 2 is correct, while statement 1 is false.
*Dieses Ergebnis gilt für jedes Wertepaar $a_0$ ∈ {+1, –1} und a_1 ∈ {+1, –1}.
+
*This result holds for any pair of values&nbsp; $a_0 ∈ \{+1, \ –1\}$&nbsp; and&nbsp; $a_1 ∈ \{+1, \ –1\}$.
*Daraus kann weiter geschlossen werden, dass die Hüllkurve unabhängig von der gesendeten Folge ist.
+
*From this, it can be further concluded that the envelope is independent of the transmitted sequence.
 +
 
 +
 
  
  
'''(2)'''&nbsp; Mit der angegebenen Gleichung gilt:
+
'''(2)'''&nbsp; With the given equation, it holds that:
 
:\phi(t) = {\rm arctan}\hspace{0.1cm} \frac{s_{\rm Q}(t)}{s_{\rm I}(t)} = {\rm arctan}\hspace{0.1cm} \frac{a_1 \cdot \sin (\frac{\pi \cdot t}{2 \cdot T})}{a_0 \cdot \cos (\frac{\pi \cdot t}{2 \cdot T})}= {\rm arctan}\hspace{0.1cm}\left [ \frac{a_1}{a_0}\cdot \tan \hspace{0.1cm}(\frac{\pi \cdot t}{2 \cdot T})\right ] \hspace{0.05cm}.
 
:\phi(t) = {\rm arctan}\hspace{0.1cm} \frac{s_{\rm Q}(t)}{s_{\rm I}(t)} = {\rm arctan}\hspace{0.1cm} \frac{a_1 \cdot \sin (\frac{\pi \cdot t}{2 \cdot T})}{a_0 \cdot \cos (\frac{\pi \cdot t}{2 \cdot T})}= {\rm arctan}\hspace{0.1cm}\left [ \frac{a_1}{a_0}\cdot \tan \hspace{0.1cm}(\frac{\pi \cdot t}{2 \cdot T})\right ] \hspace{0.05cm}.
Der Quotient a_1/a_0 ist stets +1 oder -1. Damit kann dieser Quotient vorgezogen werden und man erhält:
+
*The quotient&nbsp; a_1/a_0&nbsp; is always&nbsp; +1&nbsp; or&nbsp; -1.&nbsp; Thus, this quotient is preferable and we get:
 
:$$\phi(t) =  \frac{a_1}{a_0}\cdot {\rm arctan}\hspace{0.1cm}\left [
 
:$$\phi(t) =  \frac{a_1}{a_0}\cdot {\rm arctan}\hspace{0.1cm}\left [
 
   \tan \hspace{0.1cm}(\frac{\pi  \cdot t}{2  \cdot T})\right ]=  \frac{a_1}{a_0}\cdot \frac{\pi  \cdot t}{2  \cdot T}
 
   \tan \hspace{0.1cm}(\frac{\pi  \cdot t}{2  \cdot T})\right ]=  \frac{a_1}{a_0}\cdot \frac{\pi  \cdot t}{2  \cdot T}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Durch die Anfangsphase ϕ_0 = 0 können Mehrdeutigkeiten ausgeschlossen werden. Insbesondere gilt mit a_0 = a_1 = +1:
+
*The initial phase&nbsp; ϕ_0 = 0&nbsp; can rule out ambiguities.&nbsp; In particular, because&nbsp; a_0 = a_1 = +1:
:$$\phi(t = T/2 = 0.5\,{\rm \mu s}) =  {\pi}/{4}\hspace{0.15cm}\underline { = +45^\circ},\hspace{0.2cm}\phi(t = T= 1\,{\rm \mu s}) =  {\pi}/{2}\hspace{0.15cm}\underline {= +90^\circ}
+
:$$\phi(t = T/2 = 0.5\,{\rm &micro; s}) =  {\pi}/{4}\hspace{0.15cm}\underline { = +45^\circ},\hspace{0.2cm}\phi(t = T= 1\,{\rm &micro; s}) =  {\pi}/{2}\hspace{0.15cm}\underline {= +90^\circ}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
'''(3)'''&nbsp;  Am einfachsten löst man diese Aufgabe unter Zuhilfenahme des Einheitskreises:
+
 
:$$ {\rm Re} = s_{\rm I}(2T) = +1, \hspace{0.2cm} {\rm Im} = s_{\rm Q}(2T) = 0 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}\phi(t = 2T= 2\,{\rm \mu s}) \hspace{0.15cm}\underline {= 0^\circ},$$
+
'''(3)'''&nbsp;  The easiest way to solve this problem is to use the unit circle:
:$$ {\rm Re} = s_{\rm I}(3T) = 0, \hspace{0.2cm} {\rm Im} = s_{\rm Q}(3T) = -1 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}\phi(t = 3T= 3\,{\rm \mu s}) \hspace{0.15cm}\underline {= -90^\circ},$$  
+
:$$ {\rm Re} = s_{\rm I}(2T) = +1, \hspace{0.2cm} {\rm Im} = s_{\rm Q}(2T) = 0 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}\phi(t = 2T= 2\,{\rm &micro; s}) \hspace{0.15cm}\underline {= 0^\circ},$$
:$${\rm Re} = s_{\rm I}(4T) = -1, \hspace{0.2cm} {\rm Im} = s_{\rm Q}(4T) = 0 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}\phi(t = 4T= 4\,{\rm \mu s})= \pm 180^\circ \hspace{0.05cm}.$$
+
:$$ {\rm Re} = s_{\rm I}(3T) = 0, \hspace{0.2cm} {\rm Im} = s_{\rm Q}(3T) = -1 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}\phi(t = 3T= 3\,{\rm &micro; s}) \hspace{0.15cm}\underline {= -90^\circ},$$
Aus der unteren Skizze erkennt man, dass $\phi(t = 4T= 4\,{\rm \mu s})\hspace{0.15cm}\underline { = - 180^\circ}\hspace{0.05cm}$ richtig ist.
+
[[File:P_ID1741__Mod_A_4_13_d.png|right|frame|Source signal and phase response in MSK]]
 +
:$${\rm Re} = s_{\rm I}(4T) = -1, \hspace{0.2cm} {\rm Im} = s_{\rm Q}(4T) = 0 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}\phi(t = 4T= 4\,{\rm &micro; s})= \pm 180^\circ \hspace{0.05cm}.$$
 +
 
 +
*From the sketch below, we can see that &nbsp; $\phi(t = 4T= 4\,{\rm &micro; s})\hspace{0.15cm}\underline { = - 180^\circ}\hspace{0.05cm}$&nbsp; is correct.
 +
 
  
  
[[File:P_ID1741__Mod_A_4_13_d.png|right|frame|Quellensignal und Phasenverlauf bei MSK]]
+
'''(4)'''&nbsp; The graph shows the MSK phase&nbsp; ϕ(t)&nbsp; together with the source signal&nbsp; q(t).&nbsp; It can be seen that:
'''(4)'''&nbsp; Die Grafik zeigt die MSK–Phase ϕ(t) zusammen mit dem Quellensignal q(t). Man erkennt:
+
* At symbol&nbsp; a_\nu =+1&nbsp;  the phase increases linearly by 90^\circ \  (π/2)&nbsp; within the symbol duration T&nbsp;.
* Beim Quellensymbol a_\nu =+1 steigt die Phase innerhalb der Symboldauer T linear um 90^\circ \  (π/2) an.
+
* At symbol&nbsp; a_\nu =-1&nbsp; the phase decreases linearly by 90^\circ \  (π/2)&nbsp; within the symbol duration T&nbsp;.
* Beim Quellensymbol a_\nu =-1 fällt die Phase innerhalb der Symboldauer T linear um 90^\circ \  (π/2) ab.
 
  
Die weiteren Phasenwerte sind somit:
+
*Thus, the remaining phase values are:
 
:\phi(5T) \hspace{0.15cm}\underline { = -90^\circ},\hspace{0.2cm}\phi(t = 6T)  \hspace{0.15cm}\underline {= 0^\circ} \hspace{0.05cm}.
 
:\phi(5T) \hspace{0.15cm}\underline { = -90^\circ},\hspace{0.2cm}\phi(t = 6T)  \hspace{0.15cm}\underline {= 0^\circ} \hspace{0.05cm}.
 
: \phi(7T)\hspace{0.15cm}\underline { = -90^\circ},\hspace{0.2cm} \phi(t = 8T) \hspace{0.15cm}\underline {= 0^\circ} \hspace{0.05cm}.
 
: \phi(7T)\hspace{0.15cm}\underline { = -90^\circ},\hspace{0.2cm} \phi(t = 8T) \hspace{0.15cm}\underline {= 0^\circ} \hspace{0.05cm}.
Line 97: Line 110:
  
  
[[Category:Aufgaben zu Modulationsverfahren|^4.4 Nichtlineare digitale Modulation^]]
+
[[Category:Modulation Methods: Exercises|^4.4 Non-linear Digital Modulation^]]

Latest revision as of 13:37, 21 March 2022

Source signal and low-pass signals
in both branches of the MSK

One possible implementation of  Minimum Shift Keying  \rm (MSK)  is offered by   \rm Offset–QPSK, as shown in the block diagram  in the theory section.

  • For this, a recoding of the source symbols  q_k ∈ \{+1, –1\}  into the similarly binary amplitude coefficients  a_k ∈ \{+1, –1\}  must first be undertaken.
  • This recoding is discussed in detail in  Exercise 4.14Z .


The graph shows the two equivalent low-pass signals  s_{\rm I}(t)  and  s_{\rm Q}(t)  in the two branches below, which are obtained for the inphase and quadrature branches after recoding  a_k = (-1)^{k+1} \cdot a_{k-1} \cdot q_k  from the source signal  q(t)  sketched above.  Considered here is the MSK fundamental pulse,

g_{\rm MSK}(t) = \left\{ \begin{array}{l} \cos \big ({\pi \hspace{0.05cm} t}/({2 \hspace{0.05cm} T})\big ) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{for}} \\{\rm{for}} \\ \end{array}\begin{array}{*{10}c} -T \le t \le +T \hspace{0.05cm}, \\ {\rm otherwise}\hspace{0.05cm}. \\ \end{array}

This is normalized to  1 , as are the signals  s_{\rm I}(t)  and  s_{\rm Q}(t) .

In keeping with the chapter  Equivalent Low-Pass Signal and its Spectral Function in the book "Signal Representation", the equivalent low-pass signal is:

s_{\rm TP}(t) = s_{\rm I}(t) + {\rm j} \cdot s_{\rm Q}(t) = |s_{\rm TP}(t)| \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}\phi(t)}\hspace{0.05cm},
  • with magnitude
|s_{\rm TP}(t)| = \sqrt{s_{\rm I}^2(t) + s_{\rm Q}^2(t)}
  • and phase
\phi(t) = {\rm arc} \hspace{0.15cm}s_{\rm TP}(t) = {\rm arctan}\hspace{0.1cm} \frac{s_{\rm Q}(t)}{s_{\rm I}(t)} \hspace{0.05cm}.

The physical MSK transmitted signal is then given by

s(t) = |s_{\rm TP}(t)| \cdot \cos (2 \pi \cdot f_{\rm T} \cdot t + \phi(t)) \hspace{0.05cm}.





Hints:

  • Assume  ϕ(t = 0) = ϕ_0 = 0 .


Questions

1

Which statements are true for the envelope curve  |s_{\rm TP}(t)|  of MSK?

The envelope curve is a cosine oscillation.
The envelope curve is constant.
The envelope curve is independent of the transmitted sequence.

2

Let  T = 1 \ \rm µs.  Calculate the phase response in the interval  0 ≤ t ≤ T.
What are the phase values for  t = T/2  and  t = T?

ϕ(t = T/2)\ = \

\ \rm degrees
ϕ(t = T) \hspace{0.63cm} = \

\ \rm degrees

3

Determine the phase values at  t = 2T,  t = 3T  and  t = 4T.

ϕ(t = 2T) \ = \

\ \rm degrees
ϕ(t = 3T) \ = \

\ \rm degrees
ϕ(t = 4T) \ = \

\ \rm degrees

4

Sketch and interpret the phase response  ϕ(t)  in the range from  0  to  8T.
What are the phase values at the following times?

ϕ(t = 5T) \ = \

\ \rm degrees
ϕ(t = 6T) \ = \

\ \rm degrees
ϕ(t = 7T) \ = \

\ \rm degrees
ϕ(t = 8T) \ = \

\ \rm degrees


Solution

(1)  Answers 2 and 3 are correct:

  • For example, in the range   0 ≤ t ≤ T, considering that   a_0^2 = a_1^2 = 1 :
|s_{\rm TP}(t)| = \sqrt{a_0^2 \cdot \cos^2 (\frac{\pi \cdot t}{2 \cdot T}) + a_1^2 \cdot \sin^2 (\frac{\pi \cdot t}{2 \cdot T})} = 1 \hspace{0.05cm}.
  • Thus, statement 2 is correct, while statement 1 is false.
  • This result holds for any pair of values  a_0 ∈ \{+1, \ –1\}  and  a_1 ∈ \{+1, \ –1\}.
  • From this, it can be further concluded that the envelope is independent of the transmitted sequence.



(2)  With the given equation, it holds that:

\phi(t) = {\rm arctan}\hspace{0.1cm} \frac{s_{\rm Q}(t)}{s_{\rm I}(t)} = {\rm arctan}\hspace{0.1cm} \frac{a_1 \cdot \sin (\frac{\pi \cdot t}{2 \cdot T})}{a_0 \cdot \cos (\frac{\pi \cdot t}{2 \cdot T})}= {\rm arctan}\hspace{0.1cm}\left [ \frac{a_1}{a_0}\cdot \tan \hspace{0.1cm}(\frac{\pi \cdot t}{2 \cdot T})\right ] \hspace{0.05cm}.
  • The quotient  a_1/a_0  is always  +1  or  -1.  Thus, this quotient is preferable and we get:
\phi(t) = \frac{a_1}{a_0}\cdot {\rm arctan}\hspace{0.1cm}\left [ \tan \hspace{0.1cm}(\frac{\pi \cdot t}{2 \cdot T})\right ]= \frac{a_1}{a_0}\cdot \frac{\pi \cdot t}{2 \cdot T} \hspace{0.05cm}.
  • The initial phase  ϕ_0 = 0  can rule out ambiguities.  In particular, because  a_0 = a_1 = +1:
\phi(t = T/2 = 0.5\,{\rm µ s}) = {\pi}/{4}\hspace{0.15cm}\underline { = +45^\circ},\hspace{0.2cm}\phi(t = T= 1\,{\rm µ s}) = {\pi}/{2}\hspace{0.15cm}\underline {= +90^\circ} \hspace{0.05cm}.


(3)  The easiest way to solve this problem is to use the unit circle:

{\rm Re} = s_{\rm I}(2T) = +1, \hspace{0.2cm} {\rm Im} = s_{\rm Q}(2T) = 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\phi(t = 2T= 2\,{\rm µ s}) \hspace{0.15cm}\underline {= 0^\circ},
{\rm Re} = s_{\rm I}(3T) = 0, \hspace{0.2cm} {\rm Im} = s_{\rm Q}(3T) = -1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\phi(t = 3T= 3\,{\rm µ s}) \hspace{0.15cm}\underline {= -90^\circ},
Source signal and phase response in MSK
{\rm Re} = s_{\rm I}(4T) = -1, \hspace{0.2cm} {\rm Im} = s_{\rm Q}(4T) = 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\phi(t = 4T= 4\,{\rm µ s})= \pm 180^\circ \hspace{0.05cm}.
  • From the sketch below, we can see that   \phi(t = 4T= 4\,{\rm µ s})\hspace{0.15cm}\underline { = - 180^\circ}\hspace{0.05cm}  is correct.


(4)  The graph shows the MSK phase  ϕ(t)  together with the source signal  q(t).  It can be seen that:

  • At symbol  a_\nu =+1  the phase increases linearly by 90^\circ \ (π/2)  within the symbol duration T .
  • At symbol  a_\nu =-1  the phase decreases linearly by 90^\circ \ (π/2)  within the symbol duration T .
  • Thus, the remaining phase values are:
\phi(5T) \hspace{0.15cm}\underline { = -90^\circ},\hspace{0.2cm}\phi(t = 6T) \hspace{0.15cm}\underline {= 0^\circ} \hspace{0.05cm}.
\phi(7T)\hspace{0.15cm}\underline { = -90^\circ},\hspace{0.2cm} \phi(t = 8T) \hspace{0.15cm}\underline {= 0^\circ} \hspace{0.05cm}.