Difference between revisions of "Aufgaben:Exercise 4.15Z: MSK Basic Pulse and MSK Spectrum"

From LNTwww
m (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
 
(21 intermediate revisions by 3 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1744__Mod_Z_4_14.png|right|frame|MSK–Grundimpuls und –Spektrum]]
+
[[File:P_ID1744__Mod_Z_4_14.png|right|frame|MSK basic pulse and its spectrum]]
Der zur Realisierung der [[Modulationsverfahren/Nichtlineare_Modulationsverfahren#Realisierung_der_MSK_als_Offset.E2.80.93QPSK_.281.29|MSK mittels Offset–QPSK]] stets erforderliche Grundimpuls hat die in der Grafik oben dargestellte Form:
+
The fundamental pulse that is always required to  [[Modulation_Methods/Nonlinear_Digital_Modulation#Realizing_MSK_as_Offset.E2.80.93QPSK|realize MSK as Offset–QPSK]]   has the form shown in the graph above:
:$$g_{\rm MSK}(t) = \left\{ \begin{array}{l} g_0 \cdot \cos (\frac{\pi \cdot t}{2 \cdot T}) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{10}c} | t | \le T \hspace{0.05cm}, \\ {\rm sonst}\hspace{0.05cm}. \\ \end{array}$$
+
:$$g_{\rm MSK}(t) = \left\{ \begin{array}{l} g_0 \cdot \cos (\pi/2 \cdot t/T) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{10}c} | t | \le T \hspace{0.05cm}, \\ {\rm otherwise}\hspace{0.05cm}. \\ \end{array}$$
Darunter gezeichnet ist die Spektralfunktion G(f), also die [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_erste_Fourierintegral|Fouriertransformierte]] von g(t). Die dazugehörige Gleichung soll in dieser Aufgabe ermittelt werden, wobei zu berücksichtigen ist:
+
The spectral function  G(f) is drawn below, that is, the  [[Signal_Representation/Fourier_Transform_and_its_Inverse#The_first_Fourier_integral|Fourier transform]]  of  g(t).  
 +
 
 +
The corresponding equation is to be determined in this task, by considering:  
 
:g(t)=c(t)r(t).
 
:g(t)=c(t)r(t).
Hierbei sind folgende  Abkürzungen verweendet:
+
The following abbreviations are used here:
* c(t) ist eine Cosinusschwingung mit Amplitude 1 und (noch zu bestimmender) Frequenz f0.
+
* c(t)  is a cosine oscillation with amplitude  1  and  frequency  f0 (yet to be determined).
* r(t) ist eine Rechteckfunktion mit der Amplitude g0 und der Dauer 2T.
+
* r(t)  is a square wave function with amplitude g0  and duration 2T.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
  
  
''Hinweise:''  
+
''Hints:''  
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/Nichtlineare_digitale_Modulation|Nichtlineare digitale Modulation]].
+
*This exercise belongs to the chapter  [[Modulation_Methods/Nonlinear_Digital_Modulation|Nonlinear Digital Modulation]].
*Bezug genommen wird insbesondere auf den Abschnitt [[Modulationsverfahren/Nichtlineare_digitale_Modulation#Realisierung_der_MSK_als_Offset.E2.80.93QPSK|Realisierung der MSK als Offset-QPSK]].
+
*Particular reference is made to the page  [[Modulation_Methods/Nonlinear_Digital_Modulation#Realizing_MSK_as_Offset.E2.80.93QPSK|Realizing MSK as Offset–QPSK]].
 
   
 
   
*Das hier gewonnene Ergebnis wird auch in der [[Aufgaben:4.15_MSK_im_Vergleich_mit_BPSK_und_QPSK|Aufgabe 4.15]] verwendet.
+
*The result obtained here is also used in  [[Aufgaben:Exercise_4.15:_MSK_Compared_with_BPSK_and_QPSK|Exercise 4.15]] .
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie ist die Frequenz f0 der Cosinusschwingung c(t) zu wählen, damit g(t)=c(t)·r(t) gilt?
+
{How should one choose the frequency&nbsp;f0&nbsp; of the cosine oscillation &nbsp;c(t)&nbsp; so that  &nbsp;g(t)=c(t)·r(t)&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
f0 =   { 0.25 3% }  1/T
 
f0 =   { 0.25 3% }  1/T
  
{Wie lautet das Spektrum R(f) der Rechteckfunktion r(t)? Welcher Spektralwert tritt bei f=0 auf?
+
{What is the spectrum &nbsp;R(f)&nbsp; of the rectangular function &nbsp;r(t)?&nbsp; What spectral value occurs when&nbsp;f=0&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
R(f=0) =   { 2 3%  }  g0T  
 
R(f=0) =   { 2 3%  }  g0T  
  
{Berechnen Sie das Spektrum G(f) des MSK&ndash;Impuses g(t), insbesondere den Spektralwert bei f=0.
+
{Calculate the spectrun &nbsp;G(f)&nbsp; of the MSK pulse &nbsp;g(t), particularly the spectral value at &nbsp;f=0.
 
|type="{}"}
 
|type="{}"}
 
G(f=0) =  { 1.273 3% }  g0T
 
G(f=0) =  { 1.273 3% }  g0T
  
{Fassen Sie das Ergebnis der Teilaufgabe (3) in einem Term zusammen. Bei welcher Frequenz f1 besitzt G(f) seine erste Nullstelle?
+
{Summarize the result of question &nbsp; '''(3)'''&nbsp; in one term. At what frequency &nbsp;f1&nbsp; does &nbsp;G(f)&nbsp; have its first zero?
 
|type="{}"}
 
|type="{}"}
 
f1 =  { 0.75 3% }  1/T
 
f1 =  { 0.75 3% }  1/T
Line 41: Line 49:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die Periodendauer des Cosinussignals muss T0=4T sein. Damit ist die Frequenz f0=1/T0=0.25_·1/T.
+
'''(1)'''&nbsp; The period of the cosine signal must be&nbsp; T0=4T&nbsp;.&nbsp; Thus, the frequency is f0=1/T0=0.25_·1/T.
  
  
'''(2)'''&nbsp; Die Spektralfunktion eines Rechteckimpulses der Höhe g0 und der Dauer 2T lautet:
+
'''(2)'''&nbsp; The spectral function of a rectangular pulse of height&nbsp; g0&nbsp; and duration&nbsp;$ 2T$&nbsp; is:
 
:$$R(f) = g_0 \cdot 2 T \cdot {\rm si} ( \pi f \cdot 2T )\hspace{0.2cm}{\rm mit}\hspace{0.2cm}{\rm si} (x) = \sin(x)/x \hspace{0.3cm}
 
:$$R(f) = g_0 \cdot 2 T \cdot {\rm si} ( \pi f \cdot 2T )\hspace{0.2cm}{\rm mit}\hspace{0.2cm}{\rm si} (x) = \sin(x)/x \hspace{0.3cm}
 
  \Rightarrow \hspace{0.3cm}R(f = 0) \hspace{0.15cm}\underline {= 2} \cdot g_0 \cdot T\hspace{0.05cm}.$$
 
  \Rightarrow \hspace{0.3cm}R(f = 0) \hspace{0.15cm}\underline {= 2} \cdot g_0 \cdot T\hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; Aus g(t)=c(t)·r(t) folgt nach dem Faltungssatz: &nbsp; G(f)=C(f)R(f). Die Spektralfunktion
+
'''(3)'''&nbsp; When&nbsp; g(t)=c(t)·r(t)&nbsp;, it follows from the convolution theorem that: &nbsp; G(f)=C(f)R(f).  
C(f) besteht aus zwei Diracfunktionen bei ±f0, jeweils mit dem Gewicht 1/2. Daraus folgt:
+
*The spectral function&nbsp; C(f)&nbsp; consists of two  Dirac functions at&nbsp; ±f0, each with weight&nbsp; 1/2.&nbsp; From this follows:
:$$ G(f)  =  2 \cdot g_0 \cdot T \cdot \left [ \frac {1}{2} \cdot \delta (f - f_0 ) + \frac {1}{2} \cdot \delta (f + f_0 )\right ] \star {\rm si} ( 2 \pi f T )=  g_0 \cdot T \cdot \left [ {\rm si} ( 2 \pi T \cdot (f - f_0 ) ) + {\rm si} ( 2 \pi T \cdot (f + f_0 ) ) \right ] \hspace{0.05cm}.$$
+
:$$ G(f)  =  2 \cdot g_0 \cdot T \cdot \big [ 1/2 \cdot \delta (f - f_0 ) + 1/2 \cdot \delta (f + f_0 )\big ] \star {\rm si} ( 2 \pi f T )=  g_0 \cdot T \cdot \big [ {\rm si} ( 2 \pi T \cdot (f - f_0 ) ) + {\rm si} ( 2 \pi T \cdot (f + f_0 ) ) \big ] \hspace{0.05cm}.$$
Mit dem Ergebnis f0=1/(4T) der Teilaufgabe (1) gilt weiter:
+
*Using the result&nbsp; f0=1/(4T)&nbsp; from question&nbsp; '''(1)'''&nbsp;, it further holds that:
:$$G(f) = g_0 \cdot T \cdot \left [ {\rm si} ( 2 \pi f T - \pi / 2 ) + {\rm si} ( 2 \pi f T + \pi / 2) \right ]$$
+
:$$G(f) = g_0 \cdot T \cdot \big [ {\rm si} ( 2 \pi f T - \pi / 2 ) + {\rm si} ( 2 \pi f T + \pi / 2) \big ]$$
:$$\Rightarrow \hspace{0.3cm} G(f = 0)  =  g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{-0.02cm}\cdot\hspace{-0.02cm} \left [ {\rm si} ( - \frac{\pi}{2} ) + {\rm si} ( +\frac{\pi}{2} ) \right ] = 2 \cdot g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{-0.02cm}\cdot\hspace{-0.02cm} {\rm si} ( \frac{\pi}{2} ) = 2 \hspace{-0.02cm}\cdot\hspace{-0.02cm} g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{-0.02cm}\cdot\hspace{-0.02cm} \frac {{\rm sin}({\pi}/{2}) } { {\pi}/{2} } ={4}/{\pi} \hspace{-0.02cm}\cdot\hspace{-0.02cm} g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{0.15cm}\underline {\approx 1.273} \hspace{-0.02cm}\cdot\hspace{-0.02cm} g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T .$$
+
:$$\Rightarrow \hspace{0.3cm} G(f = 0)  =  g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{-0.02cm}\cdot\hspace{-0.02cm} \big [ {\rm si} ( - \pi/2 ) + {\rm si} ( +\pi/2 ) \big ] = 2 \cdot g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{-0.02cm}\cdot\hspace{-0.02cm} {\rm si} ( \pi/2 ) = 2 \hspace{-0.02cm}\cdot\hspace{-0.02cm} g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{-0.02cm}\cdot\hspace{-0.02cm} \frac {{\rm sin}({\pi}/{2}) } { {\pi}/{2} } ={4}/{\pi} \hspace{-0.02cm}\cdot\hspace{-0.02cm} g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{0.15cm}\underline {\approx 1.273} \hspace{-0.02cm}\cdot\hspace{-0.02cm} g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T .$$
 +
 
  
'''(4)'''&nbsp; Schreibt man die si–Funktion aus, so erhält man mit sin(α±π/2)=±cos(α):
+
'''(4)'''&nbsp; By writing out the&nbsp; si–function, with &nbsp; sin(α±π/2)=±cos(α), one gets:
 
:G(f)=g0T[sin(2πfTπ/2)2πfTπ/2+sin(2πfT+π/2)2πfT+π/2]=g0T2π[cos(2πfT)4fT1+cos(2πfT)4fT+1]
 
 
:G(f)=g0T[sin(2πfTπ/2)2πfTπ/2+sin(2πfT+π/2)2πfT+π/2]=g0T2π[cos(2πfT)4fT1+cos(2πfT)4fT+1]
 
 
:G(f)=g0T2π(1+4fT)cos(2πfT)+(14fT)cos(2πfT)1(4fT)2=4πg0Tcos(2πfT)1(4fT)2.
 
 
:G(f)=g0T2π(1+4fT)cos(2πfT)+(14fT)cos(2πfT)1(4fT)2=4πg0Tcos(2πfT)1(4fT)2.
 
  
*Die Nullstellen von G(f) werden allein durch die Cosinusfunktion im Zähler bestimmt und würden bei den Frequenzen f·T=0.25,0.75,1.25, ... liegen.  
+
*The zeroes of&nbsp; G(f)&nbsp; are exclusively determined by the cosine function in the numerator, and are found at the frequencies&nbsp; $f · T = 0.25,\ 0.75,\ 1.25,$&nbsp; ...  
*Allerdings wird die erste Nullstelle bei f·T=0.25 durch die gleichzeitige Nullstelle des Nenners aufgehoben. Deshalb gilt:
+
*However, the first zero at&nbsp; f·T=0.25&nbsp; is cancelled out by the simultaneously occuring zero in the denominator.&nbsp; Therefore:
 
:f1=0.75_1/T.
 
:f1=0.75_1/T.
  
Line 71: Line 80:
  
  
[[Category:Aufgaben zu Modulationsverfahren|^4.4 Nichtlineare digitale Modulation^]]
+
[[Category:Modulation Methods: Exercises|^4.4 Non-linear Digital Modulation^]]

Latest revision as of 11:50, 12 April 2022

MSK basic pulse and its spectrum

The fundamental pulse that is always required to  realize MSK as Offset–QPSK   has the form shown in the graph above:

gMSK(t)={g0cos(π/2t/T)0|t|T,otherwise.

The spectral function  G(f) is drawn below, that is, the  Fourier transform  of  g(t).

The corresponding equation is to be determined in this task, by considering:

g(t)=c(t)r(t).

The following abbreviations are used here:

  • c(t)  is a cosine oscillation with amplitude  1  and  frequency  f0 (yet to be determined).
  • r(t)  is a square wave function with amplitude g0  and duration 2T.





Hints:


Questions

1

How should one choose the frequency f0  of the cosine oscillation  c(t)  so that  g(t)=c(t)·r(t) ?

f0 = 

 1/T

2

What is the spectrum  R(f)  of the rectangular function  r(t)?  What spectral value occurs when f=0 ?

R(f=0) = 

 g0T

3

Calculate the spectrun  G(f)  of the MSK pulse  g(t), particularly the spectral value at  f=0.

G(f=0) = 

 g0T

4

Summarize the result of question   (3)  in one term. At what frequency  f1  does  G(f)  have its first zero?

f1 = 

 1/T


Solution

(1)  The period of the cosine signal must be  T0=4T .  Thus, the frequency is f0=1/T0=0.25_·1/T.


(2)  The spectral function of a rectangular pulse of height  g0  and duration 2T  is:

R(f)=g02Tsi(πf2T)mitsi(x)=sin(x)/xR(f=0)=2_g0T.


(3)  When  g(t)=c(t)·r(t) , it follows from the convolution theorem that:   G(f)=C(f)R(f).

  • The spectral function  C(f)  consists of two Dirac functions at  ±f0, each with weight  1/2.  From this follows:
G(f)=2g0T[1/2δ(ff0)+1/2δ(f+f0)]si(2πfT)=g0T[si(2πT(ff0))+si(2πT(f+f0))].
  • Using the result  f0=1/(4T)  from question  (1) , it further holds that:
G(f)=g0T[si(2πfTπ/2)+si(2πfT+π/2)]
G(f=0)=g0T[si(π/2)+si(+π/2)]=2g0Tsi(π/2)=2g0Tsin(π/2)π/2=4/πg0T1.273_g0T.


(4)  By writing out the  si–function, with   sin(α±π/2)=±cos(α), one gets:

G(f)=g0T[sin(2πfTπ/2)2πfTπ/2+sin(2πfT+π/2)2πfT+π/2]=g0T2π[cos(2πfT)4fT1+cos(2πfT)4fT+1]
G(f)=g0T2π(1+4fT)cos(2πfT)+(14fT)cos(2πfT)1(4fT)2=4πg0Tcos(2πfT)1(4fT)2.
  • The zeroes of  G(f)  are exclusively determined by the cosine function in the numerator, and are found at the frequencies  f·T=0.25, 0.75, 1.25,  ...
  • However, the first zero at  f·T=0.25  is cancelled out by the simultaneously occuring zero in the denominator.  Therefore:
f1=0.75_1/T.