Difference between revisions of "Aufgaben:Exercise 1.4: Entropy Approximations for the AMI Code"

From LNTwww
m (Text replacement - "code symbol sequence" to "encoded sequence")
 
(19 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Informationstheorie/Nachrichtenquellen mit Gedächtnis
+
{{quiz-Header|Buchseite=Information_Theory/Discrete_Sources_with_Memory
 
}}
 
}}
  
[[File:P_ID2248__Inf_A_1_4.png|right|frame|Binäres Quellensignal (oben) und <br>ternäres Codersignal (unten)]]
+
[[File:P_ID2248__Inf_A_1_4.png|right|frame|Binary source signal (top) and <br>ternary encoder signal (bottom)]]
Die Grafik zeigt oben das binäre Quellensignal $q(t)$, das man ebenfalls durch die Symbolfolge $\langle q_\nu \rangle$  mit $q_\nu \in \{ {\rm L}, {\rm H} \}$ beschreiben kann. In der gesamten Aufgabe gelte $p_{\rm L} = p_{\rm H} =0.5$.
+
The graph above shows the binary source signal&nbsp; $q(t)$, which can also be described by the symbol sequence&nbsp; $\langle q_\nu \rangle$&nbsp; with&nbsp; $q_\nu \in \{ {\rm L}, {\rm H} \}$&nbsp;.&nbsp; In the entire task,&nbsp; $p_{\rm L} = p_{\rm H} =0.5$ applies.
  
Das codierte Signal $c(t)$ und die dazugehörige Symbolfolge $\langle c_\nu \rangle$  mit $c_\nu \in \{{\rm P}, {\rm N}, {\rm M}  \}$ ergibt sich aus der AMI&ndash;Codierung (<i>Alternate Mark Inversion</i>) nach folgender Vorschrift:
+
The coded signal&nbsp; $c(t)$&nbsp; and the corresponding symbol sequence&nbsp; $\langle c_\nu \rangle$&nbsp; with&nbsp; $c_\nu \in \{{\rm P}, {\rm N}, {\rm M}  \}$&nbsp; results from the AMI coding ("Alternate Mark Inversion") according to the following rule:
  
* Das Binärsymbol $\rm L$ &nbsp;&rArr;&nbsp; <i>Low</i> wird stets durch das Ternärsymbol $\rm N$ &nbsp;&rArr;&nbsp; <i>Null</i> dargestellt.
+
* The binary symbol&nbsp; $\rm L$ &nbsp;&rArr;&nbsp; "Low"is always represented by the ternary symbol&nbsp; $\rm N$ &nbsp;&rArr;&nbsp; "German: Null"&nbsp;&rArr;&nbsp;"Zero".
* Das Binärsymbol $\rm H$ &nbsp;&rArr;&nbsp; <i>High</i> wird ebenfalls deterministisch, aber alternierend (daher der Name &bdquo;AMI&rdquo;) durch die Symbole $\rm P$ &nbsp;&rArr;&nbsp; <i>Plus</i> und $\rm M$ &nbsp;&rArr;&nbsp; <i>Minus</i> codiert.
+
* The binary symbol&nbsp; $\rm H$ &nbsp;&rArr;&nbsp; "High"&nbsp; is also encoded deterministically but alternately (hence the name "Alternate Mark Inversion") by the symbols&nbsp; $\rm P$ &nbsp;&rArr;&nbsp; "Plus"&nbsp; and&nbsp; $\rm M$ &nbsp;&rArr;&nbsp; "Minus".
  
  
In dieser Aufgabe sollen die Entropienäherungen für das AMI&ndash;codierte Signal berechnet werden:
+
In this task, the entropy approximations for the AMI coded signal are to be calculated:
  
* Die Näherung $H_1$ bezieht sich nur auf die Symbolwahrscheinlichkeiten $p_{\rm P}$, $p_{\rm N}$ und $p_{\rm M}$.
+
* Approximation&nbsp; $H_1$&nbsp; refers only to the symbol probabilities&nbsp; $p_{\rm P}$,&nbsp; $p_{\rm N}$&nbsp; and&nbsp; $p_{\rm M}$.
  
* Die $k$&ndash;te Entropienäherung $(k = 2, 3, \text{...} \ )$ kann nach folgender Gleichung ermittelt werden:
+
* The&nbsp; $k$&ndash;th is the entropy approximation&nbsp; $(k = 2, 3, \text{...} \ )$&nbsp; can be determined according to the following equation:
 
:$$H_k = \frac{1}{k} \cdot \sum_{i=1}^{3^k} p_i^{(k)} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{p_i^{(k)}} \hspace{0.5cm}({\rm Einheit\hspace{-0.1cm}: \hspace{0.1cm}bit/Symbol})
 
:$$H_k = \frac{1}{k} \cdot \sum_{i=1}^{3^k} p_i^{(k)} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{p_i^{(k)}} \hspace{0.5cm}({\rm Einheit\hspace{-0.1cm}: \hspace{0.1cm}bit/Symbol})
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
:Hierbei bezeichnet $p_i^{(k)}$ die $i$&ndash;te Verbundwahrscheinlichkeit eines $k$&ndash;Tupels.
+
:Here,&nbsp; $p_i^{(k)}$&nbsp; the&nbsp; $i$&ndash;th composite probability of a&nbsp; $k$&ndash;tuple.
  
  
Line 25: Line 25:
  
  
''Hinweise:''  
+
 
*Die Aufgabe gehört zum  Kapitel [[Informationstheorie/Nachrichtenquellen_mit_Gedächtnis|Nachrichtenquellen mit Gedächtnis]].
+
 
*Bezug genommen wird insbesondere auf die Seite [[Informationstheorie/Nachrichtenquellen_mit_Gedächtnis#Die_Entropie_des_AMI.E2.80.93Codes|Die Entropie des AMI-Codes]].
+
 
*In der [[Aufgaben:1.4Z_Entropie_der_AMI-Codierung|Aufgabe 1.4Z]] wird die tatsächliche Entropie der Codesymbolfolge $\langle c_\nu \rangle$ zu $H = 1 \; \rm bit/Symbol$ berechnet.
+
''Hints:''  
*Zu erwarten sind die folgenden Größenrelationen: &nbsp; $H \le$ ...$ \le H_3 \le H_2 \le H_1 \le H_0  
+
*This task belongs to the chapter&nbsp; [[Information_Theory/Discrete_Sources_with_Memory|Discrete Sources with Memory]].
 +
*Reference is made in particular to the page&nbsp; [[Information_Theory/Discrete_Sources_with_Memory#The_entropy_of_the_AMI_code|The Entropy of the AMI code]].
 +
*In&nbsp; [[Aufgaben:Exercise_1.4Z:_Entropy_of_the_AMI_Code|Exercise 1.4Z]]&nbsp; the actual entropy of the encoded sequence&nbsp; $\langle c_\nu \rangle$&nbsp; is calculated to&nbsp; $H = 1 \; \rm bit/symbol$.
 +
*The following relations between the units are to be expected: &nbsp; $H \le$ ...$ \le H_3 \le H_2 \le H_1 \le H_0  
 
  \hspace{0.05cm}.$
 
  \hspace{0.05cm}.$
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß ist der Entscheidungsgehalt des AMI&ndash;Codes?
+
{What is the decision content of the AMI code?
 
|type="{}"}
 
|type="{}"}
$H_0 \ = \ $  { 1.585 3% } $\ \rm bit/Symbol$
+
$H_0 \ = \ $  { 1.585 3% } $\ \rm bit/symbol$
  
  
{Berechnen Sie die erste Entropienäherung des AMI&ndash;Codes.
+
{Calculate the first entropy approximation of the AMI code.
 
|type="{}"}
 
|type="{}"}
$H_1 \ = \ $ { 1.5 3% } $\ \rm bit/Symbol$
+
$H_1 \ = \ $ { 1.5 3% } $\ \rm bit/symbol$
  
  
{Wie groß ist die Entropienäherung $H_2$, basierend auf Zweiertupel?
+
{What is the entropy approximation&nbsp; $H_2$, based on two-tuples?
 
|type="{}"}
 
|type="{}"}
$H_2  \ = \ $ { 1.375 3% } $\ \rm bit/Symbol$
+
$H_2  \ = \ $ { 1.375 3% } $\ \rm bit/symbol$
  
  
{Welchen Wert liefert die Entropienäherung $H_3$, basierend auf Dreiertuptel?
+
{What is the value of the entropy approximation&nbsp; $H_3$, based on three-tuples?
 
|type="{}"}
 
|type="{}"}
$H_3 \ = \ $ { 1.292 3% } $\ \rm bit/Symbol$
+
$H_3 \ = \ $ { 1.292 3% } $\ \rm bit/symbol$
  
  
{Welche Aussagen gelten für die Entropienäherung $H_4$?
+
{Which statements apply to the entropy approximation&nbsp; $H_4$?
 
|type="[]"}
 
|type="[]"}
+ Es muss über $3^4 = 81$ Summanden gemittelt werden.
+
+ It must be averaged over&nbsp; $3^4 = 81$&nbsp; summands.
+ Es gilt $1 \; {\rm bit/Symbol} < H_4 < H_3$.
+
+ &nbsp; $1 \; {\rm bit/symbol} < H_4 < H_3$ is valid.
- Nach langer Rechnung erhält man $H_4 = 1.333 \; {\rm bit/Symbol}$.
+
- After a long calculation you get&nbsp; $H_4 = 1.333 \; {\rm bit/symbol}$.
  
  
Line 67: Line 70:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Der Symbolumfang beträgt $M = 3$. Daraus ergibt sich der Entscheidungsgehalt mit dem <i>Logarithmus dualis</i> zur Basis 2 &nbsp; &rArr; &nbsp; $\log_2$ bzw $\rm ld$:
+
'''(1)'''&nbsp; The symbol set size is&nbsp; $M = 3$.&nbsp; This gives the decision content with the&nbsp; logarithm&nbsp; to the base $2$ &nbsp; &rArr; &nbsp; $\log_2$:
:$$H_0  = {\rm log}_2\hspace{0.1cm} M = {\rm log}_2\hspace{0.1cm} (3)  \hspace{0.15cm} \underline { = 1.585 \,{\rm bit/Symbol}}  
+
:$$H_0  = {\rm log}_2\hspace{0.1cm} M = {\rm log}_2\hspace{0.1cm} (3)  \hspace{0.15cm} \underline { = 1.585 \,{\rm bit/symbol}}  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
'''(2)'''&nbsp; Die Entropienäherung erster Ordnung berücksichtigt nur die Symbolwahrscheinlichkeiten $p_{\rm P}$, $p_{\rm N}$ und $p_{\rm M}$ und nicht die statistischen Bindungen innerhalb der Codefolge $\langle c_\nu \rangle$. Damit erhält man:
+
 
 +
 
 +
'''(2)'''&nbsp; The first-order entropy approximation takes into account only the symbol probabilities&nbsp; $p_{\rm P}$,&nbsp; $p_{\rm N}$&nbsp; and&nbsp; $p_{\rm M}$&nbsp; <br>and not the statistical bindings within the code sequence&nbsp; $\langle c_\nu \rangle$.&nbsp; Thus one obtains:
 
:$$p_{\rm N} = p_{\rm L} = 1/2\hspace{0.05cm},\hspace{0.2cm}p_{\rm P} = p_{\rm M} = p_{\rm H}/2 = 1/4 \hspace{0.3cm}
 
:$$p_{\rm N} = p_{\rm L} = 1/2\hspace{0.05cm},\hspace{0.2cm}p_{\rm P} = p_{\rm M} = p_{\rm H}/2 = 1/4 \hspace{0.3cm}
 
\Rightarrow\hspace{0.3cm} H_1  = \frac{1}{2} \cdot {\rm log}_2\hspace{0.1cm} (2) +  
 
\Rightarrow\hspace{0.3cm} H_1  = \frac{1}{2} \cdot {\rm log}_2\hspace{0.1cm} (2) +  
Line 79: Line 84:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
'''(3)'''&nbsp; Zunächst müssen hier die $M^2 = 9$ Verbundwahrscheinlichkeiten von Zweiertupeln ermittelt werden, im Folgenden gekennzeichnet durch die beiden ersten Codesymbole $c_1$ und $c_2$:
+
 
* Da beim AMI&ndash;Code weder $\rm P$ auf $\rm P$ noch $\rm M$ auf $\rm M$ folgen kann, ist $p_{\rm PP} = p_{\rm MM} =0$.
+
 
* Für die Verbundwahrscheinlichkeiten unter der Bedingung $c_2 = \rm N$ gilt:
+
'''(3)'''&nbsp; First, the&nbsp; $M^2 = 9$&nbsp; composite probabilities of two-tuples have to be determined here, in the following marked by the first two code symbols&nbsp; $c_1$&nbsp; and&nbsp; $c_2$:
 +
* Since in the AMI code neither&nbsp; $\rm P$&nbsp; can follow&nbsp; $\rm P$&nbsp; nor&nbsp; $\rm M$&nbsp; can follow&nbsp; $\rm M$&nbsp;,&nbsp; $p_{\rm PP} = p_{\rm MM} =0$.
 +
* For the composite probabilities under the condition&nbsp; $c_2 = \rm N$&nbsp; applies:
 
:$$p_{\rm NN} \hspace{0.1cm} =  \hspace{0.1cm} {\rm Pr}( c_1 = \mathbf{N}) \cdot {\rm Pr}(c_2 = \mathbf{N}\hspace{0.05cm} | c_1 = \mathbf{N}) = 1/2 \cdot 1/2 = 1/4 \hspace{0.05cm},$$
 
:$$p_{\rm NN} \hspace{0.1cm} =  \hspace{0.1cm} {\rm Pr}( c_1 = \mathbf{N}) \cdot {\rm Pr}(c_2 = \mathbf{N}\hspace{0.05cm} | c_1 = \mathbf{N}) = 1/2 \cdot 1/2 = 1/4 \hspace{0.05cm},$$
 
:$$ p_{\rm MN} \hspace{0.1cm} =  \hspace{0.1cm} {\rm Pr}( c_1 = \mathbf{M}) \cdot {\rm Pr}(c_2 = \mathbf{N}\hspace{0.05cm} | c_1 = \mathbf{M}) = 1/4 \cdot 1/2 = 1/8 \hspace{0.05cm},$$
 
:$$ p_{\rm MN} \hspace{0.1cm} =  \hspace{0.1cm} {\rm Pr}( c_1 = \mathbf{M}) \cdot {\rm Pr}(c_2 = \mathbf{N}\hspace{0.05cm} | c_1 = \mathbf{M}) = 1/4 \cdot 1/2 = 1/8 \hspace{0.05cm},$$
 
:$$  p_{\rm PN} \hspace{0.1cm} =  \hspace{0.1cm} {\rm Pr}( c_1 = \mathbf{P}) \cdot {\rm Pr}(c_2 = \mathbf{N}\hspace{0.05cm} | c_1 = \mathbf{P}) = 1/4 \cdot 1/2 = 1/8
 
:$$  p_{\rm PN} \hspace{0.1cm} =  \hspace{0.1cm} {\rm Pr}( c_1 = \mathbf{P}) \cdot {\rm Pr}(c_2 = \mathbf{N}\hspace{0.05cm} | c_1 = \mathbf{P}) = 1/4 \cdot 1/2 = 1/8
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
* Die Verbundwahrscheinlichkeiten der Zweiertupel $\rm PM$  und $\rm MP$ lauten:
+
* The composite probabilities of the two-tuples&nbsp; $\rm PM$&nbsp; and&nbsp; $\rm MP$&nbsp; are:
 
:$$p_{\rm PM} \hspace{0.1cm} =  \hspace{0.1cm} {\rm Pr}( c_1 = \mathbf{P}) \cdot {\rm Pr}(c_2 = \mathbf{M}\hspace{0.05cm} | c_1 = \mathbf{P}) = 1/4 \cdot 1/2 = 1/8 \hspace{0.05cm},$$
 
:$$p_{\rm PM} \hspace{0.1cm} =  \hspace{0.1cm} {\rm Pr}( c_1 = \mathbf{P}) \cdot {\rm Pr}(c_2 = \mathbf{M}\hspace{0.05cm} | c_1 = \mathbf{P}) = 1/4 \cdot 1/2 = 1/8 \hspace{0.05cm},$$
 
:$$ p_{\rm MP} \hspace{0.1cm} =  \hspace{0.1cm} {\rm Pr}( c_1 = \mathbf{M}) \cdot {\rm Pr}(c_2 = \mathbf{P}\hspace{0.05cm} | c_1 = \mathbf{M}) = 1/4 \cdot 1/2 = 1/8 \hspace{0.05cm}.$$
 
:$$ p_{\rm MP} \hspace{0.1cm} =  \hspace{0.1cm} {\rm Pr}( c_1 = \mathbf{M}) \cdot {\rm Pr}(c_2 = \mathbf{P}\hspace{0.05cm} | c_1 = \mathbf{M}) = 1/4 \cdot 1/2 = 1/8 \hspace{0.05cm}.$$
* Bei den restlichen Wahrscheinlichkeiten muss zusätzlich berücksichtigt werden, ob beim letzten Mal das Binärsymbol $\rm H$ mit $\rm P$ oder mit $\rm M$ codiert wurde &nbsp;&#8658;&nbsp; weiterer Faktor $1/2$:
+
* For the remaining probabilities, it must also be taken into account whether the binary symbol&nbsp; $\rm H$&nbsp; was encoded with&nbsp; $\rm P$&nbsp; or with&nbsp; $\rm M$&nbsp; last time &nbsp;&#8658;&nbsp; further factor&nbsp; $1/2$:
 
:$$p_{\rm NM} \hspace{0.1cm} =  \hspace{0.1cm} {\rm Pr}( c_1 = \mathbf{N}) \cdot {\rm Pr}(c_2 = \mathbf{M}\hspace{0.05cm} | c_1 = \mathbf{N}) = 1/2 \cdot 1/2 \cdot 1/2= 1/8 \hspace{0.05cm},$$
 
:$$p_{\rm NM} \hspace{0.1cm} =  \hspace{0.1cm} {\rm Pr}( c_1 = \mathbf{N}) \cdot {\rm Pr}(c_2 = \mathbf{M}\hspace{0.05cm} | c_1 = \mathbf{N}) = 1/2 \cdot 1/2 \cdot 1/2= 1/8 \hspace{0.05cm},$$
 
:$$ p_{\rm NP} \hspace{0.1cm} =  \hspace{0.1cm} {\rm Pr}( c_1 = \mathbf{N}) \cdot {\rm Pr}(c_2 = \mathbf{P}\hspace{0.05cm} | c_1 = \mathbf{N}) = 1/2 \cdot 1/2 \cdot 1/2 = 1/8 \hspace{0.05cm}.$$
 
:$$ p_{\rm NP} \hspace{0.1cm} =  \hspace{0.1cm} {\rm Pr}( c_1 = \mathbf{N}) \cdot {\rm Pr}(c_2 = \mathbf{P}\hspace{0.05cm} | c_1 = \mathbf{N}) = 1/2 \cdot 1/2 \cdot 1/2 = 1/8 \hspace{0.05cm}.$$
  
Damit ist die Entropie $H_2'$ eines Zweiertupels bzw. dessen Entropie $H_2$ pro Codesymbol:
+
Thus the entropy&nbsp; $H_2'$&nbsp; of a two-tuple or its entropy&nbsp; $H_2$&nbsp; per code symbol:
:$$H_2'  = \frac{1}{4} \cdot {\rm log}_2\hspace{0.1cm} (4) +  
+
:$$H_2\hspace{0.01cm}'  = \frac{1}{4} \cdot {\rm log}_2\hspace{0.1cm} (4) +  
  6 \cdot \frac{1}{8} \cdot {\rm log}_2\hspace{0.1cm}(8)  \hspace{0.15cm} {= 2.75 \,{\rm bit/Zweiertupel}}\hspace{0.3cm}
+
  6 \cdot \frac{1}{8} \cdot {\rm log}_2\hspace{0.1cm}(8)  \hspace{0.15cm} {= 2.75 \,{\text{bit/two-tuple} }}\hspace{0.3cm}
\Rightarrow\hspace{0.3cm} H_2  = \frac{H_2'}{2}  \hspace{0.15cm} \underline {= 1.375 \,{\rm bit/Symbol}}  
+
\Rightarrow\hspace{0.3cm} H_2  = \frac{H_2\hspace{0.01cm}'}{2}  \hspace{0.15cm} \underline {= 1.375 \,{\rm bit/symbol}}  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
'''(4)'''&nbsp; Die Berechnung von $H_3$ erfolgt ähnlich wie bei der letzten Teilaufgabe für $H_2$ , nur müssen nun $3^3 = 27$ Verbundwahrscheinlichkeiten ermittelt werden:
+
 
:$$p_{\rm NNN} = 1/8\hspace{0.4cm}{\rm (nur \hspace{0.15cm}einmal)}
+
'''(4)'''&nbsp; The calculation of&nbsp; $H_3$&nbsp; is similar to the last subtask for&nbsp; $H_2$, except that now&nbsp; $3^3 = 27$&nbsp; composite probabilities must be determined:
 +
:$$p_{\rm NNN} = 1/8\hspace{0.4cm}{\rm (nur \hspace{0.15cm}only once)}
 
  \hspace{0.05cm},$$
 
  \hspace{0.05cm},$$
:$$p_{\rm NMM} = p_{\rm NPP} = p_{\rm MNM}  = ... = 0 \hspace{0.4cm}{\rm (ingesamt \hspace{0.15cm}12)}
+
:$$p_{\rm NMM} = p_{\rm NPP} = p_{\rm MNM}  = ... = 0 \hspace{0.4cm}{\rm (total \hspace{0.15cm}12)}
 
  \hspace{0.05cm},$$
 
  \hspace{0.05cm},$$
:$$p_{\rm NNM} = p_{\rm NNP} = p_{\rm PMP}  = ... = 1/16 \hspace{0.4cm}{\rm (ingesamt \hspace{0.15cm}14)}$$
+
:$$p_{\rm NNM} = p_{\rm NNP} = p_{\rm PMP}  = ... = 1/16 \hspace{0.4cm}{\rm (total \hspace{0.15cm}14)}$$
 
:$$\Rightarrow\hspace{0.3cm} H_3  = \frac{1}{3} \cdot \left [  
 
:$$\Rightarrow\hspace{0.3cm} H_3  = \frac{1}{3} \cdot \left [  
 
  \frac{1}{8} \cdot {\rm log}_2\hspace{0.1cm} (8) +  
 
  \frac{1}{8} \cdot {\rm log}_2\hspace{0.1cm} (8) +  
 
  14 \cdot \frac{1}{16} \cdot {\rm log}_2\hspace{0.1cm}(16)
 
  14 \cdot \frac{1}{16} \cdot {\rm log}_2\hspace{0.1cm}(16)
  \right ]  \hspace{0.15cm} \underline {= 1.292 \,{\rm bit/Symbol}}  
+
  \right ]  \hspace{0.15cm} \underline {= 1.292 \,{\rm bit/symbol}}  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
'''(5)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 2</u>. Falsch ist dagegen die Aussage 3, da $H_4$ auf jeden Fall kleiner sein muss als $H_3 = 1.292 \; \rm bit/Symbol$.
+
 
 +
'''(5)'''&nbsp; Correct are the <u>proposed solutions 1 and 2</u>.  
 +
*On the other hand, statement 3 is wrong, because&nbsp; $H_4$&nbsp; must in any case be smaller than&nbsp; $H_3 = 1.292 \; \rm bit/symbol$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Informationstheorie|^1.2 Nachrichtenquellen mit Gedächtnis^]]
+
[[Category:Information Theory: Exercises|^1.2 Sources with Memory^]]

Latest revision as of 13:08, 16 August 2021

Binary source signal (top) and
ternary encoder signal (bottom)

The graph above shows the binary source signal  $q(t)$, which can also be described by the symbol sequence  $\langle q_\nu \rangle$  with  $q_\nu \in \{ {\rm L}, {\rm H} \}$ .  In the entire task,  $p_{\rm L} = p_{\rm H} =0.5$ applies.

The coded signal  $c(t)$  and the corresponding symbol sequence  $\langle c_\nu \rangle$  with  $c_\nu \in \{{\rm P}, {\rm N}, {\rm M} \}$  results from the AMI coding ("Alternate Mark Inversion") according to the following rule:

  • The binary symbol  $\rm L$  ⇒  "Low"is always represented by the ternary symbol  $\rm N$  ⇒  "German: Null" ⇒ "Zero".
  • The binary symbol  $\rm H$  ⇒  "High"  is also encoded deterministically but alternately (hence the name "Alternate Mark Inversion") by the symbols  $\rm P$  ⇒  "Plus"  and  $\rm M$  ⇒  "Minus".


In this task, the entropy approximations for the AMI coded signal are to be calculated:

  • Approximation  $H_1$  refers only to the symbol probabilities  $p_{\rm P}$,  $p_{\rm N}$  and  $p_{\rm M}$.
  • The  $k$–th is the entropy approximation  $(k = 2, 3, \text{...} \ )$  can be determined according to the following equation:
$$H_k = \frac{1}{k} \cdot \sum_{i=1}^{3^k} p_i^{(k)} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{p_i^{(k)}} \hspace{0.5cm}({\rm Einheit\hspace{-0.1cm}: \hspace{0.1cm}bit/Symbol}) \hspace{0.05cm}.$$
Here,  $p_i^{(k)}$  the  $i$–th composite probability of a  $k$–tuple.





Hints:

  • This task belongs to the chapter  Discrete Sources with Memory.
  • Reference is made in particular to the page  The Entropy of the AMI code.
  • In  Exercise 1.4Z  the actual entropy of the encoded sequence  $\langle c_\nu \rangle$  is calculated to  $H = 1 \; \rm bit/symbol$.
  • The following relations between the units are to be expected:   $H \le$ ...$ \le H_3 \le H_2 \le H_1 \le H_0 \hspace{0.05cm}.$


Questions

1

What is the decision content of the AMI code?

$H_0 \ = \ $

$\ \rm bit/symbol$

2

Calculate the first entropy approximation of the AMI code.

$H_1 \ = \ $

$\ \rm bit/symbol$

3

What is the entropy approximation  $H_2$, based on two-tuples?

$H_2 \ = \ $

$\ \rm bit/symbol$

4

What is the value of the entropy approximation  $H_3$, based on three-tuples?

$H_3 \ = \ $

$\ \rm bit/symbol$

5

Which statements apply to the entropy approximation  $H_4$?

It must be averaged over  $3^4 = 81$  summands.
  $1 \; {\rm bit/symbol} < H_4 < H_3$ is valid.
After a long calculation you get  $H_4 = 1.333 \; {\rm bit/symbol}$.


Solution

(1)  The symbol set size is  $M = 3$.  This gives the decision content with the  logarithm  to the base $2$   ⇒   $\log_2$:

$$H_0 = {\rm log}_2\hspace{0.1cm} M = {\rm log}_2\hspace{0.1cm} (3) \hspace{0.15cm} \underline { = 1.585 \,{\rm bit/symbol}} \hspace{0.05cm}.$$


(2)  The first-order entropy approximation takes into account only the symbol probabilities  $p_{\rm P}$,  $p_{\rm N}$  and  $p_{\rm M}$ 
and not the statistical bindings within the code sequence  $\langle c_\nu \rangle$.  Thus one obtains:

$$p_{\rm N} = p_{\rm L} = 1/2\hspace{0.05cm},\hspace{0.2cm}p_{\rm P} = p_{\rm M} = p_{\rm H}/2 = 1/4 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} H_1 = \frac{1}{2} \cdot {\rm log}_2\hspace{0.1cm} (2) + 2 \cdot \frac{1}{4} \cdot {\rm log}_2\hspace{0.1cm}(4) \hspace{0.15cm} \underline {= 1.5 \,{\rm bit/Symbol}} \hspace{0.05cm}.$$


(3)  First, the  $M^2 = 9$  composite probabilities of two-tuples have to be determined here, in the following marked by the first two code symbols  $c_1$  and  $c_2$:

  • Since in the AMI code neither  $\rm P$  can follow  $\rm P$  nor  $\rm M$  can follow  $\rm M$ ,  $p_{\rm PP} = p_{\rm MM} =0$.
  • For the composite probabilities under the condition  $c_2 = \rm N$  applies:
$$p_{\rm NN} \hspace{0.1cm} = \hspace{0.1cm} {\rm Pr}( c_1 = \mathbf{N}) \cdot {\rm Pr}(c_2 = \mathbf{N}\hspace{0.05cm} | c_1 = \mathbf{N}) = 1/2 \cdot 1/2 = 1/4 \hspace{0.05cm},$$
$$ p_{\rm MN} \hspace{0.1cm} = \hspace{0.1cm} {\rm Pr}( c_1 = \mathbf{M}) \cdot {\rm Pr}(c_2 = \mathbf{N}\hspace{0.05cm} | c_1 = \mathbf{M}) = 1/4 \cdot 1/2 = 1/8 \hspace{0.05cm},$$
$$ p_{\rm PN} \hspace{0.1cm} = \hspace{0.1cm} {\rm Pr}( c_1 = \mathbf{P}) \cdot {\rm Pr}(c_2 = \mathbf{N}\hspace{0.05cm} | c_1 = \mathbf{P}) = 1/4 \cdot 1/2 = 1/8 \hspace{0.05cm}.$$
  • The composite probabilities of the two-tuples  $\rm PM$  and  $\rm MP$  are:
$$p_{\rm PM} \hspace{0.1cm} = \hspace{0.1cm} {\rm Pr}( c_1 = \mathbf{P}) \cdot {\rm Pr}(c_2 = \mathbf{M}\hspace{0.05cm} | c_1 = \mathbf{P}) = 1/4 \cdot 1/2 = 1/8 \hspace{0.05cm},$$
$$ p_{\rm MP} \hspace{0.1cm} = \hspace{0.1cm} {\rm Pr}( c_1 = \mathbf{M}) \cdot {\rm Pr}(c_2 = \mathbf{P}\hspace{0.05cm} | c_1 = \mathbf{M}) = 1/4 \cdot 1/2 = 1/8 \hspace{0.05cm}.$$
  • For the remaining probabilities, it must also be taken into account whether the binary symbol  $\rm H$  was encoded with  $\rm P$  or with  $\rm M$  last time  ⇒  further factor  $1/2$:
$$p_{\rm NM} \hspace{0.1cm} = \hspace{0.1cm} {\rm Pr}( c_1 = \mathbf{N}) \cdot {\rm Pr}(c_2 = \mathbf{M}\hspace{0.05cm} | c_1 = \mathbf{N}) = 1/2 \cdot 1/2 \cdot 1/2= 1/8 \hspace{0.05cm},$$
$$ p_{\rm NP} \hspace{0.1cm} = \hspace{0.1cm} {\rm Pr}( c_1 = \mathbf{N}) \cdot {\rm Pr}(c_2 = \mathbf{P}\hspace{0.05cm} | c_1 = \mathbf{N}) = 1/2 \cdot 1/2 \cdot 1/2 = 1/8 \hspace{0.05cm}.$$

Thus the entropy  $H_2'$  of a two-tuple or its entropy  $H_2$  per code symbol:

$$H_2\hspace{0.01cm}' = \frac{1}{4} \cdot {\rm log}_2\hspace{0.1cm} (4) + 6 \cdot \frac{1}{8} \cdot {\rm log}_2\hspace{0.1cm}(8) \hspace{0.15cm} {= 2.75 \,{\text{bit/two-tuple} }}\hspace{0.3cm} \Rightarrow\hspace{0.3cm} H_2 = \frac{H_2\hspace{0.01cm}'}{2} \hspace{0.15cm} \underline {= 1.375 \,{\rm bit/symbol}} \hspace{0.05cm}.$$


(4)  The calculation of  $H_3$  is similar to the last subtask for  $H_2$, except that now  $3^3 = 27$  composite probabilities must be determined:

$$p_{\rm NNN} = 1/8\hspace{0.4cm}{\rm (nur \hspace{0.15cm}only once)} \hspace{0.05cm},$$
$$p_{\rm NMM} = p_{\rm NPP} = p_{\rm MNM} = ... = 0 \hspace{0.4cm}{\rm (total \hspace{0.15cm}12)} \hspace{0.05cm},$$
$$p_{\rm NNM} = p_{\rm NNP} = p_{\rm PMP} = ... = 1/16 \hspace{0.4cm}{\rm (total \hspace{0.15cm}14)}$$
$$\Rightarrow\hspace{0.3cm} H_3 = \frac{1}{3} \cdot \left [ \frac{1}{8} \cdot {\rm log}_2\hspace{0.1cm} (8) + 14 \cdot \frac{1}{16} \cdot {\rm log}_2\hspace{0.1cm}(16) \right ] \hspace{0.15cm} \underline {= 1.292 \,{\rm bit/symbol}} \hspace{0.05cm}.$$


(5)  Correct are the proposed solutions 1 and 2.

  • On the other hand, statement 3 is wrong, because  $H_4$  must in any case be smaller than  $H_3 = 1.292 \; \rm bit/symbol$.