Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 2.10: SSB-AM with Channel Distortions"

From LNTwww
m
 
(22 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Einseitenbandmodulation
+
{{quiz-Header|Buchseite=Modulation_Methods/Single-Sideband_Modulation
 
}}
 
}}
  
[[File:P_ID1045__Mod_A_2_9.png|right|frame|Sendespektrum des analytischen Signals und Kanalfrequenzgang]]
+
[[File:P_ID1045__Mod_A_2_9.png|right|frame|Transmission spectrum of the analytical signal and channel frequency response]]
Wir betrachten die Übertragung des Quellensignals
+
Let us consider the transmission of the source signal
 
:q(t)=2Vcos(2πf2t)+2Vcos(2πf4t)
 
:q(t)=2Vcos(2πf2t)+2Vcos(2πf4t)
über einen Gauß–Bandpasskanal mit der Mittenfrequenz  fM=48 kHz. Diese unterscheidet sich von der bei der Modulation verwendeten Trägerfrequenz  fT=50 kHz. Die Frequenzen  f2  und  f4  stehen als Abkürzungen für  f=2 kHz  bzw.  f=4 kHz.
+
over a Gaussian bandpass channel with center frequency   fM=48 kHz. 
 +
*This is different from the carrier frequency  fT=50 kHz  used in modulation. 
 +
*The frequencies  f2  and  f4  stand for   f=2 kHz  und  f=4 kHz,  resp.
  
Untersucht werden sollen folgende Modulationsverfahren mit dem jeweiligen Spektrum  S+(f) des analytischen Signals entsprechend der oberen Grafik:
 
* ZSB–AM (alle vier Spektrallinien bei  46 kHz, 48 kHz, 52 kHz und 54 kHz),
 
*OSB–AM (nur blaue Spektrallinien bei  52 kHz und 54 kHz),
 
* USB–AM (nur grüne Spektrallinien bei  46 kHz und 48 kHz).
 
  
 +
We will now investigate the following modulation methods with respect to the spectrum  S+(f)  of the analytical signal as shown in the upper graph:
 +
* DSB–AM  (all four spectral lines at  46 kHz,  48 kHz,  52 kHz  and  54 kHz)   ⇒   "double-sideband" ,
 +
*USB–AM  (only blue spectral lines at  52 kHz  and  54 kHz)  ⇒   "upper-sideband",
 +
*LSB–AM  (only green spectral lines at  46 kHz  and  48 kHz)  ⇒   "lower-sideband".
  
Verwendet wird jeweils ein Synchrondemodulator, der zunächst das empfängerseitige Trägersignal
 
:zE(t)={2z(t)4z(t)beibeiZSB,OSB,USB
 
multiplikativ zusetzt und anschließend die Anteile um die doppelte Trägerfrequenz vollständig unterdrückt. Bei idealem Kanal  HK(f)=1  würde somit in allen Fällen  v(t)=q(t)  gelten.
 
  
Der hier betrachtete Gaußkanal ist durch folgende Stützwerte gegeben:
+
In each case,   a synchronous demodulator is used to first convert the receiver-side carrier signal
:$$ H_{\rm K}(f = 46\,{\rm kHz}) = 0.968,\hspace{0.3cm}H_{\rm K}(f = 48\,{\rm kHz}) = 1.000,$$
+
:zE(t)={2z(t)4z(t)forforDSB,USB,LSB
:$$ H_{\rm K}(f = 52\,{\rm kHz}) = 0.882,\hspace{0.3cm}H_{\rm K}(f = 54\,{\rm kHz}) = 0.754\hspace{0.05cm}.$$
+
by multiplication and then completely suppresses the components at twice the carrier frequency.   With an ideal channel  HK(f)=1 ,  v(t)=q(t)  would hold in all cases.
Schreiben Sie das Sinkensignal jeweils in der Form
+
 
 +
The Gaussian channel considered here is given by the following auxiliary values:
 +
:$$ H_{\rm K}(f = 46\ {\rm kHz}) = 0.968,\hspace{0.3cm}H_{\rm K}(f = 48\ {\rm kHz}) = 1.000,\hspace{0.3cm}
 +
H_{\rm K}(f = 52\ {\rm kHz}) = 0.882,\hspace{0.3cm}H_{\rm K}(f = 54\ {\rm kHz}) = 0.754\hspace{0.05cm}.$$
 +
In each case,  write the sink signal in the form
 
:v(t)=A2cos(2πf2(tτ2))+A4cos(2πf4(tτ4)).
 
:v(t)=A2cos(2πf2(tτ2))+A4cos(2πf4(tτ4)).
Alle Berechnungen sind sowohl für eine perfekte Phasensynchronisation  (Δϕ_{\rm T} = 0)  als auch für einen Phasenversatz von  Δϕ_{\rm T} = 30^\circ  durchzuführen. Dieser liegt zum Beispiel dann vor, wenn das sendeseitige Trägersignal cosinusförmig verläuft und für das empfangsseitige Trägersignal gilt:
+
All calculations are to be carried out for both a perfect phase synchronization  (Δϕ_{\rm T} = 0)  as well as for a phase offset of  Δϕ_{\rm T} = 30^\circ.  This is present,  for example,  if the transmit-side carrier signal is cosine-shaped and the receiver-side carrier is:
 
: z_{\rm E} (t) = A_{\rm E} \cdot \cos(\omega_{\rm T} \cdot t - 30^\circ) .
 
: z_{\rm E} (t) = A_{\rm E} \cdot \cos(\omega_{\rm T} \cdot t - 30^\circ) .
  
Line 29: Line 32:
  
  
 
+
Hints:  
''Hinweise:''
+
*This exercise belongs to the chapter  [[Modulation_Methods/Single-Sideband_Modulation|Single-Sideband Modulation]].
*Die Aufgabe gehört zum  Kapitel  [[Modulationsverfahren/Einseitenbandmodulation|Einseitenbandmodulation]].
+
*Reference will also be made to the chapter   [[Modulation_Methods/Synchronous_Demodulation|Synchronous Demodulation]].
*Bezug genommen wird aber auch auf das Kapitel   [[Modulationsverfahren/Synchrondemodulation|Synchrondemodulation]].
 
 
   
 
   
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Berechnen Sie die Amplituden bei <u>ZSB–AM</u> und <u>perfekter Synchronisation</u> &nbsp;($Δϕ_{\rm T} = 0$).
+
{Calculate the amplitudes for &nbsp; <u>double-sideband AM</u>&nbsp; and&nbsp; <u>perfect synchronization</u> &nbsp;$(Δϕ_{\rm T} = 0)$.
 
|type="{}"}
 
|type="{}"}
 
A_2 \ = \ { 1.882 3% } \ \rm V
 
A_2 \ = \ { 1.882 3% } \ \rm V
 
A_4 \ = \ { 1.722 3% } \ \rm V
 
A_4 \ = \ { 1.722 3% } \ \rm V
  
{Wie lauten die Größen &nbsp;A_2&nbsp; und &nbsp;τ_2&nbsp; bei <u>ZSB–AM</u> und <u>Phasenversatz</u> &nbsp;($Δϕ_{\rm T} = 30^\circ$)?
+
{What are the values for &nbsp;A_2&nbsp; and &nbsp;τ_2&nbsp; for&nbsp; <u>double-sideband AM</u>&nbsp; and a&nbsp; <u>phase offset</u> &nbsp;$(Δϕ_{\rm T} = 30^\circ)$?
 
|type="{}"}
 
|type="{}"}
 
A_2 \ = \ { 1.63 3% } \ \rm V  
 
A_2 \ = \ { 1.63 3% } \ \rm V  
τ_2 \hspace{0.25cm} = \ { 0. } $\ \rm μs$
+
τ_2 \hspace{0.25cm} = \ { 0. } $\ \rm &micro; s$
  
{Berechnen Sie die Amplituden &nbsp;A_2&nbsp; und &nbsp;A_4&nbsp; bei <u>OSB–AM</u> und <u>perfekter Synchronisation</u> &nbsp;($Δϕ_{\rm T} = 0$).
+
{Calculate the amplitudes&nbsp;A_2&nbsp; and &nbsp;A_4&nbsp; for&nbsp; <u>upper-sideband AM</u>&nbsp; and&nbsp; <u>perfect synchronization</u>&nbsp; $(Δϕ_{\rm T} = 0)$.
 
|type="{}"}
 
|type="{}"}
 
A_2 \ = \ { 1.764 3% } \ \rm V
 
A_2 \ = \ { 1.764 3% } \ \rm V
 
A_4 \ = \ { 1.508 3% } \ \rm V
 
A_4 \ = \ { 1.508 3% } \ \rm V
  
{Geben Sie die Signalsamplituden für <u>USB–AM</u> und <u>perfekter Synchronisation</u> &nbsp;($Δϕ_{\rm T} = 0$) an.
+
{Give the signal amplitudes for &nbsp; <u>lower-sideband AM</u>&nbsp; and&nbsp; <u>perfect synchronization</u> &nbsp;$(Δϕ_{\rm T} = 0)$.
 
|type="{}"}
 
|type="{}"}
 
A_2 \ = \ { 2 3% } \ \rm V
 
A_2 \ = \ { 2 3% } \ \rm V
 
A_4 \ = \ { 1.936 3% } \ \rm V
 
A_4 \ = \ { 1.936 3% } \ \rm V
  
{Wie lauten dagegen die Signalparameter bei <u>USB–AM</u> und <u>Phasenversatz</u> &nbsp;($Δϕ_{\rm T} = 30^\circ$)?
+
{In contrast,&nbsp; what are the signal parameters for&nbsp; <u>lower-sideband AM</u>&nbsp; and a&nbsp; <u>phase offset</u> &nbsp;$(Δϕ_{\rm T} = 30^\circ)$?
 
|type="{}"}
 
|type="{}"}
 
A_2 \ = \   { 2 3% } \ \rm V
 
A_2 \ = \   { 2 3% } \ \rm V
τ_2 \hspace{0.25cm} = \   { 41.6 3% } $\ \rm μs$
+
τ_2 \hspace{0.25cm} = \   { 41.6 3% } $\ \rm &micro; s$
 
A_4 \ = \ { 1.936 3% } \ \rm V
 
A_4 \ = \ { 1.936 3% } \ \rm V
τ_4 \hspace{0.25cm} = \ { 20.8 3% } $\ \rm μs$
+
τ_4 \hspace{0.25cm} = \ { 20.8 3% } $\ \rm &micro;  s$
  
{Welche dieser Aussagen sind nach Ihren Ergebnissen zutreffend? Hierbei sollen unter „Kanalverzerrungen” stets Dämpfungsverzerrungen verstanden werden.
+
{Which of these statements are true given your results?&nbsp; Here,&nbsp; "channel distortions"&nbsp; should always be understood as a kind of attenuation distortion.  
 
|type="[]"}
 
|type="[]"}
+ Kanalverzerrung führt bei ZSB-AM zu Dämpfungsverzerrungen.
+
+ In&nbsp; "double-sideband AM",&nbsp; each channel distortion leads to attenuation distortions.
- Kanalverzerrung führt bei ESB–AM zu Phasenverzerrungen.
+
- In&nbsp; "single-sideband AM",&nbsp; each channel distortion leads to phase distortions.
- Ein Phasenversatz führt bei ZSB–AM zu Dämpfungsverzerrungen.
+
- In&nbsp; "double-sideband AM",&nbsp; a phase offset leads to attenuation distortions.
+ Ein Phasenversatz führt bei ESB–AM zu Phasenverzerrungen.
+
+ In&nbsp; "single-sideband AM",&nbsp; a phase offset leads to phase distortions.
  
  
Line 79: Line 81:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Bei der ZSB–AM sind folgende Dämpfungsfaktoren zu berücksichtigen:
+
'''(1)'''&nbsp; For DSB–AM,&nbsp; the following attenuation factors are to be taken into account:
 
:\alpha_2  =  {1}/{2} \cdot \left[ H_{\rm K}(f = 48\,{\rm kHz}) + H_{\rm K}(f = 52\,{\rm kHz})\right] = 0.981,  
 
:\alpha_2  =  {1}/{2} \cdot \left[ H_{\rm K}(f = 48\,{\rm kHz}) + H_{\rm K}(f = 52\,{\rm kHz})\right] = 0.981,  
 
:\alpha_4  =  {1}{2} \cdot \left[ H_{\rm K}(f = 46\,{\rm kHz}) + H_{\rm K}(f = 54\,{\rm kHz})\right] = 0.861\hspace{0.05cm}.
 
:\alpha_4  =  {1}{2} \cdot \left[ H_{\rm K}(f = 46\,{\rm kHz}) + H_{\rm K}(f = 54\,{\rm kHz})\right] = 0.861\hspace{0.05cm}.
Damit ergeben sich die Amplituden A_2\hspace{0.15cm}\underline{ = 1.882 \ \rm V} und A_4\hspace{0.15cm}\underline{ = 1.722 \ \rm V}
+
*Thus,&nbsp; we get the amplitudes &nbsp; A_2\hspace{0.15cm}\underline{ = 1.882 \ \rm V}&nbsp; and&nbsp; A_4\hspace{0.15cm}\underline{ = 1.722 \ \rm V}.
 +
 
  
  
'''(2)'''&nbsp; Bei ZSB führt ein Phasenversatz zwischen den Trägerfrequenzen von Sender und Empfänger nur zu einer für alle Frequenzen gleichen Dämpfung:
+
'''(2)'''&nbsp; For DSB-AM,&nbsp; a phase offset between the carrier frequencies at transmitter and receiver, resp.,&nbsp; leads to one and the same attenuation for all frequencies:
 
:A_2  =  \cos (30^\circ) \cdot 1.882\,{\rm V} \hspace{0.15cm}\underline {= 1.630\,{\rm V}},  
 
:A_2  =  \cos (30^\circ) \cdot 1.882\,{\rm V} \hspace{0.15cm}\underline {= 1.630\,{\rm V}},  
 
:A_4  =  \cos (30^\circ) \cdot 1.722\,{\rm V} = 1.491\,{\rm V}\hspace{0.05cm}.
 
:A_4  =  \cos (30^\circ) \cdot 1.722\,{\rm V} = 1.491\,{\rm V}\hspace{0.05cm}.
Die Laufzeiten sind τ_2\hspace{0.15cm}\underline {= 0} und τ_4 = 0.
+
*The delay times are &nbsp; τ_2\hspace{0.15cm}\underline {= 0}&nbsp; and&nbsp; τ_4 = 0.
  
  
'''(3)'''&nbsp; Bei OSB–AM wird der Dämpfungsfaktor α_2 allein von H_{\rm K}(f = 52\ \rm  kHz) bestimmt. Da der prinzipielle Amplitudenverlust der OSB um den Faktor 2 durch eine größere Trägeramplitude ausgeglichen wird, gilt:
+
 
 +
'''(3)'''&nbsp; For USB–AM,&nbsp; the attenuation factor &nbsp; α_2&nbsp; is only determined by &nbsp; H_{\rm K}(f = 52\ \rm  kHz).  
 +
*Since the principal USB amplitude loss by a factor of &nbsp; 2&nbsp; is compensated for by a larger carrier amplitude,&nbsp; the following holds:
 
:A_2  =  0.882 \cdot 2\,{\rm V}\hspace{0.15cm}\underline {= 1.764\,{\rm V}},  
 
:A_2  =  0.882 \cdot 2\,{\rm V}\hspace{0.15cm}\underline {= 1.764\,{\rm V}},  
 
:A_4  =  0.754 \cdot 2\,{\rm V}\hspace{0.15cm}\underline {= 1.508\,{\rm V}} \hspace{0.05cm}.
 
:A_4  =  0.754 \cdot 2\,{\rm V}\hspace{0.15cm}\underline {= 1.508\,{\rm V}} \hspace{0.05cm}.
  
  
'''(4)'''&nbsp; Analog zur Lösung der Teilaufgabe (3) erhält man hier:
+
 
 +
'''(4)'''&nbsp; Analogous to the solution in subtask&nbsp; '''(3)''',&nbsp; we obtain here:
 
: A_2  =  H_{\rm K}(f = 48\,{\rm kHz}) \cdot 2\,{\rm V}\hspace{0.15cm}\underline {= 2\,{\rm V}},  
 
: A_2  =  H_{\rm K}(f = 48\,{\rm kHz}) \cdot 2\,{\rm V}\hspace{0.15cm}\underline {= 2\,{\rm V}},  
 
:A_4  =  H_{\rm K}(f = 46\,{\rm kHz}) \cdot 2\,{\rm V}\hspace{0.15cm}\underline {= 1.936\,{\rm V}} \hspace{0.05cm}.
 
:A_4  =  H_{\rm K}(f = 46\,{\rm kHz}) \cdot 2\,{\rm V}\hspace{0.15cm}\underline {= 1.936\,{\rm V}} \hspace{0.05cm}.
  
  
'''(5)'''&nbsp; Bei der USB–AM lautet das Empfangssignal:
+
 
 +
'''(5)'''&nbsp; For LSB–AM,&nbsp; the received signal is:
 
:r(t) = 1\,{\rm V} \cdot \cos( \omega_{\rm 48} \cdot t) + 0.968\,{\rm V} \cdot \cos( \omega_{\rm 46} \cdot t)\hspace{0.05cm}.
 
:r(t) = 1\,{\rm V} \cdot \cos( \omega_{\rm 48} \cdot t) + 0.968\,{\rm V} \cdot \cos( \omega_{\rm 46} \cdot t)\hspace{0.05cm}.
Durch Multiplikation mit dem empfangsseitigen Trägersignal z_{\rm E}(t) = 4 \cdot \cos( \omega_{\rm 50} \cdot t - \Delta \phi_{\rm T}) erhält man nach Anwendung des trigonometrischen Additionstheorems:
+
*By multiplication with the receiver-side carrier signal &nbsp; z_{\rm E}(t) = 4 \cdot \cos( \omega_{\rm 50} \cdot t - \Delta \phi_{\rm T}),&nbsp; applying the trigonometric addition theorem gives:
 
:$$v(t) = r(t) \cdot z_{\rm E}(t) =  \hspace{0.15cm}\underline { 2.000\,{\rm V}} \cdot \cos( \omega_{\rm 2} \cdot t - \Delta \phi_{\rm T})+\hspace{0.15cm}\underline { 1.936\,{\rm V}} \cdot \cos( \omega_{\rm 4} \cdot t - \Delta \phi_{\rm T})
 
:$$v(t) = r(t) \cdot z_{\rm E}(t) =  \hspace{0.15cm}\underline { 2.000\,{\rm V}} \cdot \cos( \omega_{\rm 2} \cdot t - \Delta \phi_{\rm T})+\hspace{0.15cm}\underline { 1.936\,{\rm V}} \cdot \cos( \omega_{\rm 4} \cdot t - \Delta \phi_{\rm T})
  +  {\rm Anteile \hspace{0.15cm}um \hspace{0.15cm}} 2f_{\rm T}\hspace{0.05cm}$$
+
  +  {\rm components \hspace{0.15cm}around\hspace{0.15cm}} 2f_{\rm T}\hspace{0.05cm}$$
 
: \Rightarrow \hspace{0.3cm} A_2 \hspace{0.15cm}\underline {= 2\,{\rm V}},\hspace{0.5cm} A_4 \hspace{0.15cm}\underline {= 1.936\,{\rm V}}.  
 
: \Rightarrow \hspace{0.3cm} A_2 \hspace{0.15cm}\underline {= 2\,{\rm V}},\hspace{0.5cm} A_4 \hspace{0.15cm}\underline {= 1.936\,{\rm V}}.  
Unter Berücksichtigung des nachfolgenden Tiefpassfilters kann hierfür auch geschrieben werden:
+
*Considering the downstream lowpass filter,&nbsp; this can also be written as:
 
: v(t) = A_2 \cdot \cos( \omega_{\rm 2} \cdot (t - \tau_2))+ A_4 \cdot \cos( \omega_{\rm 4} \cdot (t - \tau_4))\hspace{0.05cm}.
 
: v(t) = A_2 \cdot \cos( \omega_{\rm 2} \cdot (t - \tau_2))+ A_4 \cdot \cos( \omega_{\rm 4} \cdot (t - \tau_4))\hspace{0.05cm}.
Die Amplituden sind gegenüber Teilaufgabe d) unverändert. Für die Laufzeiten erhält man mit $Δϕ_T = π/6$:
+
*The amplitudes are unchanged compared to subtask&nbsp; '''(4)'''.&nbsp; For the delay times when &nbsp; $Δϕ_{\rm T} = π/6$,&nbsp; we get:
:$$ \tau_2  =  \frac {\Delta \phi_{\rm T}}{2 \pi \cdot f_2} = \frac {\pi /6}{2 \pi \cdot 2\,{\rm kHz}} \hspace{0.15cm}\underline {\approx 41.6\,{\rm \mu s}},\hspace{0.5cm} \tau_4  =  \frac {\Delta \phi_{\rm T}}{2 \pi \cdot f_4}= \frac {\tau_2}{2}\hspace{0.15cm}\underline {\approx 20.8\,{\rm \mu s}} \hspace{0.05cm}.$$
+
:$$ \tau_2  =  \frac {\Delta \phi_{\rm T}}{2 \pi \cdot f_2} = \frac {\pi /6}{2 \pi \cdot 2\,{\rm kHz}} \hspace{0.15cm}\underline {\approx 41.6\,{\rm &micro; s}},\hspace{0.5cm} \tau_4  =  \frac {\Delta \phi_{\rm T}}{2 \pi \cdot f_4}= \frac {\tau_2}{2}\hspace{0.15cm}\underline {\approx 20.8\,{\rm &micro; s}} \hspace{0.05cm}.$$
 +
 
  
  
'''(6)'''&nbsp; Richtig sind <u>der erste und der letzte Lösungsvorschlag</u>:  
+
'''(6)'''&nbsp; The&nbsp; <u>first and last answers</u>&nbsp; are correct:  
*Auch bei ESB führen Dämpfungsverzerrungen auf dem Kanal ausschließlich zu Dämpfungsverzerrungen bezüglich v(t).
+
*Also for&nbsp; "single-sideband AM"&nbsp;:&nbsp; Attenuation distortions on the channel lead only to attenuation distortions with respect to&nbsp; v(t).
* Phasenverzerrungen gibt es nur bei einem Demodulator mit Phasenversatz, wenn eine Einseitenbandmodulation Anwendung findet.  
+
*Phase distortions are only present for a demodulator with a phase offset in the case of&nbsp; "single-sideband AM".  
*Bei der ZSB–AM hätte ein solcher Phasenversatz keine Verzerrungen zur Folge, sondern lediglich eine frequenzunabhängige Dämpfung.
+
*For&nbsp; "double-sideband AM",&nbsp; such a phase offset would not result in any distortions,&nbsp; but only in frequency-independent attenuation.
*Zu Phasenverzerrungen bezüglich v(t) kommt es bei der ZSB–AM und der ESB–AM auch, wenn solche bereits auf dem Kanal auftreten.
+
*Phase distortions with respect to&nbsp; v(t)&nbsp; can also arise in&nbsp; "DSB–AM"&nbsp; and&nbsp; "SSB–AM",&nbsp; if these already occur on the channel.
  
  
Line 126: Line 134:
  
  
[[Category:Aufgaben zu Modulationsverfahren|^2.4  Einseitenbandmodulation^]]
+
[[Category:Modulation Methods: Exercises|^2.4  Single Sideband Amplitude Modulation^]]

Latest revision as of 17:55, 31 March 2022

Transmission spectrum of the analytical signal and channel frequency response

Let us consider the transmission of the source signal

q(t) = 2\,{\rm V} \cdot \cos(2 \pi f_2 t) + 2\,{\rm V} \cdot \cos(2 \pi f_4 t)

over a Gaussian bandpass channel with center frequency  f_{\rm M} = 48 \ \rm kHz

  • This is different from the carrier frequency  f_{\rm T} = 50 \ \rm kHz  used in modulation. 
  • The frequencies  f_2  and  f_4  stand for  f = 2 \ \rm kHz  und  f = 4 \ \rm kHz,  resp.


We will now investigate the following modulation methods with respect to the spectrum  S_+(f)  of the analytical signal as shown in the upper graph:

  • DSB–AM  (all four spectral lines at  46 \ \rm kHz48 \ \rm kHz52 \ \rm kHz  and  54 \ \rm kHz)   ⇒   "double-sideband" ,
  • USB–AM  (only blue spectral lines at  52 \ \rm kHz  and  54 \ \rm kHz)  ⇒   "upper-sideband",
  • LSB–AM  (only green spectral lines at  46 \ \rm kHz  and  48 \ \rm kHz)  ⇒   "lower-sideband".


In each case,  a synchronous demodulator is used to first convert the receiver-side carrier signal

z_{\rm E} (t) = \left\{ \begin{array}{c} 2 \cdot z(t) \\ 4 \cdot z(t) \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} {\rm DSB} \hspace{0.05cm}, \\ {\rm USB, LSB} \hspace{0.05cm} \\ \end{array}

by multiplication and then completely suppresses the components at twice the carrier frequency.  With an ideal channel  H_{\rm K}(f) = 1 ,  v(t) = q(t)  would hold in all cases.

The Gaussian channel considered here is given by the following auxiliary values:

H_{\rm K}(f = 46\ {\rm kHz}) = 0.968,\hspace{0.3cm}H_{\rm K}(f = 48\ {\rm kHz}) = 1.000,\hspace{0.3cm} H_{\rm K}(f = 52\ {\rm kHz}) = 0.882,\hspace{0.3cm}H_{\rm K}(f = 54\ {\rm kHz}) = 0.754\hspace{0.05cm}.

In each case,  write the sink signal in the form

v(t) = A_2 \cdot \cos(2 \pi f_2 \cdot (t - \tau_2)) + A_4 \cdot \cos(2 \pi f_4 \cdot (t - \tau_4))\hspace{0.05cm}.

All calculations are to be carried out for both a perfect phase synchronization  (Δϕ_{\rm T} = 0)  as well as for a phase offset of  Δϕ_{\rm T} = 30^\circ.  This is present,  for example,  if the transmit-side carrier signal is cosine-shaped and the receiver-side carrier is:

z_{\rm E} (t) = A_{\rm E} \cdot \cos(\omega_{\rm T} \cdot t - 30^\circ) .



Hints:



Questions

1

Calculate the amplitudes for   double-sideband AM  and  perfect synchronization  (Δϕ_{\rm T} = 0).

A_2 \ = \

\ \rm V
A_4 \ = \

\ \rm V

2

What are the values for  A_2  and  τ_2  for  double-sideband AM  and a  phase offset  (Δϕ_{\rm T} = 30^\circ)?

A_2 \ = \

\ \rm V
τ_2 \hspace{0.25cm} = \

\ \rm µ s

3

Calculate the amplitudes A_2  and  A_4  for  upper-sideband AM  and  perfect synchronization  (Δϕ_{\rm T} = 0).

A_2 \ = \

\ \rm V
A_4 \ = \

\ \rm V

4

Give the signal amplitudes for   lower-sideband AM  and  perfect synchronization  (Δϕ_{\rm T} = 0).

A_2 \ = \

\ \rm V
A_4 \ = \

\ \rm V

5

In contrast,  what are the signal parameters for  lower-sideband AM  and a  phase offset  (Δϕ_{\rm T} = 30^\circ)?

A_2 \ = \

\ \rm V
τ_2 \hspace{0.25cm} = \

\ \rm µ s
A_4 \ = \

\ \rm V
τ_4 \hspace{0.25cm} = \

\ \rm µ s

6

Which of these statements are true given your results?  Here,  "channel distortions"  should always be understood as a kind of attenuation distortion.

In  "double-sideband AM",  each channel distortion leads to attenuation distortions.
In  "single-sideband AM",  each channel distortion leads to phase distortions.
In  "double-sideband AM",  a phase offset leads to attenuation distortions.
In  "single-sideband AM",  a phase offset leads to phase distortions.


Solution

(1)  For DSB–AM,  the following attenuation factors are to be taken into account:

\alpha_2 = {1}/{2} \cdot \left[ H_{\rm K}(f = 48\,{\rm kHz}) + H_{\rm K}(f = 52\,{\rm kHz})\right] = 0.981,
\alpha_4 = {1}{2} \cdot \left[ H_{\rm K}(f = 46\,{\rm kHz}) + H_{\rm K}(f = 54\,{\rm kHz})\right] = 0.861\hspace{0.05cm}.
  • Thus,  we get the amplitudes   A_2\hspace{0.15cm}\underline{ = 1.882 \ \rm V}  and  A_4\hspace{0.15cm}\underline{ = 1.722 \ \rm V}.


(2)  For DSB-AM,  a phase offset between the carrier frequencies at transmitter and receiver, resp.,  leads to one and the same attenuation for all frequencies:

A_2 = \cos (30^\circ) \cdot 1.882\,{\rm V} \hspace{0.15cm}\underline {= 1.630\,{\rm V}},
A_4 = \cos (30^\circ) \cdot 1.722\,{\rm V} = 1.491\,{\rm V}\hspace{0.05cm}.
  • The delay times are   τ_2\hspace{0.15cm}\underline {= 0}  and  τ_4 = 0.


(3)  For USB–AM,  the attenuation factor   α_2  is only determined by   H_{\rm K}(f = 52\ \rm kHz).

  • Since the principal USB amplitude loss by a factor of   2  is compensated for by a larger carrier amplitude,  the following holds:
A_2 = 0.882 \cdot 2\,{\rm V}\hspace{0.15cm}\underline {= 1.764\,{\rm V}},
A_4 = 0.754 \cdot 2\,{\rm V}\hspace{0.15cm}\underline {= 1.508\,{\rm V}} \hspace{0.05cm}.


(4)  Analogous to the solution in subtask  (3),  we obtain here:

A_2 = H_{\rm K}(f = 48\,{\rm kHz}) \cdot 2\,{\rm V}\hspace{0.15cm}\underline {= 2\,{\rm V}},
A_4 = H_{\rm K}(f = 46\,{\rm kHz}) \cdot 2\,{\rm V}\hspace{0.15cm}\underline {= 1.936\,{\rm V}} \hspace{0.05cm}.


(5)  For LSB–AM,  the received signal is:

r(t) = 1\,{\rm V} \cdot \cos( \omega_{\rm 48} \cdot t) + 0.968\,{\rm V} \cdot \cos( \omega_{\rm 46} \cdot t)\hspace{0.05cm}.
  • By multiplication with the receiver-side carrier signal   z_{\rm E}(t) = 4 \cdot \cos( \omega_{\rm 50} \cdot t - \Delta \phi_{\rm T}),  applying the trigonometric addition theorem gives:
v(t) = r(t) \cdot z_{\rm E}(t) = \hspace{0.15cm}\underline { 2.000\,{\rm V}} \cdot \cos( \omega_{\rm 2} \cdot t - \Delta \phi_{\rm T})+\hspace{0.15cm}\underline { 1.936\,{\rm V}} \cdot \cos( \omega_{\rm 4} \cdot t - \Delta \phi_{\rm T}) + {\rm components \hspace{0.15cm}around\hspace{0.15cm}} 2f_{\rm T}\hspace{0.05cm}
\Rightarrow \hspace{0.3cm} A_2 \hspace{0.15cm}\underline {= 2\,{\rm V}},\hspace{0.5cm} A_4 \hspace{0.15cm}\underline {= 1.936\,{\rm V}}.
  • Considering the downstream lowpass filter,  this can also be written as:
v(t) = A_2 \cdot \cos( \omega_{\rm 2} \cdot (t - \tau_2))+ A_4 \cdot \cos( \omega_{\rm 4} \cdot (t - \tau_4))\hspace{0.05cm}.
  • The amplitudes are unchanged compared to subtask  (4).  For the delay times when   Δϕ_{\rm T} = π/6,  we get:
\tau_2 = \frac {\Delta \phi_{\rm T}}{2 \pi \cdot f_2} = \frac {\pi /6}{2 \pi \cdot 2\,{\rm kHz}} \hspace{0.15cm}\underline {\approx 41.6\,{\rm µ s}},\hspace{0.5cm} \tau_4 = \frac {\Delta \phi_{\rm T}}{2 \pi \cdot f_4}= \frac {\tau_2}{2}\hspace{0.15cm}\underline {\approx 20.8\,{\rm µ s}} \hspace{0.05cm}.


(6)  The  first and last answers  are correct:

  • Also for  "single-sideband AM" :  Attenuation distortions on the channel lead only to attenuation distortions with respect to  v(t).
  • Phase distortions are only present for a demodulator with a phase offset in the case of  "single-sideband AM".
  • For  "double-sideband AM",  such a phase offset would not result in any distortions,  but only in frequency-independent attenuation.
  • Phase distortions with respect to  v(t)  can also arise in  "DSB–AM"  and  "SSB–AM",  if these already occur on the channel.