Difference between revisions of "Aufgaben:Exercise 4.15Z: MSK Basic Pulse and MSK Spectrum"
From LNTwww
m (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “) |
|||
(21 intermediate revisions by 3 users not shown) | |||
Line 3: | Line 3: | ||
}} | }} | ||
− | [[File:P_ID1744__Mod_Z_4_14.png|right|frame|MSK | + | [[File:P_ID1744__Mod_Z_4_14.png|right|frame|MSK basic pulse and its spectrum]] |
− | + | The fundamental pulse that is always required to [[Modulation_Methods/Nonlinear_Digital_Modulation#Realizing_MSK_as_Offset.E2.80.93QPSK|realize MSK as Offset–QPSK]] has the form shown in the graph above: | |
− | :$$g_{\rm MSK}(t) = \left\{ \begin{array}{l} g_0 \cdot \cos ( | + | :$$g_{\rm MSK}(t) = \left\{ \begin{array}{l} g_0 \cdot \cos (\pi/2 \cdot t/T) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{10}c} | t | \le T \hspace{0.05cm}, \\ {\rm otherwise}\hspace{0.05cm}. \\ \end{array}$$ |
− | + | The spectral function G(f) is drawn below, that is, the [[Signal_Representation/Fourier_Transform_and_its_Inverse#The_first_Fourier_integral|Fourier transform]] of g(t). | |
+ | |||
+ | The corresponding equation is to be determined in this task, by considering: | ||
:g(t)=c(t)⋅r(t). | :g(t)=c(t)⋅r(t). | ||
− | + | The following abbreviations are used here: | |
− | * c(t) | + | * c(t) is a cosine oscillation with amplitude 1 and frequency f0 (yet to be determined). |
− | * | + | * r(t) is a square wave function with amplitude g0 and duration 2T. |
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
− | '' | + | ''Hints:'' |
− | * | + | *This exercise belongs to the chapter [[Modulation_Methods/Nonlinear_Digital_Modulation|Nonlinear Digital Modulation]]. |
− | * | + | *Particular reference is made to the page [[Modulation_Methods/Nonlinear_Digital_Modulation#Realizing_MSK_as_Offset.E2.80.93QPSK|Realizing MSK as Offset–QPSK]]. |
− | * | + | *The result obtained here is also used in [[Aufgaben:Exercise_4.15:_MSK_Compared_with_BPSK_and_QPSK|Exercise 4.15]] . |
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {How should one choose the frequency f0 of the cosine oscillation c(t) so that g(t)=c(t)·r(t) ? |
|type="{}"} | |type="{}"} | ||
f0 = { 0.25 3% } ⋅1/T | f0 = { 0.25 3% } ⋅1/T | ||
− | { | + | {What is the spectrum R(f) of the rectangular function r(t)? What spectral value occurs when f=0 ? |
|type="{}"} | |type="{}"} | ||
R(f=0) = { 2 3% } ⋅g0⋅T | R(f=0) = { 2 3% } ⋅g0⋅T | ||
− | { | + | {Calculate the spectrun G(f) of the MSK pulse g(t), particularly the spectral value at f=0. |
|type="{}"} | |type="{}"} | ||
G(f=0) = { 1.273 3% } ⋅g0⋅T | G(f=0) = { 1.273 3% } ⋅g0⋅T | ||
− | { | + | {Summarize the result of question '''(3)''' in one term. At what frequency f1 does G(f) have its first zero? |
|type="{}"} | |type="{}"} | ||
f1 = { 0.75 3% } ⋅1/T | f1 = { 0.75 3% } ⋅1/T | ||
Line 41: | Line 49: | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' The period of the cosine signal must be T0=4T . Thus, the frequency is f0=1/T0=0.25_·1/T. |
− | '''(2)''' | + | '''(2)''' The spectral function of a rectangular pulse of height g0 and duration $ 2T$ is: |
:$$R(f) = g_0 \cdot 2 T \cdot {\rm si} ( \pi f \cdot 2T )\hspace{0.2cm}{\rm mit}\hspace{0.2cm}{\rm si} (x) = \sin(x)/x \hspace{0.3cm} | :$$R(f) = g_0 \cdot 2 T \cdot {\rm si} ( \pi f \cdot 2T )\hspace{0.2cm}{\rm mit}\hspace{0.2cm}{\rm si} (x) = \sin(x)/x \hspace{0.3cm} | ||
\Rightarrow \hspace{0.3cm}R(f = 0) \hspace{0.15cm}\underline {= 2} \cdot g_0 \cdot T\hspace{0.05cm}.$$ | \Rightarrow \hspace{0.3cm}R(f = 0) \hspace{0.15cm}\underline {= 2} \cdot g_0 \cdot T\hspace{0.05cm}.$$ | ||
− | '''(3)''' | + | '''(3)''' When g(t)=c(t)·r(t) , it follows from the convolution theorem that: G(f)=C(f)⋆R(f). |
− | C(f) | + | *The spectral function C(f) consists of two Dirac functions at ±f0, each with weight 1/2. From this follows: |
− | :$$ G(f) = 2 \cdot g_0 \cdot T \cdot \ | + | :$$ G(f) = 2 \cdot g_0 \cdot T \cdot \big [ 1/2 \cdot \delta (f - f_0 ) + 1/2 \cdot \delta (f + f_0 )\big ] \star {\rm si} ( 2 \pi f T )= g_0 \cdot T \cdot \big [ {\rm si} ( 2 \pi T \cdot (f - f_0 ) ) + {\rm si} ( 2 \pi T \cdot (f + f_0 ) ) \big ] \hspace{0.05cm}.$$ |
− | + | *Using the result f0=1/(4T) from question '''(1)''' , it further holds that: | |
− | :$$G(f) = g_0 \cdot T \cdot \ | + | :$$G(f) = g_0 \cdot T \cdot \big [ {\rm si} ( 2 \pi f T - \pi / 2 ) + {\rm si} ( 2 \pi f T + \pi / 2) \big ]$$ |
− | :$$\Rightarrow \hspace{0.3cm} G(f = 0) = g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{-0.02cm}\cdot\hspace{-0.02cm} \ | + | :$$\Rightarrow \hspace{0.3cm} G(f = 0) = g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{-0.02cm}\cdot\hspace{-0.02cm} \big [ {\rm si} ( - \pi/2 ) + {\rm si} ( +\pi/2 ) \big ] = 2 \cdot g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{-0.02cm}\cdot\hspace{-0.02cm} {\rm si} ( \pi/2 ) = 2 \hspace{-0.02cm}\cdot\hspace{-0.02cm} g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{-0.02cm}\cdot\hspace{-0.02cm} \frac {{\rm sin}({\pi}/{2}) } { {\pi}/{2} } ={4}/{\pi} \hspace{-0.02cm}\cdot\hspace{-0.02cm} g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{0.15cm}\underline {\approx 1.273} \hspace{-0.02cm}\cdot\hspace{-0.02cm} g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T .$$ |
+ | |||
− | '''(4)''' | + | '''(4)''' By writing out the si–function, with sin(α±π/2)=±cos(α), one gets: |
:G(f)=g0⋅T⋅[sin(2πfT−π/2)2πfT−π/2+sin(2πfT+π/2)2πfT+π/2]=g0⋅T⋅2π⋅[−cos(2πfT)4fT−1+cos(2πfT)4fT+1] | :G(f)=g0⋅T⋅[sin(2πfT−π/2)2πfT−π/2+sin(2πfT+π/2)2πfT+π/2]=g0⋅T⋅2π⋅[−cos(2πfT)4fT−1+cos(2πfT)4fT+1] | ||
:⇒G(f)=g0⋅T⋅2π⋅(1+4fT)⋅cos(2πfT)+(1−4fT)⋅cos(2πfT)1−(4fT)2=4π⋅g0⋅T⋅cos(2πfT)1−(4fT)2. | :⇒G(f)=g0⋅T⋅2π⋅(1+4fT)⋅cos(2πfT)+(1−4fT)⋅cos(2πfT)1−(4fT)2=4π⋅g0⋅T⋅cos(2πfT)1−(4fT)2. | ||
− | * | + | *The zeroes of G(f) are exclusively determined by the cosine function in the numerator, and are found at the frequencies $f · T = 0.25,\ 0.75,\ 1.25,$ ... |
− | * | + | *However, the first zero at f·T=0.25 is cancelled out by the simultaneously occuring zero in the denominator. Therefore: |
:f1=0.75_⋅1/T. | :f1=0.75_⋅1/T. | ||
Line 71: | Line 80: | ||
− | [[Category: | + | [[Category:Modulation Methods: Exercises|^4.4 Non-linear Digital Modulation^]] |
Latest revision as of 11:50, 12 April 2022
The fundamental pulse that is always required to realize MSK as Offset–QPSK has the form shown in the graph above:
- gMSK(t)={g0⋅cos(π/2⋅t/T)0|t|≤T,otherwise.
The spectral function G(f) is drawn below, that is, the Fourier transform of g(t).
The corresponding equation is to be determined in this task, by considering:
- g(t)=c(t)⋅r(t).
The following abbreviations are used here:
- c(t) is a cosine oscillation with amplitude 1 and frequency f0 (yet to be determined).
- r(t) is a square wave function with amplitude g0 and duration 2T.
Hints:
- This exercise belongs to the chapter Nonlinear Digital Modulation.
- Particular reference is made to the page Realizing MSK as Offset–QPSK.
- The result obtained here is also used in Exercise 4.15 .
Questions
Solution
(1) The period of the cosine signal must be T0=4T . Thus, the frequency is f0=1/T0=0.25_·1/T.
(2) The spectral function of a rectangular pulse of height g0 and duration 2T is:
- R(f)=g0⋅2T⋅si(πf⋅2T)mitsi(x)=sin(x)/x⇒R(f=0)=2_⋅g0⋅T.
(3) When g(t)=c(t)·r(t) , it follows from the convolution theorem that: G(f)=C(f)⋆R(f).
- The spectral function C(f) consists of two Dirac functions at ±f0, each with weight 1/2. From this follows:
- G(f)=2⋅g0⋅T⋅[1/2⋅δ(f−f0)+1/2⋅δ(f+f0)]⋆si(2πfT)=g0⋅T⋅[si(2πT⋅(f−f0))+si(2πT⋅(f+f0))].
- Using the result f0=1/(4T) from question (1) , it further holds that:
- G(f)=g0⋅T⋅[si(2πfT−π/2)+si(2πfT+π/2)]
- ⇒G(f=0)=g0⋅T⋅[si(−π/2)+si(+π/2)]=2⋅g0⋅T⋅si(π/2)=2⋅g0⋅T⋅sin(π/2)π/2=4/π⋅g0⋅T≈1.273_⋅g0⋅T.
(4) By writing out the si–function, with sin(α±π/2)=±cos(α), one gets:
- G(f)=g0⋅T⋅[sin(2πfT−π/2)2πfT−π/2+sin(2πfT+π/2)2πfT+π/2]=g0⋅T⋅2π⋅[−cos(2πfT)4fT−1+cos(2πfT)4fT+1]
- ⇒G(f)=g0⋅T⋅2π⋅(1+4fT)⋅cos(2πfT)+(1−4fT)⋅cos(2πfT)1−(4fT)2=4π⋅g0⋅T⋅cos(2πfT)1−(4fT)2.
- The zeroes of G(f) are exclusively determined by the cosine function in the numerator, and are found at the frequencies f·T=0.25, 0.75, 1.25, ...
- However, the first zero at f·T=0.25 is cancelled out by the simultaneously occuring zero in the denominator. Therefore:
- f1=0.75_⋅1/T.