Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Applets:Physical Signal & Analytic Signal"

From LNTwww
 
(58 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{LntAppletLink|analPhysSignal}}
+
{{LntAppletLink|physAnSignal_en}}         [https://www.lntwww.de/Applets:Physikalisches_Signal_%26_Analytisches_Signal '''English Applet with German WIKI description''']
 
 
 
==Applet Description==
 
==Applet Description==
 
<br>
 
<br>
This applet shows the relationship between the physical bandpass&ndash;signal x(t) and the associated analytic signal x+(t). The starting point is always a bandpass signal&ndash;signal x(t) with frequency-discrete spectrum X(f):
+
This applet shows the relationship between the physical band-pass signal x(t) and the associated analytic signal x+(t). It is assumed that the band-pass signal x(t) has a frequency-discrete spectrum X(f):
 
:x(t)=xU(t)+xT(t)+xO(t)=AUcos(2πfUtφU)+ATcos(2πfTtφT)+AOcos(2πfOtφO).
 
:x(t)=xU(t)+xT(t)+xO(t)=AUcos(2πfUtφU)+ATcos(2πfTtφT)+AOcos(2πfOtφO).
The physical signal x(t) is thus composed of three [[Signaldarstellung/Harmonische_Schwingung|harmonic oscillations]], a constellation that can be found, for example, in the [[Modulationsverfahren/Zweiseitenband-Amplitudenmodulation#AM-Signale_und_-Spektren_bei_harmonischem_Eingangssignal|Double-sideband amplitude modulation]] of the message signal xN(t)=ANcos(2πfNtφN) with the carrier signal xT(t)=ATcos(2πfTtφT) returns. The nomenclature is also adapted to this case:
+
The physical signal x(t) is thus composed of three harmonic oscillations, a constellation that can be found, for example, in the ''Double-sideband Amplitude Modulation''
* xO(t) denotes the &bdquo;upper sideband&rdquo; with the amplitude AO=AN/2, the frequency fO=fT+fN and the phase φO=φT+φN.
+
*of the message signal xN(t)=ANcos(2πfNtφN) &nbsp; &rArr; &nbsp; in German: &nbsp;  '''N'''achrichtensignal
*Similarly, for the &bdquo;lower sideband &rdquo; xU(t) with $f_{\rm U} = f_{\rm T} + f_{\rm N},A_{\rm U}= A_{\rm O}and\varphi_{\rm U} = -\varphi_{\rm O}$.
+
*with the carrier signal xT(t)=ATcos(2πfTtφT) &nbsp; &rArr; &nbsp; in German: &nbsp; '''T'''rägersignal.
 +
 +
 
 +
The nomenclature is also adapted to this case:
 +
* xO(t) denotes the "upper sideband" &nbsp; (in German: &nbsp; '''O'''beres Seitenband) with the amplitude AO=AN/2, the frequency fO=fT+fN and the phase φO=φT+φN.
 +
*Similarly, for the "lower sideband" &nbsp; (in German: &nbsp; '''U'''nteres Seitenband) xU(t) with $f_{\rm U} = f_{\rm T} - f_{\rm N},A_{\rm U}= A_{\rm O}and\varphi_{\rm U} = -\varphi_{\rm O}$.
  
  
The associated analytical signal is:
+
The associated analytic signal is:
  
:$$x_+(t) = x_{\rm U+}(t) + x_{\rm T+}(t) + x_{\rm O+}(t) = A_{\rm U}\cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm U}\hspace{0.05cm}\cdot \hspace{0.05cm}t- \varphi_{\rm U})}
+
:$$x_+(t) = x_{\rm U+}(t) + x_{\rm T+}(t) + x_{\rm O+}(t) = A_{\rm U}\cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm U}\hspace{0.05cm}\cdot \hspace{0.05cm}t- \varphi_{\rm U})}
\hspace{0.1cm}+ \hspace{0.1cm}A_{\rm T}\cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm T}\hspace{0.05cm}\cdot \hspace{0.05cm}t- \varphi_{\rm T})}
+
\hspace{0.1cm}+ \hspace{0.1cm}A_{\rm T}\cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm T}\hspace{0.05cm}\cdot \hspace{0.05cm}t- \varphi_{\rm T})}
\hspace{0.1cm}+\hspace{0.1cm} A_{\rm O}\cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm O}\hspace{0.05cm}\cdot \hspace{0.05cm}t- \varphi_{\rm O})}. $$
+
\hspace{0.1cm}+\hspace{0.1cm} A_{\rm O}\cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm O}\hspace{0.05cm}\cdot \hspace{0.05cm}t- \varphi_{\rm O})}. $$
  
[[File:Zeigerdiagramm_2a_version2.png|right|frame|Analytische Signal zur Zeit t=0]]
+
[[File:Zeigerdiagramm_2a_version2.png|right|frame|Analytic signal at the time t=0]]
The program displays x+(t) as the vectorial sum of three rotation hands (all with positive rotation) as a purple dot (see example graphic for start time t=0):
+
The program displays x+(t) as the vectorial sum of three rotating pointers (all with counterclockwise) as a violet dot (see figure for start time t=0):
  
*The (red) pointer of the carrier xT+(t) with the length AT and the zero phase position φT=0 rotates at constant angular velocity 2πfT (one turn in time 1/fT.
+
*The (red) pointer of the carrier xT+(t) with length AT and zero phase position φT=0 rotates at constant angular velocity 2πfT (one revolution in time $1/f_{\rm T})$.
  
*The (blue) pointer of the upper sideband xO+(t) with the length AO and the zero phase position φO rotates at the angular velocity 2πfO, which is slightly faster than xT+(t).
+
*The (blue) pointer of the upper sideband xO+(t) with length AO and zero phase position φO rotates at the angular velocity 2πfO, which is slightly faster than xT+(t).
  
*The (green) pointer of the lower sideband xU+(t) with the length AU and the zero phase position φU rotates at the angular velocity 2πfU, which is slightly faster than xT+(t).
+
*The (green) pointer of the lower sideband xU+(t) with length AU and zero phase position φU rotates at the angular velocity 2πfU, which is slightly slower than xT+(t).
  
  
The time course of x+(t) is also referred to below as '''Pointer Diagram'''. The relationship between the physical bandpass signal x(t) and the associated analytic signal x+(t) is:
+
The time trace of x+(t) is also referred to below as ''Pointer Diagram''. The relationship between the physical band-pass signal x(t) and the associated analytic signal x+(t) is:
  
 
:x(t)=Re[x+(t)].
 
:x(t)=Re[x+(t)].
  
''Note:'' &nbsp; The graphic applies to φO=+30. From this follows for the start time t=0 the angle with respect to the coordinate system: &nbsp; ϕO=φO=30. Similarly, from the null phantom φU=30 of the lower sideband follows for the phase angle to be considered in the complex plane: &nbsp; ϕU=+30.
+
''Note:'' &nbsp; In the figure φO=+30. This leads to the angle with respect to the coordinate system at t=0: &nbsp; ϕO=φO=30. Similarly, the zero phase angle φU=30 of the lower sideband leads to the phase angle to be considered in the complex plane: &nbsp; ϕU=+30.
 
 
  
[[Applets:Physikalisches_Signal_%26_Analytisches_Signal|'''German description''']] (muss noch angepasst werden)
 
  
  
 
==Theoretical Background==
 
==Theoretical Background==
 
<br>
 
<br>
===Description possibilities of bandpass signals===
+
===Description of Band-pass Signals===
[[File:Zeigerdiagramm_1a.png|right|frame|Bandpass&ndash;Spektrum X(f) |class=fit]]
+
[[File:Zeigerdiagramm_1a.png|right|frame|Band-pass spectrum X(f) |class=fit]]
We consider here '''bandpass signals''' x(t) with the property that their spectra X(f) are not in the range around the frequency f=0, but by a carrier frequency fT. In most cases it can also be assumed that the bandwidth is BfT.
+
We consider '''band-pass signals''' x(t) with the property that their spectra X(f) are not in the range around the frequency f=0, but around a carrier frequency fT. In most cases it can also be assumed that the bandwidth is BfT.
  
The graph shows such a bandpass spectrum X(f). Assuming that the associated x(t) is a physical signal and thus real, the spectral function X(f) has a symmetry with respect to the frequency f=0. $X(t)is an even function &nbsp; &rArr; &nbsp;x(-t)=x(t)$, so X(f) is real and even.
+
The figure shows such a band-pass spectrum X(f). Assuming that the associated x(t) is a physical signal and thus real, the spectral function X(f) has a symmetry with respect to the frequency f=0, if $x(t)is an even function &nbsp; &rArr; &nbsp;x(-t)=x(t),X(f)$ is real and even.
  
  
Beside the physical signal x(t)  X(f) we use for the description of Bandpass signals alike:
+
Besides the physical signal x(t)  X(f), one can also use the following descriptions of band-pass signals:
*the analytic signal x+(t)  X+(f), as in next subsection,
+
*the analytic signal x+(t)  X+(f), see next section,
*the equivalent low-pass &ndash;signal xTP(t)  XTP(f), see Applet [[Applets:Physikalisches_Signal_%26_Äquivalentes_TP-Signal|Physical signal and equivalent low pass &ndash;signal]].
+
*the equivalent low-pass signal &nbsp; (in German: &nbsp; äquivalentes '''T'''ief '''P'''ass&ndash;Signal) xTP(t)  XTP(f), <br>see Applet [[Applets:Physical_Signal_%26_Equivalent_Low-pass_Signal|"Physical Signal & Equivalent Low-pass signal"]].
 
<br><br>
 
<br><br>
===Analytical signal &ndash; Spectral function===
+
 
 +
===Analytic Signal &ndash; Frequency Domain===
  
 
The '''analytic signal''' x+(t) belonging to the physical signal x(t) is the time function whose spectrum fulfills the following property:
 
The '''analytic signal''' x+(t) belonging to the physical signal x(t) is the time function whose spectrum fulfills the following property:
[[File:Zeigerdiagramm_3a.png|right|frame|Konstruktion der Spektralfunktion X+(f) |class=fit]]
+
[[File:EN_Sig_T_4_2_S1a.png|right|frame|Construction of the spectral function X+(f)|class=fit]]
 +
 
 
:$$X_+(f)=\big[1+{\rm sign}(f)\big] \cdot X(f) = \left\{ {2 \cdot
 
:$$X_+(f)=\big[1+{\rm sign}(f)\big] \cdot X(f) = \left\{ {2 \cdot
 
X(f) \; \hspace{0.2cm}\rm for\hspace{0.2cm} {\it f} > 0, \atop {\,\,\,\, \rm 0 \; \hspace{0.9cm}\rm for\hspace{0.2cm} {\it f} < 0.} }\right.$$
 
X(f) \; \hspace{0.2cm}\rm for\hspace{0.2cm} {\it f} > 0, \atop {\,\,\,\, \rm 0 \; \hspace{0.9cm}\rm for\hspace{0.2cm} {\it f} < 0.} }\right.$$
  
The so-called ''signum function'' is the same for positive values of f equal to +1 and for negative f values equal to 1.
+
The ''signum function'' is for positive values of f equal to +1 and for negative f values equal to 1.
 
* The (double-sided) limit returns sign(0)=0.
 
* The (double-sided) limit returns sign(0)=0.
* The index „+” should make it clear that X+(f) only has shares at positive frequencies.
+
* The index „+” should make it clear that X+(f) only has parts at positive frequencies.
  
  
From the graph you can see the calculation rule for X+(f): The actual BP spectrum X(f) becomes
+
From the graph you can see the calculation rule for X+(f):  
* Doubled at the positive frequencies, and
+
 
 +
The actual band-pass spectrum X(f) becomes
 +
* doubled at the positive frequencies, and
 
* set to zero at the negative frequencies.
 
* set to zero at the negative frequencies.
  
Line 69: Line 75:
 
<br clear=all>
 
<br clear=all>
  
===Analytical signal &ndash; Running time===
+
===Analytic Signal &ndash; Time Domain===
At this point it is necessary to briefly discuss another spectral transformation.
+
At this point, it is necessary to briefly discuss another spectral transformation.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
 
Definition:&nbsp;
 
Definition:&nbsp;
For the '''Hilbert transformed ''' H{x(t)} of a time function x(t) we have::
+
For the '''Hilbert transform''' H{x(t)} of a time function x(t) we have:
  
 
:$$y(t) = {\rm H}\left\{x(t)\right\} = \frac{1}{ {\rm \pi} } \cdot
 
:$$y(t) = {\rm H}\left\{x(t)\right\} = \frac{1}{ {\rm \pi} } \cdot
Line 80: Line 86:
 
\tau} }\hspace{0.15cm} {\rm d}\tau.$$
 
\tau} }\hspace{0.15cm} {\rm d}\tau.$$
  
This particular integral is not solvable in a simple, conventional way, but must be evaluated using the [https://de.wikipedia.org/wiki/Cauchyscher_Hauptwert Cauchy–Hauptwertsatzes].
+
This particular integral is not solvable in a simple, conventional way, but must be evaluated using the [https://en.wikipedia.org/wiki/Cauchy_principal_value "Cauchy principal value theorem"].
  
 
Accordingly, in the frequency domain:
 
Accordingly, in the frequency domain:
Line 87: Line 93:
  
 
The above result can be summarized with this definition as follows:
 
The above result can be summarized with this definition as follows:
* The analytic signal x+(t) is obtained from the physical BP-signal x(t) by adding an imaginary part to x(t) according to the Hilbert transform:
+
* The analytic signal x+(t) is obtained from the physical band-pass signal x(t) by adding an imaginary part to x(t) according to the Hilbert transform:
  
 
:x+(t)=x(t)+jH{x(t)}.
 
:x+(t)=x(t)+jH{x(t)}.
  
*H{x(t)} disappears only for the case x(t)=const. &nbsp; &rArr; &nbsp; Direct signal. For all other signal forms, the analytic signal x+(t) is complex.
+
*H{x(t)} disappears only for the case x(t)=const. &nbsp; &rArr; &nbsp; the same signal. For all other signal forms, the analytic signal x+(t) is complex.
  
  
* From the analytic signal x+(t), the physical bandpass signal can be easily determined by real-dividing:
+
* From the analytic signal x+(t), the physical band-pass signal can be easily determined by the following operation:
 
:x(t)=Re[x+(t)].
 
:x(t)=Re[x+(t)].
  
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
Example 1:&nbsp; The principle of the Hilbert transformation is further clarified by the following graphic:
+
Example 1:&nbsp; The principle of the Hilbert transformation should be further clarified by the following graphic:
 
*After the left representation (A) one gets from the physical signal x(t) to the analytic signal x+(t), by adding an imaginary part jy(t).
 
*After the left representation (A) one gets from the physical signal x(t) to the analytic signal x+(t), by adding an imaginary part jy(t).
*Here y(t)=H{x(t)} is a real time function that can be indicated in the spectral domain by multiplying the spectrum X(f) with $\rm {- j} \cdot \sign(f)$.
+
*Here y(t)=H{x(t)} is a real time function that can be indicated in the spectral domain by multiplying the spectrum X(f) with ${\rm - j} \cdot \sign(f)$.
 +
 
  
[[File:P_ID2729__Sig_T_4_2_S2b_neu.png|center|frame|Zur Verdeutlichung der Hilbert–Transformierten]]
+
[[File:P_ID2729__Sig_T_4_2_S2b_neu.png|center|frame|To clarify the Hilbert transform]]
  
The right representation (B) is equivalent to (A). Now x+(t)=x(t)+z(t) stand with the purely imaginary function z(t). A comparison of the two pictures shows that in fact z(t)=jy(t).}}
+
The right representation (B) is equivalent to (A). Now x+(t)=x(t)+z(t) stand with the purely imaginary function z(t). A comparison of the two figures shows that in fact z(t)=jy(t).}}
 
<br><br>
 
<br><br>
  
===Darstellung der harmonischen Schwingung als analytisches Signal===
+
===Representation of the Harmonic Oscillation as an Analytic Signal===
  
Die Spektralfunktion X(f) einer harmonischen Schwingung x(t)=Acos(2πfTtφ) besteht bekanntlich aus zwei Diracfunktionen bei den Frequenzen
+
The spectral function X(f) of a harmonic oscillation x(t)=Acos(2πfTtφ) is known to consist of two Dirac delta functions at the frequencies
* +fT mit dem komplexen Gewicht A/2ejφ,
+
* +fT with the complex weight A/2ejφ,
* fT mit dem komplexen Gewicht A/2e+jφ.
+
* fT with the complex weight A/2e+jφ.
  
  
Somit lautet das Spektrum des analytischen Signals (also ohne die Diracfunktion bei der Frequenz f=fT, aber Verdoppelung bei f=+fT):
+
Thus, the spectrum of the analytic signal (that is, without the Dirac delta function at the frequency f=fT, but doubling at f=+fT):
  
 
:$$X_+(f) = A \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\varphi}\cdot\delta (f - f_{\rm
 
:$$X_+(f) = A \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\varphi}\cdot\delta (f - f_{\rm
 
T}) .$$
 
T}) .$$
  
Die dazugehörige Zeitfunktion erhält man durch Anwendung des [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Verschiebungssatz|Verschiebungssatzes]]:
+
The associated time function is obtained by applying the Displacement Law:
  
:$$x_+(t) = A \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}( 2 \pi f_{\rm T} t
+
:$$x_+(t) = x_{\rm U+}(t) + x_{\rm T+}(t) + x_{\rm O+}(t) = A_{\rm U}\cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm U}\hspace{0.05cm}\cdot \hspace{0.05cm}t- \varphi_{\rm U})}
\hspace{0.05cm}-\hspace{0.05cm} \varphi)}.$$
+
\hspace{0.1cm}+ \hspace{0.1cm}A_{\rm T}\cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm T}\hspace{0.05cm}\cdot \hspace{0.05cm}t- \varphi_{\rm T})}
 +
\hspace{0.1cm}+\hspace{0.1cm} A_{\rm O}\cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm O}\hspace{0.05cm}\cdot \hspace{0.05cm}t- \varphi_{\rm O})}. $$
  
Diese Gleichung beschreibt einen mit konstanter Winkelgeschwindigkeit ωT=2πfT drehenden Zeiger.
+
This equation describes a pointer rotating at constant angular velocity ωT=2πfT.
  
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\text{Beispiel 2:}$&nbsp; Aus Darstellungsgründen wird das Koordinatensystem entgegen der üblichen Darstellung um 90 gedreht (Realteil nach oben, Imaginärteil nach links).
+
$\text{Example 2:}$&nbsp; Here the coordinate system is rotated by 90 (real part up, imaginary part to the left) contrary to the usual representation.
  
[[File:P_ID712__Sig_T_4_2_S3.png|center|frame|Zeigerdiagramm einer harmonischen Schwingung]]
+
[[File:P_ID712__Sig_T_4_2_S3.png|center|frame|Pointer diagram of a harmonic oscillation]]
  
Anhand dieser Grafik sind folgende Aussagen möglich:
+
Based on this graphic, the following statements are possible:
*Zum Startzeitpunkt t=0 liegt der Zeiger der Länge A (Signalamplitude) mit dem Winkel φ in der komplexen Ebene. Im gezeichneten Beispiel gilt φ=45.
+
* At time t=0, the pointer of length A (signal amplitude) lies with the angle φ in the complex plane. In the example shown, φ=45.
*Für Zeiten t>0 dreht der Zeiger mit konstanter Winkelgeschwindigkeit (Kreisfrequenz) ωT in mathematisch positiver Richtung, das heißt entgegen dem Uhrzeigersinn.
+
* For times t>0, the constant angular velocity vector ωT rotates in a mathematically positive direction, that is, counterclockwise.
*Die Spitze des Zeigers liegt somit stets auf einem Kreis mit Radius A und benötigt für eine Umdrehung genau die Zeit T0, also die Periodendauer der harmonischen Schwingung x(t).
+
* The tip of the pointer is thus always on a circle with radius A and needs exactly the time T0, i.e. the period of the harmonic oscillation x(t) for one revolution.
*Die Projektion des analytischen Signals x+(t) auf die reelle Achse, durch rote Punkte markiert, liefert die Augenblickswerte von x(t).}}
+
* The projection of the analytic signal x+(t) on the real axis, marked by red dots, gives the instantaneous values of x(t).}}
 
<br><br>
 
<br><br>
===x+(t)&ndash;Darstellung einer Summe aus drei harmonischen Schwingungen===
 
  
In unserem Applet setzen wir stets  einen Zeigerverbund aus drei Drehzeigern voraus. Das physikalische Signal lautet:
+
===Analytic Signal Representation of a Sum of Three Harmonic Oscillations===
 +
 
 +
In our applet, we always assume a set of three rotating pointers. The physical signal is:
 
:x(t)=xU(t)+xT(t)+xO(t)=AUcos(2πfUtφU)+ATcos(2πfTtφT)+AOcos(2πfOtφO).
 
:x(t)=xU(t)+xT(t)+xO(t)=AUcos(2πfUtφU)+ATcos(2πfTtφT)+AOcos(2πfOtφO).
* Jede der drei harmonischen Schwingungen harmonischen Schwingungen xT(t), xU(t) und xO(t) wird durch eine Amplitude (A), eine Frequenz (f) und einen Phasenwert (φ) charakterisiert.
+
* Each of the three harmonic oscillations xT(t), xU(t) and xO(t) is represented by an amplitude (A), a frequency (f) and a phase value (φ).
*Die Indizes sind an das Modulationsverfahren [[Modulationsverfahren/Zweiseitenband-Amplitudenmodulation|Zweiseitenband&ndash;Amplitudenmodulation]] angelehnt. &bdquo;T&rdquo; steht für &bdquo;Träger&rdquo;, &bdquo;U&rdquo; für &bdquo;Unteres Seitenband&rdquo; und &bdquo;O&rdquo; für &bdquo;Oberes Seitenband&rdquo;. Entsprechend gilt stets fU<fT und fO>fT. Für die Amplituden und Phasen gibt es keine Einschränkungen.
+
*The indices are based on the ''Double-sideband Amplitude Modulation'' method. "T" stands for "carrier", "U" for "lower sideband" and "O" for "upper Sideband".  
 +
*Accordingly, fU<fT and fO>fT. There are no restrictions for the amplitudes and phases.
 +
 
  
Das dazugehörige analytische Signal lautet:
+
The associated analytic signal is:
:$$x_+(t) = x_{\rm U+}(t) + x_{\rm T+}(t) + x_{\rm O+}(t) = A_{\rm U}\cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm U}\hspace{0.05cm}\cdot \hspace{0.05cm}t- \varphi_{\rm U})}
+
:$$x_+(t) = x_{\rm U+}(t) + x_{\rm T+}(t) + x_{\rm O+}(t) = A_{\rm U}\cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm U}\hspace{0.05cm}\cdot \hspace{0.05cm}t- \varphi_{\rm U})}
\hspace{0.1cm}+ \hspace{0.1cm}A_{\rm T}\cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm T}\hspace{0.05cm}\cdot \hspace{0.05cm}t- \varphi_{\rm T})}
+
\hspace{0.1cm}+ \hspace{0.1cm}A_{\rm T}\cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm T}\hspace{0.05cm}\cdot \hspace{0.05cm}t- \varphi_{\rm T})}
\hspace{0.1cm}+\hspace{0.1cm} A_{\rm O}\cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm O}\hspace{0.05cm}\cdot \hspace{0.05cm}t- \varphi_{\rm O})}. $$
+
\hspace{0.1cm}+\hspace{0.1cm} A_{\rm O}\cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm O}\hspace{0.05cm}\cdot \hspace{0.05cm}t- \varphi_{\rm O})}. $$
  
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\text{Beispiel 3:}$&nbsp;
+
$\text{Example 3:}$&nbsp;
Die hier angegebene Konstellation ergibt sich zum Beispiel bei der [[Modulationsverfahren/Zweiseitenband-Amplitudenmodulation#AM-Signale_und_-Spektren_bei_harmonischem_Eingangssignal|Zweiseitenband-Amplitudenmodulation]] des Nachrichtensignals xN(t)=ANcos(2πfNtφN) mit dem Trägersignal xT(t)=ATcos(2πfTtφT). Hierauf wird in der Versuchsdurchführung häufiger eingegangen.
+
Shown the constellation arises i.e. in the [https://en.wikipedia.org/wiki/Sideband "Double-sideband Amplitude Modulation"] (with carrier) of the message signal xN(t)=ANcos(2πfNtφN) with the carrier signal xT(t)=ATcos(2πfTtφT). This is discussed frequently in the Exercises.
 
 
  
Bei dieser Betrachtungsweise gibt es einige Einschränkungen bezüglich der Programmparameter:
 
* Für die Frequenzen gelte stets  fO=fT+fN und fU=fTfN.
 
  
*Ohne Verzerrungen sind die Amplitude der Seitenbänder $A_{\rm O}= A_{\rm O}= A_{\rm N}/2$.
+
There are some limitations to the program parameters in this approach:
*Die jeweiligen Phasenverhältnisse können der nachfolgenden Grafik entnommen werden.
+
* For the frequencies, it always applies $f_{\rm O} = f_{\rm T} + f_{\rm N}$ and $f_{\rm U} = f_{\rm T} - f_{\rm N}$.
 
 
[[File:Zeigerdiagramm_2_neu.png|center|frame|Spektum $X_+(f)$ des analytischen Signals für verschiedene Phasenkonstellationen |class=fit]]}}
 
  
 +
*Without distortions the amplitude of the sidebands are AO=AU=AN/2.
 +
*The respective phase relationships can be seen in the following graphic.
  
 +
[[File:Zeigerdiagramm_5.png|center|frame|Spectrum X+(f) of the analytic signal for different phase constellations |class=fit]]}}
  
 
==Exercises==
 
==Exercises==
[[File:Exercises_verzerrungen.png|right]]
+
[[File:Zeigerdiagramm_aufgabe_2.png|right]]
 
*First select the task number.
 
*First select the task number.
 
*A task description is displayed.
 
*A task description is displayed.
 
*Parameter values are adjusted.
 
*Parameter values are adjusted.
*Solution after pressing &bdquo;Hide solition&rdquo;.
+
*Solution after pressing "Hide solition".
 
 
 
 
The number &bdquo;0&rdquo; will reset to the same setting as the program start and will output a text with further explanation of the applet.
 
  
  
 +
The number "0" will reset the program and output a text with further explanation of the applet.
 +
<br clear=all>
 
In the following, Green denotes the lower sideband &nbsp; &rArr; &nbsp; (AU,fU,φU), &nbsp;
 
In the following, Green denotes the lower sideband &nbsp; &rArr; &nbsp; (AU,fU,φU), &nbsp;
 
Red the carrier &nbsp; &rArr; &nbsp; (AT,fT,φT) and
 
Red the carrier &nbsp; &rArr; &nbsp; (AT,fT,φT) and
 
Blue the upper sideband &nbsp; &rArr; &nbsp; (AO,fO,φO).
 
Blue the upper sideband &nbsp; &rArr; &nbsp; (AO,fO,φO).
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(1)''' &nbsp; Consider and interpret the analytic signal  x+(t) for Red:AT=1.5 V, fT=50 kHz, φT=0. In addition, AU=AO=0.
+
'''(1)''' &nbsp; Consider and interpret the analytic signal  x+(t) for Red:AT=1.5 V, fT=50 kHz, φT=0, AU=AO=0.
  
:Which Signal values x+(t) result for t=0, t = 5 \ \rm &micro; s and t = 20 \ \rm &micro; s? How lange are the corresponding signal values of x(t)? }}
+
:Which signal values x+(t) result for t=0, t = 5 \ \rm &micro; s and t = 20 \ \rm &micro; s? What are the corresponding signal values for x(t)? }}
  
::&nbsp; For a cosine signal x+(t=0)=AT=1.5 V. Then x+(t) rotates in a mathematically positive direction (one revolution per period  T0=1/fT):
+
::&nbsp;For a cosine signal, let x+(t=0)=AT=1.5 V. Then x+(t) rotates in a mathematically positive direction (one revolution per period  T0=1/fT):
 
 
:::&nbsp; $x_+(t= 20 \ {\rm &micro; s}) = x_+(t= 0) =  1.5\ \text{V}\hspace{0.3cm}\Rightarrow\hspace{0.3cm}x(t= 20 \ {\rm &micro; s})  =  1.5\ \text{V,}\hspace{0.5cm}
 
x_+(t= 5 \ {\rm &micro; s})  =  {\rm j} \cdot 1.5\ \text{V}\hspace{0.3cm}\Rightarrow\hspace{0.3cm}x(t= 5 \ {\rm &micro; s}) = {\rm Re}[x_+(t= 5 \ {\rm &micro; s})] =  0$.
 
  
 +
::&nbsp;x_+(t= 20 \ {\rm &micro; s}) = x_+(t= 0) =  1.5\ \text{V}\hspace{0.3cm}\Rightarrow\hspace{0.3cm}x(t= 20 \ {\rm &micro; s})  =  1.5\ \text{V,}
 +
::&nbsp;x_+(t= 5 \ {\rm &micro; s})  =  {\rm j} \cdot 1.5\ \text{V}\hspace{0.3cm}\Rightarrow\hspace{0.3cm}x(t= 5 \ {\rm &micro; s}) = {\rm Re}[x_+(t= 5 \ {\rm &micro; s})] =  0.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
 
'''(2)''' &nbsp; How do the ratios change for Red:AT=1.0 V, fT=100 kHz, φT=90?}}
 
'''(2)''' &nbsp; How do the ratios change for Red:AT=1.0 V, fT=100 kHz, φT=90?}}
  
::The signal x(t) is now a sine signal with a smaller amplitude. The analytic signal now starts because of φT=90 &nbsp; &rArr; &nbsp; ϕT=90 bei x+(t=0)=jAT. After that, x+(t) rotates again in a mathematically positive direction, but twice as fast because of T_0 = 10 \ \rm &micro; s as in (1).
+
::The signal x(t) is now a sine signal with a smaller amplitude. The analytic signal now starts because of φT=90 &nbsp; &rArr; &nbsp; ϕT=90 at x+(t=0)=jAT. <br>After that, x+(t) rotates again in a mathematically positive direction, but twice as fast because of T_0 = 10 \ \rm &micro; s as in (1).
 
 
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(3)''' &nbsp; Now applies &nbsp; Red:AT=1 V, fT=100 kHz, φT=0, &nbsp;  Green:AU=0.4 V, fU=80 kHz, φU=0,  &nbsp;  Blue:AO=0.4 V, fO=120 kHz, φO=0.
+
'''(3)''' &nbsp; Now &nbsp; Red:AT=1 V, fT=100 kHz, φT=0, &nbsp;  Green:AU=0.4 V, fU=80 kHz, φU=0,  &nbsp;  Blue:AO=0.4 V, fO=120 kHz, φO=0.
 
 
:Consider and interpret the physical signal x(t) the analytic signal x+(t).}}
 
  
::The Signal x(t) results in the double sideband&ndash;Amplitude modulation '''(ZSB&ndash;AM)''' of the message signals ANcos(2πfNt) with AN=0.8 V, fN=20 kHz. The carrier $x_{\rm T}(t)$ with fT=100 kHz is also cosinusoidal. The degree of modulation is $m = A_{\rm N}/A_{\rm T} = 0.8andtheperiodT_{\rm 0} = 50\ \text{&micro;s}$.
+
:Consider and interpret the physical signal x(t) and the analytic signal $x_+(t)$.}}
  
::In the phasor diagram, the (red) carrier rotates faster than the (green) lower sideband and slower than the (blue) upper sideband. The analytic signal $x_+(t)$ results as the geometric sum of the three rotating hands. It seems that the blue pointer is leading the wearer and the green pointer is following the wearer.
+
::The Signal $x(t)$ results in the [https://en.wikipedia.org/wiki/Sideband Double-sideband Amplitude Modulation] (DSB&ndash;AM) of the message signal $A_{\rm N}\cdot \cos\left(2\pi f_{\rm N}\cdot t\right)withA_{\rm N} = 0.8\ \text{V},f_{\rm N} = 20\ \text{kHz}$. The carrier $x_{\rm T}(t)$ with fT=100 kHz is also cosinusoidal. The degree of modulation is $m = A_{\rm N}/A_{\rm T} = 0.8$ and the period T0=50 &micro;s.
  
 +
::In the phase diagram, the (red) carrier rotates faster than the (green) lower sideband and slower than the (blue) upper sideband. The analytic signal x+(t) results as the geometric sum of the three rotating pointers. It seems that the blue pointer is leading the carrier and the green pointer is following the carrier.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(4)''' &nbsp; The settings of task '''(3)'''continue to apply. Which signal values are obtained at t=0, t=2.5 \ \rm &micro; s, t= 5 \ \rm &micro; s and t=10 \ \rm &micro; s? }}
+
'''(4)''' &nbsp; The settings of task '''(3)''' still apply. Which signal values are obtained at t=0, t=2.5 \ \rm &micro; s, t= 5 \ \rm &micro; s and t=10 \ \rm &micro; s? }}
  
::At time t=0, all the pointers are in the direction of the real axis, so that x(t=0)=Re[x+(t=0)]=AU+AT+AO=1.8 V.
+
::At time t=0, all pointers are in the direction of the real axis, so that x(t=0)=Re[x+(t=0)]=AU+AT+AO=1.8 V.
  
::Until the time t=2.5 \ \rm &micro; s, the red carrier has rotated by 90, the blue pointer by 108 and the green by 72. We have x(t=2.5 \ \rm &micro; s) = {\rm Re}\big [x_+(t= 2.5 \ \rm &micro; s)\big] = 0, because now the pointer group points in the direction of the imaginary axis. The other sought signal values are x(t=5 \ \rm &micro; s) = {\rm Re}\big [x_+(t= 5 \ \rm &micro; s)\big] = -1.647\ \text{V} and x(t=10 \ \rm &micro; s) = {\rm Re}\big [x_+(t= 10 \ \rm &micro; s)\big] = 1.247\ \text{V}.
+
::Until the time t=2.5 \ \rm &micro; s, the red carrier has rotated by 90, the blue one by 108 and the green one by 72. We have x(t=2.5 \ \rm &micro; s) = {\rm Re}\big [x_+(t= 2.5 \ \rm &micro; s)\big] = 0, because now the pointer group points in the direction of the imaginary axis. The other sought signal values are x(t=5 \ \rm &micro; s) = {\rm Re}\big [x_+(t= 5 \ \rm &micro; s)\big] = -1.647\ \text{V} and x(t=10 \ \rm &micro; s) = {\rm Re}\big [x_+(t= 10 \ \rm &micro; s)\big] = 1.247\ \text{V}.
 
::For x+(t) a spiral shape results, alternating with a smaller radius and then with a larger radius.
 
::For x+(t) a spiral shape results, alternating with a smaller radius and then with a larger radius.
 
 
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
Line 219: Line 222:
  
 
::The parameter selection φT=φU=φO=90 describes the signals xT(t)=ATsin(2πfTt) and xN(t)=ANcos(2πfNt). If, in addition, the message xN(t) is sinusoidal, then φO=φT90=0 and φU=φT+90=180 must be set.
 
::The parameter selection φT=φU=φO=90 describes the signals xT(t)=ATsin(2πfTt) and xN(t)=ANcos(2πfNt). If, in addition, the message xN(t) is sinusoidal, then φO=φT90=0 and φU=φT+90=180 must be set.
 
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
Line 226: Line 228:
 
: What are the consequences of this? What changes with AT=0? }}
 
: What are the consequences of this? What changes with AT=0? }}
  
::It is a '''ZSB&ndash;AM with carrier''' with the modulation degree m=0.8/0.6=1.333. For m>1, however,  [[Modulationsverfahren/Synchrondemodulation|synchronous demodulation]] is required. [[Modulationsverfahren/Hüllkurvendemodulation|envelope detection]] no longer works.
+
::It is a [https://en.wikipedia.org/wiki/Sideband Double-sideband Amplitude Modulation] (DSB&ndash;AM with carrier) with the modulation degree m=0.8/0.6=1.333. For m>1, however,  [https://www.radio-electronics.com/info/rf-technology-design/am-reception/synchronous-demodulator-demodulation-detector.php Synchronous Demodulation] is required. [https://en.wikipedia.org/wiki/Envelope_detector Envelope Detection] no longer works. One reason for this is that now the zero crossings of x(t) are no longer equidistant from $5\ \rm &micro; s$ &nbsp; &rArr; &nbsp; additional phase modulation.
 
 
::With $A_{\rm T} = 0$ &nbsp; &rArr; &nbsp; m results in a '''ZSB&ndash;AM without carrier'''.  Also for this you absolutely need the synchronous demodulation.
 
  
 +
::With AT=0 &nbsp; &rArr; &nbsp; m results in a [https://en.wikipedia.org/wiki/Double-sideband_suppressed-carrier_transmission ''DSB&ndash;AM without carrier''].  For this, one also needs coherent demodulation.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(7)''' &nbsp; &nbsp; Now applies &nbsp; Red:AT=1 V, fT=100 kHz, φT=0, &nbsp;  Green:AU=0, &nbsp;  Blue:AO=0.8 V, fO=120 kHz, φO=90.
+
'''(7)''' &nbsp; &nbsp; Now let &nbsp; Red:AT=1 V, fT=100 kHz, φT=0, &nbsp;  Green:AU=0, &nbsp;  Blue:AO=0.8 V, fO=120 kHz, φO=90.
  
:Which constellation is described here? What changes with AU=0.8 V und AO=0?}}
+
:Which constellation is described here? Which figure is given for the equivalent low-pass signal xTP(t)? &nbsp; &rArr; &nbsp; "locus"? <br>What changes with AU=0.8 V and AO=0?}}
  
::In both cases, it is a [[Modulationsverfahren/Einseitenbandmodulation|Single sideband]] '''(ESB&ndash;AM)''' with the modulation degree μ=0.8 (in ESB we denote the degree of modulation with μ instead m). he carrier signal is cosinusoidal and the message signal is sinusoidal.
+
::In both cases, it is a [https://en.wikipedia.org/wiki/Single-sideband_modulation Single-sideband Amplitude Modulation] (SSB&ndash;AM) with the modulation degree μ=0.8 (in SSB we denote the degree of modulation with μ instead of m). The carrier signal is cosinusoidal and the message signal is sinusoidal. The equivalent low-pass signal xTP(t) has a circular course in the complex plane.
  
 
:: AO=0.8 V, AU=0 is an OSB modulation. The green pointer is missing and the blue pointer rotates faster compared to the red carrier.
 
:: AO=0.8 V, AU=0 is an OSB modulation. The green pointer is missing and the blue pointer rotates faster compared to the red carrier.
  
 
:: AU=0.8 V, AO=0 is a USB modulation. The blue pointer is missing and the green pointer rotates slower compared to the red carrier.
 
:: AU=0.8 V, AO=0 is a USB modulation. The blue pointer is missing and the green pointer rotates slower compared to the red carrier.
 
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(8)''' &nbsp; Now applies &nbsp; Red:AT=1 V, fT=100 kHz, φT=0, &nbsp;  Green:AU=0.4 V, fU=80 kHz, φU=90,  &nbsp;  Blue:AO=0.2 V, fO=120 kHz, φO=+90.
+
'''(8)''' &nbsp; Now&nbsp; Red:AT=1 V, fT=100 kHz, φT=0, &nbsp;  Green:AU=0.4 V, fU=80 kHz, φU=90,  &nbsp;  Blue:AO=0.2 V, fO=120 kHz, φO=+90.
 
 
:Which constellation could be described here? Which figure is given for the equivalent lowpass&ndash;signal xTP(t)? &nbsp; &rArr; &nbsp; &bdquo;locus&rdquo;?}}
 
 
 
::It could be a ZSB&ndash;AM of a sinusoidal signal with cosinusoidal carrier and modulation degree m=0.8, in which the upper sideband is attenuated by a factor of 2. The equivalent lowpass&ndash;signal xTP(t) has an elliptical course in the complex plane.
 
  
 +
:Which constellation could be described here? Which shape results for the equivalent low-pass signal xTP(t)?}}
  
 +
::It could be a DSB&ndash;AM of a sinusoidal signal with cosinusoidal carrier and modulation degree m=0.8, in which the upper sideband is attenuated by a factor of 2. The equivalent low-pass signal xTP(t) has an elliptical trace in the complex plane.
  
 
==Applet Manual==
 
==Applet Manual==
[[File:Handhabung_verzerrungen.png|center]]
 
 
<br>
 
<br>
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Parametereingabe für das Eingangssignal x(t) per Slider: Amplituden, Frequenzen, Phasenwerte
+
[[File:Zeigerdiagramm_abzug.png|right|Screenshot]]
  
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Vorauswahl für die Kanalparameter: per Slider, Tiefpass oder Hochpass
+
* The red parameters (AT, fT, φT)  and the red pointer mark the ''Carrier'' <br>(German: &nbsp; '''T'''räger).
 +
* The green parameters (AU, fU<fT, φU) mark the ''Lower sideband'' <br>(German: &nbsp;'''U'''nteres Seitenband).
 +
* The blue parameters $(A_{\rm O}, \ f_{\rm O} > f_{\rm T}, \ \varphi_{\rm O})$  mark the ''Upper sideband'' <br>(German: &nbsp;'''O'''beres Seitenband).
 +
*All pointers rotate in a mathematically positive direction (counterclockwise).
  
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Eingabe der Kanalparameter per Slider: Dämpfungsfaktoren und Phasenlaufzeiten
 
  
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Eingabe der Kanalparameter für Hoch&ndash; und Tiefpass: Ordnung n, Grenzfrequenz f0
+
Meaning of the letters in the adjacent graphic:
  
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Eingabe der Matching&ndash;Parameter $k_{\rm M}und\varphi_{\rm M}$
+
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Plot of the analytic signal $x_{\rm +}(t)$
  
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Auswahl der darzustellenden Signale: $x(t),y(t),z(t),\varepsilon(t),\varepsilon^2(t)$
+
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Plot of the physical signal x(t)
  
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Graphische Darstellung der Signale
+
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Parameter input via slider: amplitudes, frequencies, phase values
  
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Eingabe der Zeit t für die Numerikausgabe
+
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Control elements: &nbsp; Start &ndash; Step &ndash; Pause/Continue &ndash; Reset
  
&nbsp; &nbsp; '''( I )''' &nbsp; &nbsp; Numerikausgabe der Signalwerte x(t), y(t), z(t)  und ε(t)
+
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Speed of animation: &nbsp; "Speed" &nbsp; &rArr; &nbsp; Values: 1, 2, 3
  
&nbsp; &nbsp; '''(J)''' &nbsp; &nbsp; Numerikausgabe des Hauptergebnisses $P_\varepsilon$
+
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; "Trace" &nbsp; &rArr; &nbsp;  On or Off, trace of complex signal values $x_{\rm +}(t)$
  
&nbsp; &nbsp; '''(K)''' &nbsp; &nbsp; Abspeichern und Zurückholen von Parametersätzen
+
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Numerical output of the time t and the signal values &nbsp;Re[x+(t)]=x(t)&nbsp; and &nbsp;Im[x+(t)]
  
&nbsp; &nbsp; '''(L)''' &nbsp; &nbsp; Bereich für die Versuchsdurchführung: Aufgabenauswahl, Aufgabenstellung und Musterlösung
+
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Variations for the graphical representation
  
&nbsp; &nbsp; '''(M)''' &nbsp; &nbsp; Variationsmöglichkeiten für die grafische Darstellung
+
Zoom&ndash;Functions "+" (Enlarge), "" (Decrease) and o (Reset to default)
  
Zoom&ndash;Funktionen &bdquo;$+$&rdquo; (Vergrößern), &bdquo;$-$&rdquo; (Verkleinern) und $\rm o$ (Zurücksetzen)
+
Move with "$\leftarrow$" (Section to the left, ordinate to the right), "" "$\downarrow$" and "$\rightarrow$"
  
Verschieben mit &bdquo;&rdquo; (Ausschnitt nach links, Ordinate nach rechts)&bdquo;&rdquo; &bdquo;&rdquo; und &bdquo;&rdquo;
+
&nbsp; &nbsp; '''(I)''' &nbsp; &nbsp; Experiment section:&nbsp; Task selection and task
  
'''Andere Möglichkeiten''':
+
&nbsp; &nbsp; '''(J)''' &nbsp; &nbsp; Experiment section:&nbsp; solution
  
$\hspace{1.5cm}$Gedrückte Shifttaste und Scrollen: Zoomen im Koordinatensystem,
+
In all applets top right:&nbsp; &nbsp; Changeable graphical interface design &nbsp; &rArr; &nbsp; '''Theme''':
 
+
* Dark: &nbsp; black background&nbsp; (recommended by the authors).
Gedrückte Shifttaste und linke Maustaste: Verschieben des Koordinatensystems.
+
* Bright: &nbsp; white background&nbsp; (recommended for beamers and printouts)
 +
* Deuteranopia: &nbsp; for users with pronounced green&ndash;visual impairment
 +
* Protanopia: &nbsp; for users with pronounced red&ndash;visual impairment
 +
<br clear=all>
  
 
==About the Authors==
 
==About the Authors==
This interactive calculation was designed and realized at the  [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik] of the  [https://www.tum.de/ Technischen Universität München] .
+
This interactive calculation was designed and realized at the&nbsp; [https://www.ei.tum.de/en/lnt/home//startseite Institute for Communications Engineering]&nbsp; of the&nbsp; [https://www.tum.de/ Technical University of Munich] .
*The original version was created in 2005 by [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Ji_Li_.28Bachelorarbeit_EI_2003.2C_Diplomarbeit_EI_2005.29|Ji Li]] as part of her Diploma thesis using  &bdquo;FlashMX&ndash;Actionscript&rdquo; (Supervisor: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).
+
*The original version was created in 2005 by&nbsp; [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Ji_Li_.28Bachelorarbeit_EI_2003.2C_Diplomarbeit_EI_2005.29|Ji Li]]&nbsp; as part of her Diploma thesis using  "FlashMX&ndash;Actionscript"&nbsp; (Supervisor:&nbsp; [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).
*In 2018 this Applet was redesigned and updated to &bdquo;HTML5&rdquo; by [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Xiaohan_Liu_.28Bachelorarbeit_2018.29|Xiaohan Liu]] as part of her Bachelor's thesis (Supervisor: [[Biografien_und_Bibliografien/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]]).
+
*In 2018 this Applet was redesigned and updated to "HTML5" by&nbsp; [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Xiaohan_Liu_.28Bachelorarbeit_2018.29|Xiaohan Liu]]&nbsp; as part of her Bachelor's thesis (Supervisor: [[Biographies_and_Bibliographies/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]]).
 
 
==Once again: Open Applet in new Tab==
 
  
{{LntAppletLink|analPhysSignal}}
+
==Once again:&nbsp; Open Applet in new Tab==
  
[[Category:Applets|^Verzerrungen^]]
+
{{LntAppletLink|physAnSignal_en}}  &nbsp; &nbsp; &nbsp; &nbsp; [https://www.lntwww.de/Applets:Physikalisches_Signal_%26_Analytisches_Signal '''English Applet with German WIKI description''']

Latest revision as of 15:54, 13 April 2023

Open Applet in a new tab         English Applet with German WIKI description

Applet Description


This applet shows the relationship between the physical band-pass signal x(t) and the associated analytic signal x+(t). It is assumed that the band-pass signal x(t) has a frequency-discrete spectrum X(f):

x(t)=xU(t)+xT(t)+xO(t)=AUcos(2πfUtφU)+ATcos(2πfTtφT)+AOcos(2πfOtφO).

The physical signal x(t) is thus composed of three harmonic oscillations, a constellation that can be found, for example, in the Double-sideband Amplitude Modulation

  • of the message signal xN(t)=ANcos(2πfNtφN)   ⇒   in German:   Nachrichtensignal
  • with the carrier signal xT(t)=ATcos(2πfTtφT)   ⇒   in German:   Trägersignal.


The nomenclature is also adapted to this case:

  • xO(t) denotes the "upper sideband"   (in German:   Oberes Seitenband) with the amplitude AO=AN/2, the frequency fO=fT+fN and the phase φO=φT+φN.
  • Similarly, for the "lower sideband"   (in German:   Unteres Seitenband) xU(t) with fU=fTfN, AU=AO and φU=φO.


The associated analytic signal is:

x+(t)=xU+(t)+xT+(t)+xO+(t)=AUej(2πfUtφU)+ATej(2πfTtφT)+AOej(2πfOtφO).
Analytic signal at the time t=0

The program displays x+(t) as the vectorial sum of three rotating pointers (all with counterclockwise) as a violet dot (see figure for start time t=0):

  • The (red) pointer of the carrier xT+(t) with length AT and zero phase position φT=0 rotates at constant angular velocity 2πfT (one revolution in time 1/fT).
  • The (blue) pointer of the upper sideband xO+(t) with length AO and zero phase position φO rotates at the angular velocity 2πfO, which is slightly faster than xT+(t).
  • The (green) pointer of the lower sideband xU+(t) with length AU and zero phase position φU rotates at the angular velocity 2πfU, which is slightly slower than xT+(t).


The time trace of x+(t) is also referred to below as Pointer Diagram. The relationship between the physical band-pass signal x(t) and the associated analytic signal x+(t) is:

x(t)=Re[x+(t)].

Note:   In the figure φO=+30. This leads to the angle with respect to the coordinate system at t=0:   ϕO=φO=30. Similarly, the zero phase angle φU=30 of the lower sideband leads to the phase angle to be considered in the complex plane:   ϕU=+30.


Theoretical Background


Description of Band-pass Signals

Band-pass spectrum X(f)

We consider band-pass signals x(t) with the property that their spectra X(f) are not in the range around the frequency f=0, but around a carrier frequency fT. In most cases it can also be assumed that the bandwidth is BfT.

The figure shows such a band-pass spectrum X(f). Assuming that the associated x(t) is a physical signal and thus real, the spectral function X(f) has a symmetry with respect to the frequency f=0, if x(t) is an even function   ⇒   x(t)=x(t), X(f) is real and even.


Besides the physical signal x(t)  X(f), one can also use the following descriptions of band-pass signals:

  • the analytic signal x+(t)  X+(f), see next section,
  • the equivalent low-pass signal   (in German:   äquivalentes Tief Pass–Signal) xTP(t)  XTP(f),
    see Applet "Physical Signal & Equivalent Low-pass signal".



Analytic Signal – Frequency Domain

The analytic signal x+(t) belonging to the physical signal x(t) is the time function whose spectrum fulfills the following property:

Construction of the spectral function X+(f)
X+(f)=[1+sign(f)]X(f)={2X(f)forf>0,0forf<0.

The signum function is for positive values of f equal to +1 and for negative f values equal to 1.

  • The (double-sided) limit returns sign(0)=0.
  • The index „+” should make it clear that X+(f) only has parts at positive frequencies.


From the graph you can see the calculation rule for X+(f):

The actual band-pass spectrum X(f) becomes

  • doubled at the positive frequencies, and
  • set to zero at the negative frequencies.


Due to the asymmetry of X+(f) with respect to the frequency f=0, it can already be said that the time function x+(t) except for a trivial special case x+(t)=0 X+(f)=0 is always complex.

Analytic Signal – Time Domain

At this point, it is necessary to briefly discuss another spectral transformation.

Definition:  For the Hilbert transform H{x(t)} of a time function x(t) we have:

y(t)=H{x(t)}=1π+x(τ)tτdτ.

This particular integral is not solvable in a simple, conventional way, but must be evaluated using the "Cauchy principal value theorem".

Accordingly, in the frequency domain:

Y(f)=jsign(f)X(f).


The above result can be summarized with this definition as follows:

  • The analytic signal x+(t) is obtained from the physical band-pass signal x(t) by adding an imaginary part to x(t) according to the Hilbert transform:
x+(t)=x(t)+jH{x(t)}.
  • H{x(t)} disappears only for the case x(t)=const.   ⇒   the same signal. For all other signal forms, the analytic signal x+(t) is complex.


  • From the analytic signal x+(t), the physical band-pass signal can be easily determined by the following operation:
x(t)=Re[x+(t)].

Example 1:  The principle of the Hilbert transformation should be further clarified by the following graphic:

  • After the left representation (A) one gets from the physical signal x(t) to the analytic signal x+(t), by adding an imaginary part jy(t).
  • Here y(t)=H{x(t)} is a real time function that can be indicated in the spectral domain by multiplying the spectrum X(f) with jsign(f).


To clarify the Hilbert transform

The right representation (B) is equivalent to (A). Now x+(t)=x(t)+z(t) stand with the purely imaginary function z(t). A comparison of the two figures shows that in fact z(t)=jy(t).



Representation of the Harmonic Oscillation as an Analytic Signal

The spectral function X(f) of a harmonic oscillation x(t)=Acos(2πfTtφ) is known to consist of two Dirac delta functions at the frequencies

  • +fT with the complex weight A/2ejφ,
  • fT with the complex weight A/2e+jφ.


Thus, the spectrum of the analytic signal (that is, without the Dirac delta function at the frequency f=fT, but doubling at f=+fT):

X+(f)=Aejφδ(ffT).

The associated time function is obtained by applying the Displacement Law:

x+(t)=xU+(t)+xT+(t)+xO+(t)=AUej(2πfUtφU)+ATej(2πfTtφT)+AOej(2πfOtφO).

This equation describes a pointer rotating at constant angular velocity ωT=2πfT.

Example 2:  Here the coordinate system is rotated by 90 (real part up, imaginary part to the left) contrary to the usual representation.

Pointer diagram of a harmonic oscillation

Based on this graphic, the following statements are possible:

  • At time t=0, the pointer of length A (signal amplitude) lies with the angle φ in the complex plane. In the example shown, φ=45.
  • For times t>0, the constant angular velocity vector ωT rotates in a mathematically positive direction, that is, counterclockwise.
  • The tip of the pointer is thus always on a circle with radius A and needs exactly the time T0, i.e. the period of the harmonic oscillation x(t) for one revolution.
  • The projection of the analytic signal x+(t) on the real axis, marked by red dots, gives the instantaneous values of x(t).



Analytic Signal Representation of a Sum of Three Harmonic Oscillations

In our applet, we always assume a set of three rotating pointers. The physical signal is:

x(t)=xU(t)+xT(t)+xO(t)=AUcos(2πfUtφU)+ATcos(2πfTtφT)+AOcos(2πfOtφO).
  • Each of the three harmonic oscillations xT(t), xU(t) and xO(t) is represented by an amplitude (A), a frequency (f) and a phase value (φ).
  • The indices are based on the Double-sideband Amplitude Modulation method. "T" stands for "carrier", "U" for "lower sideband" and "O" for "upper Sideband".
  • Accordingly, fU<fT and fO>fT. There are no restrictions for the amplitudes and phases.


The associated analytic signal is:

x+(t)=xU+(t)+xT+(t)+xO+(t)=AUej(2πfUtφU)+ATej(2πfTtφT)+AOej(2πfOtφO).

Example 3:  Shown the constellation arises i.e. in the "Double-sideband Amplitude Modulation" (with carrier) of the message signal xN(t)=ANcos(2πfNtφN) with the carrier signal xT(t)=ATcos(2πfTtφT). This is discussed frequently in the Exercises.


There are some limitations to the program parameters in this approach:

  • For the frequencies, it always applies fO=fT+fN and fU=fTfN.
  • Without distortions the amplitude of the sidebands are AO=AU=AN/2.
  • The respective phase relationships can be seen in the following graphic.
Spectrum X+(f) of the analytic signal for different phase constellations

Exercises

Zeigerdiagramm aufgabe 2.png
  • First select the task number.
  • A task description is displayed.
  • Parameter values are adjusted.
  • Solution after pressing "Hide solition".


The number "0" will reset the program and output a text with further explanation of the applet.
In the following, Green denotes the lower sideband   ⇒   (AU,fU,φU),   Red the carrier   ⇒   (AT,fT,φT) and Blue the upper sideband   ⇒   (AO,fO,φO).

(1)   Consider and interpret the analytic signal x+(t) for Red:AT=1.5 V, fT=50 kHz, φT=0, AU=AO=0.

Which signal values x+(t) result for t=0, t = 5 \ \rm µ s and t = 20 \ \rm µ s? What are the corresponding signal values for x(t)?
 For a cosine signal, let x_+(t= 0) = A_{\rm T} = 1.5\ \text{V}. Then x_+(t) rotates in a mathematically positive direction (one revolution per period T_0 = 1/f_{\rm T}):
 x_+(t= 20 \ {\rm µ s}) = x_+(t= 0) = 1.5\ \text{V}\hspace{0.3cm}\Rightarrow\hspace{0.3cm}x(t= 20 \ {\rm µ s}) = 1.5\ \text{V,}
 x_+(t= 5 \ {\rm µ s}) = {\rm j} \cdot 1.5\ \text{V}\hspace{0.3cm}\Rightarrow\hspace{0.3cm}x(t= 5 \ {\rm µ s}) = {\rm Re}[x_+(t= 5 \ {\rm µ s})] = 0.

(2)   How do the ratios change for \text{Red:} \hspace{0.15cm} A_{\rm T} = 1.0\ \text{V}, \ f_{\rm T} = 100 \ \text{kHz}, \ \varphi_{\rm T} = 90^\circ?

The signal x(t) is now a sine signal with a smaller amplitude. The analytic signal now starts because of \varphi_{\rm T} = 90^\circ   ⇒   \phi_{\rm T} = -90^\circ at x_+(t= 0) = -{\rm j} \cdot A_{\rm T}.
After that, x_+(t) rotates again in a mathematically positive direction, but twice as fast because of T_0 = 10 \ \rm µ s as in \rm (1).

(3)   Now   \text{Red:} \hspace{0.15cm} A_{\rm T} = 1\ \text{V}, \ f_{\rm T} = 100 \ \text{kHz}, \ \varphi_{\rm T} = 0^\circ,   \text{Green:} \hspace{0.15cm} A_{\rm U} = 0.4\ \text{V}, \ f_{\rm U} = 80 \ \text{kHz}, \ \varphi_{\rm U} = 0^\circ,   \text{Blue:} \hspace{0.15cm} A_{\rm O} = 0.4\ \text{V}, \ f_{\rm O} = 120 \ \text{kHz}, \ \varphi_{\rm O} = 0^\circ.

Consider and interpret the physical signal x(t) and the analytic signal x_+(t).
The Signal x(t) results in the Double-sideband Amplitude Modulation (DSB–AM) of the message signal A_{\rm N}\cdot \cos\left(2\pi f_{\rm N}\cdot t\right) with A_{\rm N} = 0.8\ \text{V}, f_{\rm N} = 20\ \text{kHz}. The carrier x_{\rm T}(t) with f_{\rm T} = 100\ \text{kHz} is also cosinusoidal. The degree of modulation is m = A_{\rm N}/A_{\rm T} = 0.8 and the period T_{\rm 0} = 50\ \text{µs}.
In the phase diagram, the (red) carrier rotates faster than the (green) lower sideband and slower than the (blue) upper sideband. The analytic signal x_+(t) results as the geometric sum of the three rotating pointers. It seems that the blue pointer is leading the carrier and the green pointer is following the carrier.

(4)   The settings of task (3) still apply. Which signal values are obtained at t=0, t=2.5 \ \rm µ s, t= 5 \ \rm µ s and t=10 \ \rm µ s?

At time t=0, all pointers are in the direction of the real axis, so that x(t=0) = {\rm Re}\big [x+(t= 0)\big] = A_{\rm U} + A_{\rm T} + A_{\rm O} = 1.8\ \text{V}.
Until the time t=2.5 \ \rm µ s, the red carrier has rotated by 90^\circ, the blue one by 108^\circ and the green one by 72^\circ. We have x(t=2.5 \ \rm µ s) = {\rm Re}\big [x_+(t= 2.5 \ \rm µ s)\big] = 0, because now the pointer group points in the direction of the imaginary axis. The other sought signal values are x(t=5 \ \rm µ s) = {\rm Re}\big [x_+(t= 5 \ \rm µ s)\big] = -1.647\ \text{V} and x(t=10 \ \rm µ s) = {\rm Re}\big [x_+(t= 10 \ \rm µ s)\big] = 1.247\ \text{V}.
For x_+(t) a spiral shape results, alternating with a smaller radius and then with a larger radius.

(5)   How should the phase parameters \varphi_{\rm T}, \varphi_{\rm U} and \varphi_{\rm O} be set if both the carrier x_{\rm T}(t) and the message signal x_{\rm N}(t) are sinusoidal?

The parameter selection \varphi_{\rm T} = \varphi_{\rm U} = \varphi_{\rm O}=90^\circ describes the signals x_{\rm T}(t) = A_{\rm T}\cdot \sin\left(2\pi f_{\rm T}\cdot t\right) and x_{\rm N}(t) = A_{\rm N}\cdot \cos\left(2\pi f_{\rm N}\cdot t\right). If, in addition, the message x_{\rm N}(t) is sinusoidal, then \varphi_{\rm O}=\varphi_{\rm T} - 90^\circ = 0 and \varphi_{\rm U}=\varphi_{\rm T} + 90^\circ = 180^\circ must be set.

(6)   The settings of task (3) apply except A_{\rm T} = 0.6\ \text{V}. Which modulation method is described here?

What are the consequences of this? What changes with A_{\rm T} = 0?
It is a Double-sideband Amplitude Modulation (DSB–AM with carrier) with the modulation degree m=0.8/0.6 = 1.333. For m > 1, however, Synchronous Demodulation is required. Envelope Detection no longer works. One reason for this is that now the zero crossings of x(t) are no longer equidistant from 5\ \rm µ s   ⇒   additional phase modulation.
With A_{\rm T} = 0   ⇒   m \to \infty results in a DSB–AM without carrier. For this, one also needs coherent demodulation.

(7)     Now let   \text{Red:} \hspace{0.15cm} A_{\rm T} = 1\ \text{V}, \ f_{\rm T} = 100 \ \text{kHz}, \ \varphi_{\rm T} = 0^\circ,   \text{Green:} \hspace{0.15cm} A_{\rm U} = 0,   \text{Blue:} \hspace{0.15cm} A_{\rm O} = 0.8\ \text{V}, \ f_{\rm O} = 120 \ \text{kHz}, \ \varphi_{\rm O} = 90^\circ.

Which constellation is described here? Which figure is given for the equivalent low-pass signal x_{\rm TP}(t)?   ⇒   "locus"?
What changes with A_{\rm U} = 0.8\ \text{V} and A_{\rm O} = 0?
In both cases, it is a Single-sideband Amplitude Modulation (SSB–AM) with the modulation degree \mu = 0.8 (in SSB we denote the degree of modulation with \mu instead of m). The carrier signal is cosinusoidal and the message signal is sinusoidal. The equivalent low-pass signal x_{\rm TP}(t) has a circular course in the complex plane.
A_{\rm O} = 0.8\ \text{V}, A_{\rm U} = 0 is an OSB modulation. The green pointer is missing and the blue pointer rotates faster compared to the red carrier.
A_{\rm U} = 0.8\ \text{V}, A_{\rm O} = 0 is a USB modulation. The blue pointer is missing and the green pointer rotates slower compared to the red carrier.

(8)   Now  \text{Red:} \hspace{0.05cm} A_{\rm T} = 1\ \text{V}, \ f_{\rm T} = 100 \ \text{kHz}, \ \varphi_{\rm T} = 0^\circ,   \text{Green:} \hspace{0.05cm} A_{\rm U} = 0.4\ \text{V}, \ f_{\rm U} = 80 \ \text{kHz}, \ \varphi_{\rm U} = -90^\circ,   \text{Blue:} \hspace{0.05cm} A_{\rm O} = 0.2\ \text{V}, \ f_{\rm O} = 120 \ \text{kHz}, \ \varphi_{\rm O} = +90^\circ.

Which constellation could be described here? Which shape results for the equivalent low-pass signal x_{\rm TP}(t)?
It could be a DSB–AM of a sinusoidal signal with cosinusoidal carrier and modulation degree m=0.8, in which the upper sideband is attenuated by a factor of 2. The equivalent low-pass signal x_{\rm TP}(t) has an elliptical trace in the complex plane.

Applet Manual


Screenshot
  • The red parameters (A_{\rm T}, \ f_{\rm T}, \ \varphi_{\rm T}) and the red pointer mark the Carrier
    (German:   Träger).
  • The green parameters (A_{\rm U}, \ f_{\rm U} < f_{\rm T}, \ \varphi_{\rm U}) mark the Lower sideband
    (German:  Unteres Seitenband).
  • The blue parameters (A_{\rm O}, \ f_{\rm O} > f_{\rm T}, \ \varphi_{\rm O}) mark the Upper sideband
    (German:  Oberes Seitenband).
  • All pointers rotate in a mathematically positive direction (counterclockwise).


Meaning of the letters in the adjacent graphic:

    (A)     Plot of the analytic signal x_{\rm +}(t)

    (B)     Plot of the physical signal x(t)

    (C)     Parameter input via slider: amplitudes, frequencies, phase values

    (D)     Control elements:   Start – Step – Pause/Continue – Reset

    (E)     Speed of animation:   "Speed"   ⇒   Values: 1, 2, 3

    (F)     "Trace"   ⇒   On or Off, trace of complex signal values x_{\rm +}(t)

    (G)     Numerical output of the time t and the signal values  {\rm Re}[x_{\rm +}(t)] = x(t)  and  {\rm Im}[x_{\rm +}(t)]

    (H)     Variations for the graphical representation

\hspace{1.5cm}Zoom–Functions "+" (Enlarge), "-" (Decrease) and \rm o (Reset to default)

\hspace{1.5cm}Move with "\leftarrow" (Section to the left, ordinate to the right), "\uparrow" "\downarrow" and "\rightarrow"

    (I)     Experiment section:  Task selection and task

    (J)     Experiment section:  solution

In all applets top right:    Changeable graphical interface design   ⇒   Theme:

  • Dark:   black background  (recommended by the authors).
  • Bright:   white background  (recommended for beamers and printouts)
  • Deuteranopia:   for users with pronounced green–visual impairment
  • Protanopia:   for users with pronounced red–visual impairment


About the Authors

This interactive calculation was designed and realized at the  Institute for Communications Engineering  of the  Technical University of Munich .

  • The original version was created in 2005 by  Ji Li  as part of her Diploma thesis using "FlashMX–Actionscript"  (Supervisor:  Günter Söder).
  • In 2018 this Applet was redesigned and updated to "HTML5" by  Xiaohan Liu  as part of her Bachelor's thesis (Supervisor: Tasnád Kernetzky).

Once again:  Open Applet in new Tab

Open Applet in a new tab         English Applet with German WIKI description