Difference between revisions of "Aufgaben:Exercise 4.8: Diamond-shaped Joint PDF"

From LNTwww
 
(14 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Linearkombinationen von Zufallsgrößen
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Linear_Combinations_of_Random_Variables
 
}}
 
}}
  
[[File:P_ID412__Sto_A_4_8.png|right|frame|Rautenförmige 2D-WDF]]
+
[[File:P_ID412__Sto_A_4_8.png|right|frame|Diamond–shaped joint PDF]]
Wir betrachten eine 2D–Zufallsgröße $(x, y)$, deren Komponenten sich jeweils als Linearkombinationen zweier Zufallsgrößen $u$ und $v$ ergeben:
+
We consider a two-dimensional random variable  $(x,\hspace{0.08cm} y)$  whose components arise as linear combinations of two random variables  $u$  and  $v$:
 
:$$x=2u-2v+1,$$
 
:$$x=2u-2v+1,$$
 
:$$y=u+3v.$$
 
:$$y=u+3v.$$
  
Weiter ist zu beachten:
+
Further,  note:
*Die zwei statistisch unabhängigen Zufallsgrößen $u$ und $v$ sind jeweils gleichverteilt zwischen $0$ und $1$.
+
*The two statistically independent random variables  $u$  and  $v$  are each uniformly distributed between  $0$  and  $1$.
*In der Abbildung sehen Sie die 2D–WDF. Innerhalb des blau eingezeichneten Parallelogramms gilt:  
+
*In the figure you can see the joint PDF.  Within the parallelogram drawn in blue holds:  
:$$f_{xy}(x, y) = H = {\rm const.}$$
+
:$$f_{xy}(x,\hspace{0.08cm} y) = H = {\rm const.}$$
*Außerhalb des Parallelogramms sind keine Werte möglich:   $f_{xy}(x, y) = 0$.
+
*Outside the parallelogram no values are possible:  $f_{xy}(x,\hspace{0.08cm} y) = 0$.
  
  
  
  
 
+
Hints:  
''Hinweise:''
+
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Linear_Combinations_of_Random_Variables|Linear Combinations of Random Variables]].
*Die Aufgabe gehört zum  Kapitel [[Stochastische_Signaltheorie/Linearkombinationen_von_Zufallsgrößen|Linearkombinationen von Zufallsgrößen]].
+
*Reference is also made to the page  [[Theory_of_Stochastic_Signals/Two-Dimensional_Random_Variables#Regression_line|Regression line]].
*Bezug genommen wird auch auf die Seite [[Stochastische_Signaltheorie/Zweidimensionale_Zufallsgrößen#Korrelationsgerade|Korrelationsgerade]].
+
*We also refer here to the interactive applet  [[Applets:Korrelationskoeffizient_%26_Regressionsgerade|Correlation coefficient and regression line]]
*Wir verweisen hier auch auf das interaktive Applet [[Applets:Korrelationskoeffizient_%26_Regressionsgerade|Korrelationskoeffizient & Regressionsgerade]].
+
*Assume - if possible - the given equations.  Use the information of the above sketch mainly only to check your results.
*Gehen Sie - wenn möglich - von den angegebenen Gleichungen aus. Nutzen Sie die Informationen der obigen Skizze vorwiegend nur zur Kontrolle Ihrer Ergebnisse.
 
 
   
 
   
  
Line 28: Line 27:
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie gro&szlig; ist die H&ouml;he $H$ der 2D&ndash;WDF innerhalb des Parallelogramms?
+
{What is the height&nbsp; $H$&nbsp; of the joint PDF within the parallelogram?
 
|type="{}"}
 
|type="{}"}
 
$H \ = \ $ { 0.125 3% }
 
$H \ = \ $ { 0.125 3% }
  
  
{Welche Werte von $u$ und $v$ liegen dem Eckpunkt $(-1, 3)$ zugrunde?
+
{What values of&nbsp; $u$&nbsp; and&nbsp; $v$&nbsp; underlie the corner point&nbsp; $(-1, 3)$?
 
|type="{}"}
 
|type="{}"}
 
$u \ = \ $ { 0. }
 
$u \ = \ $ { 0. }
Line 42: Line 41:
  
  
{Berechnen Sie den Korrelationskoeffizienten $\rho_{xy}$.
+
{Calculate the correlation coefficient&nbsp; $\rho_{xy}$.
 
|type="{}"}
 
|type="{}"}
 
$\rho_{xy}\ = \ $ { -0.457--0.437 }
 
$\rho_{xy}\ = \ $ { -0.457--0.437 }
  
  
{Wie lautet die Korrelationsgerade $y=K(x)$? Bei welchem Punkt $y_0$ schneidet diese die $y$-Achse?
+
{What is the regression line&nbsp; $\rm (RL)$?&nbsp; At what point&nbsp; $y_0$&nbsp; does it intersect the&nbsp; $y$&ndash;axis?
 
|type="{}"}
 
|type="{}"}
 
$y_0\ = \ $ { 2.5 3% }
 
$y_0\ = \ $ { 2.5 3% }
  
  
{Berechnen Sie die Randwahrscheinlichkeitsdichtefunktion $f_x(x)$. Wie gro&szlig; ist die Wahrscheinlichkeit, dass die Zufallsgr&ouml;&szlig;e $x$ negativ ist?
+
{Calculate the marginal probability density function $f_x(x)$.&nbsp; What is the probability that the random variable&nbsp; $x$&nbsp; is negative?
 
|type="{}"}
 
|type="{}"}
${\rm Pr}(x < 0)\ = \ $ { 0.125 3% }
+
${\rm Pr}(x < 0)\ = \ $ { 0.125 3% }
  
  
{Berechnen Sie die Randwahrscheinlichkeitsdichtefunktion $f_y(y)$. Wie gro&szlig; ist die Wahrscheinlichkeit, dass die Zufallsgr&ouml;&szlig;e $y >3$ ist?
+
{Calculate the marginal probability density function $f_y(y)$.&nbsp; What is the probability that the random variablee&nbsp; $y >3$?
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(y > 3)\ = \ $ { 0.167 3% }
 
${\rm Pr}(y > 3)\ = \ $ { 0.167 3% }
Line 64: Line 63:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die Fl&auml;che des Parallelogramms kann aus zwei gleich gro&szlig;en Dreiecken zusammengesetzt werden. Die Fl&auml;che des Dreiecks $(1,0)(1,4)-1,3)$ ergibt 0.5 &middot; 4 &middot; 2 = 4. Die Gesamtfl&auml;che ist doppelt so groß: &nbsp; $F = 8$. Da das WDF-Volumen stets $1$ ist, gilt $H= 1/F\hspace{0.15cm}\underline{ = 0.125}$.
+
'''(1)'''&nbsp; The area of the parallelogram can be composed of two triangles of equal size.  
 +
*The area of the triangle $(1,0)\ (1,4)\ (-1,3)$&nbsp; gives&nbsp; $0.5 &middot; 4 &middot; 2 = 4$.  
 +
*The total area is double: &nbsp; $F = 8$.  
 +
*Since the PDF volume is always&nbsp; $1$&nbsp;, then&nbsp; $H= 1/F\hspace{0.15cm}\underline{ = 0.125}$.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; The minimum value of&nbsp; $x$&nbsp; is obtained for&nbsp; $\underline{ u=0}$&nbsp; and&nbsp; $\underline{ v=1}$.
 +
*From the above equations,&nbsp; the results&nbsp; $x= -1$&nbsp; and&nbsp; $y= +3$&nbsp; follow.
 +
 
  
'''(2)'''&nbsp; Der minimale Wert von $x$ ergibt sich f&uuml;r $\underline{ u=0}$ und $\underline{ v=1}$. Daraus folgen aus obigen Gleichungen die Ergebnisse $x= -1$ und $y= +3$.
 
  
'''(3)'''&nbsp; Die im Theorieteil angegebene Gleichung gilt allgemein, d.&nbsp;h. f&uuml;r jede beliebige WDF der beiden statistisch unabh&auml;ngigen Gr&ouml;&szlig;en $u$ und $v$, so lange diese gleiche Streuungen aufweisen $(\sigma_u = \sigma_v)$.  
+
'''(3)'''&nbsp; The equation given in the theory section is valid in general, i.e., for any PDF of the two statistically independent variables&nbsp; $u$&nbsp; and&nbsp; $v$,&nbsp; as long as they have equal standard deviations&nbsp; $(\sigma_u = \sigma_v)$.  
  
Mit $A = 2$, $B = -2$, $D = 1$ und $E = 3$ erh&auml;lt man:
+
*With&nbsp; $A = 2$,&nbsp; $B = -2$,&nbsp; $D = 1$&nbsp; and&nbsp; $E = 3$&nbsp; we obtain:
 
:$$\rho_{xy } =  \frac {\it A \cdot D + B \cdot E}{\sqrt{(\it A^{\rm 2}+\it B^{\rm 2})(\it D^{\rm 2}+\it E^{\rm 2})}} =\frac {2 \cdot 1 -2 \cdot 3}{\sqrt{(4 +4)(1+9)}} = \frac {-4}{\sqrt{80}} = \frac {-1}{\sqrt{5}}\hspace{0.15cm}\underline{ = -0.447}. $$
 
:$$\rho_{xy } =  \frac {\it A \cdot D + B \cdot E}{\sqrt{(\it A^{\rm 2}+\it B^{\rm 2})(\it D^{\rm 2}+\it E^{\rm 2})}} =\frac {2 \cdot 1 -2 \cdot 3}{\sqrt{(4 +4)(1+9)}} = \frac {-4}{\sqrt{80}} = \frac {-1}{\sqrt{5}}\hspace{0.15cm}\underline{ = -0.447}. $$
  
'''(4)'''&nbsp; Die Korrelationsgerade lautet allgemein:
 
:$$y=K(x)=\frac{\sigma_y}{\sigma_x}\cdot\rho_{xy}\cdot(x-m_x)+m_y.$$
 
  
Aus den linearen Mittelwerten $m_u = m_v = 0.5$ und den in der Aufgabenstellung angegebenen Gleichungen erh&auml;lt man $m_x = 1$ und $m_y = 2$.
+
'''(4)'''&nbsp; The regression line is generally:
 +
:$$y=\frac{\sigma_y}{\sigma_x}\cdot\rho_{xy}\cdot(x-m_x)+m_y.$$
 +
 
 +
*From the linear means&nbsp; $m_u = m_v = 0.5$&nbsp; and the equations given in the problem statement,&nbsp; we obtain&nbsp; $m_x = 1$&nbsp; and&nbsp; $m_y = 2$.
  
Die Varianzen von $u$ und $v$ betragen jeweils $\sigma_u^2 = \sigma_v^2 =1/12$. Daraus folgt:
+
*The variances of&nbsp; $u$&nbsp; and&nbsp; $v$&nbsp; are respectively&nbsp; $\sigma_u^2 = \sigma_v^2 =1/12$.&nbsp; It follows:
 
:$$\sigma_x^2 = 4 \cdot \sigma_u^2 + 4 \cdot \sigma_v^2 = 2/3,$$
 
:$$\sigma_x^2 = 4 \cdot \sigma_u^2 + 4 \cdot \sigma_v^2 = 2/3,$$
 
:$$\sigma_y^2 = \sigma_u^2 + 9\cdot \sigma_v^2 = 5/6.$$
 
:$$\sigma_y^2 = \sigma_u^2 + 9\cdot \sigma_v^2 = 5/6.$$
  
Setzt man diese Werte in die Gleichung der Korrelationsgeraden ein, so ergibt sich:
+
*Substituting these values into the equation of the regression line,&nbsp; we get:
:$$y=K(x)=\frac{\sqrt{5/6}}{\sqrt{2/3}}\cdot (\frac{-1}{\sqrt{5}})\cdot(x-1)+2= - x/{2} + 2.5.$$
+
:$$y=\frac{\sqrt{5/6}}{\sqrt{2/3}}\cdot (\frac{-1}{\sqrt{5}})\cdot(x-1)+2= - x/{2} + 2.5.$$
 +
 
 +
*From this follows with&nbsp; $x=0$&nbsp; the value&nbsp; $y_0=\hspace{0.15cm}\underline{ = 2.5}$
  
Daraus folgt der Wert $y_0\hspace{0.15cm}\underline{ = 2.5}$
 
  
'''(5)'''&nbsp; Mit den Hilfsgr&ouml;&szlig;en $q= 2u$, $r= -2v$ und $s= x-1$ gilt der Zusammenhang: $s= q+r$. Da $u$ und $v$ jeweils zwischen $0$ und $1$ gleichverteilt sind, besitzt $q$ eine Gleichverteilung im Bereich von $0$ bis $2$ und $r$ eine Gleichverteilung zwischen $-2$ und $0$.
 
  
Da zudem $q$ und $r$ nicht statistisch voneinander abh&auml;ngen, gilt f&uuml;r die WDF der Summe:
+
'''(5)'''&nbsp; With the auxiliary quantities &nbsp; $q= 2u$, &nbsp; $r= -2v$ &nbsp; and &nbsp; $s= x-1$:&nbsp;  $s= q+r$.
 +
[[File:P_ID414__Sto_A_4_8_e.png|right|frame|Triangular PDF $f_x(x)$]]
 +
*Since&nbsp; $u$&nbsp; and&nbsp; $v$&nbsp; are each uniformly distributed between&nbsp; $0$&nbsp; and&nbsp; $1$,&nbsp;  $q$&nbsp; has a uniform distribution in the range from&nbsp; $0$&nbsp; to&nbsp; $2$&nbsp; and&nbsp; $r$&nbsp; is uniformly distributed between&nbsp; $-2$&nbsp; and&nbsp; $0$.
 +
*In addition,&nbsp; since&nbsp; $q$&nbsp; and&nbsp; $r$&nbsp; are not statistically dependent on each other, the PDF of the sum is:
 
:$$f_s(s) = f_q(q) \star f_r(r).$$
 
:$$f_s(s) = f_q(q) \star f_r(r).$$
 +
*The addition&nbsp; $x = s+1$&nbsp; leads to a shift of the triangular&ndash;PDF by&nbsp; $1$&nbsp; to the right.
 +
*For the sought probability&nbsp; (highlighted in green in the graphic)&nbsp; therefore holds: &nbsp;
 +
:$${\rm Pr}(x < 0)\hspace{0.15cm}\underline{ = 0.125}.$$
  
Die Addition$x = s+1$ f&uuml;hrt zu einer Verschiebung der Dreieck&ndash;WDF um $1$ nach rechts. F&uuml;r die gesuchte Wahrscheinlichkeit (im folgenden Bild gr&uuml;n hinterlegt) gilt deshalb: ${\rm Pr}(x < 0)\hspace{0.15cm}\underline{ = 0.125}$.
 
  
[[File:P_ID414__Sto_A_4_8_e.png|Dreieckförmige WDF]]
 
  
'''(6)'''&nbsp; Analog zur Musterl&ouml;sung für die Teilaufgabe (5) gilt mit $t = 3v$:
+
[[File: P_ID415__Sto_A_4_8_f.png|right|frame|Trapezoidal PDF $f_y(y)$]]
 +
'''(6)'''&nbsp; Analogous to the solution for the subtask&nbsp; '''(5)'''&nbsp; holds with&nbsp; $t = 3v$:
 
:$$f_y(y) = f_u(u) \star f_t(t).$$
 
:$$f_y(y) = f_u(u) \star f_t(t).$$
  
Die Faltung zwischen zwei unterschiedlich breiten Rechteckfunktionen ergibt ein Trapez. F&uuml;r die gesuchte Wahrscheinlichkeit erhält man ${\rm Pr}(y>3) =1/6\hspace{0.15cm}\underline{ \approx 0.167}$. Diese Wahrscheinlichkeit ist im folgenden Bild gr&uuml;n hinterlegt.
+
*The convolution between two rectangles of different widths results in a trapezoid.&nbsp; For the probability we are looking for,&nbsp; we get:
 +
:$${\rm Pr}(y>3) =1/6\hspace{0.15cm}\underline{ \approx 0.167}.$$   
 +
*This probability is highlighted in green in the right sketch.
 +
 
  
[[File: P_ID415__Sto_A_4_8_f.png|Trapezförmige WDF]]
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Stochastische Signaltheorie|^4.3 Linearkombinationen^]]
+
[[Category:Theory of Stochastic Signals: Exercises|^4.3 Linear Combinations^]]

Latest revision as of 14:07, 27 February 2022

Diamond–shaped joint PDF

We consider a two-dimensional random variable  $(x,\hspace{0.08cm} y)$  whose components arise as linear combinations of two random variables  $u$  and  $v$:

$$x=2u-2v+1,$$
$$y=u+3v.$$

Further,  note:

  • The two statistically independent random variables  $u$  and  $v$  are each uniformly distributed between  $0$  and  $1$.
  • In the figure you can see the joint PDF.  Within the parallelogram drawn in blue holds:
$$f_{xy}(x,\hspace{0.08cm} y) = H = {\rm const.}$$
  • Outside the parallelogram no values are possible:  $f_{xy}(x,\hspace{0.08cm} y) = 0$.



Hints:



Questions

1

What is the height  $H$  of the joint PDF within the parallelogram?

$H \ = \ $

2

What values of  $u$  and  $v$  underlie the corner point  $(-1, 3)$?

$u \ = \ $

$v \ = \ $

3

Calculate the correlation coefficient  $\rho_{xy}$.

$\rho_{xy}\ = \ $

4

What is the regression line  $\rm (RL)$?  At what point  $y_0$  does it intersect the  $y$–axis?

$y_0\ = \ $

5

Calculate the marginal probability density function $f_x(x)$.  What is the probability that the random variable  $x$  is negative?

${\rm Pr}(x < 0)\ = \ $

6

Calculate the marginal probability density function $f_y(y)$.  What is the probability that the random variablee  $y >3$?

${\rm Pr}(y > 3)\ = \ $


Solution

(1)  The area of the parallelogram can be composed of two triangles of equal size.

  • The area of the triangle $(1,0)\ (1,4)\ (-1,3)$  gives  $0.5 · 4 · 2 = 4$.
  • The total area is double:   $F = 8$.
  • Since the PDF volume is always  $1$ , then  $H= 1/F\hspace{0.15cm}\underline{ = 0.125}$.


(2)  The minimum value of  $x$  is obtained for  $\underline{ u=0}$  and  $\underline{ v=1}$.

  • From the above equations,  the results  $x= -1$  and  $y= +3$  follow.


(3)  The equation given in the theory section is valid in general, i.e., for any PDF of the two statistically independent variables  $u$  and  $v$,  as long as they have equal standard deviations  $(\sigma_u = \sigma_v)$.

  • With  $A = 2$,  $B = -2$,  $D = 1$  and  $E = 3$  we obtain:
$$\rho_{xy } = \frac {\it A \cdot D + B \cdot E}{\sqrt{(\it A^{\rm 2}+\it B^{\rm 2})(\it D^{\rm 2}+\it E^{\rm 2})}} =\frac {2 \cdot 1 -2 \cdot 3}{\sqrt{(4 +4)(1+9)}} = \frac {-4}{\sqrt{80}} = \frac {-1}{\sqrt{5}}\hspace{0.15cm}\underline{ = -0.447}. $$


(4)  The regression line is generally:

$$y=\frac{\sigma_y}{\sigma_x}\cdot\rho_{xy}\cdot(x-m_x)+m_y.$$
  • From the linear means  $m_u = m_v = 0.5$  and the equations given in the problem statement,  we obtain  $m_x = 1$  and  $m_y = 2$.
  • The variances of  $u$  and  $v$  are respectively  $\sigma_u^2 = \sigma_v^2 =1/12$.  It follows:
$$\sigma_x^2 = 4 \cdot \sigma_u^2 + 4 \cdot \sigma_v^2 = 2/3,$$
$$\sigma_y^2 = \sigma_u^2 + 9\cdot \sigma_v^2 = 5/6.$$
  • Substituting these values into the equation of the regression line,  we get:
$$y=\frac{\sqrt{5/6}}{\sqrt{2/3}}\cdot (\frac{-1}{\sqrt{5}})\cdot(x-1)+2= - x/{2} + 2.5.$$
  • From this follows with  $x=0$  the value  $y_0=\hspace{0.15cm}\underline{ = 2.5}$


(5)  With the auxiliary quantities   $q= 2u$,   $r= -2v$   and   $s= x-1$:  $s= q+r$.

Triangular PDF $f_x(x)$
  • Since  $u$  and  $v$  are each uniformly distributed between  $0$  and  $1$,  $q$  has a uniform distribution in the range from  $0$  to  $2$  and  $r$  is uniformly distributed between  $-2$  and  $0$.
  • In addition,  since  $q$  and  $r$  are not statistically dependent on each other, the PDF of the sum is:
$$f_s(s) = f_q(q) \star f_r(r).$$
  • The addition  $x = s+1$  leads to a shift of the triangular–PDF by  $1$  to the right.
  • For the sought probability  (highlighted in green in the graphic)  therefore holds:  
$${\rm Pr}(x < 0)\hspace{0.15cm}\underline{ = 0.125}.$$


Trapezoidal PDF $f_y(y)$

(6)  Analogous to the solution for the subtask  (5)  holds with  $t = 3v$:

$$f_y(y) = f_u(u) \star f_t(t).$$
  • The convolution between two rectangles of different widths results in a trapezoid.  For the probability we are looking for,  we get:
$${\rm Pr}(y>3) =1/6\hspace{0.15cm}\underline{ \approx 0.167}.$$
  • This probability is highlighted in green in the right sketch.