Difference between revisions of "Aufgaben:Exercise 4.3: Natural and Discrete Sampling"

From LNTwww
 
(17 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Pulscodemodulation
+
{{quiz-Header|Buchseite=Modulation_Methods/Pulse_Code_Modulation
 
}}
 
}}
  
[[File:P_ID1615__Mod_A_4_3.png|right|frame|PCM-Signale bei <br>natürlicher und diskreter Abtastung]]
+
[[File:EN_Mod_A_4_3.png|right|frame|For natural and discrete sampling]]
Die ideale Abtastung lässt sich im Zeitbereich durch Multiplikation des analogen Quellensignals &nbsp;$q(t)$&nbsp; mit einem [[Signaldarstellung/Zeitdiskrete_Signaldarstellung#Diracpuls_im_Zeit-_und_im_Frequenzbereich|Diracpuls]] &nbsp;$p_δ(t)$&nbsp; beschreiben:
+
Ideal sampling can be described in time domain by multiplying the analog source signal &nbsp;$q(t)$&nbsp; by a&nbsp; [[Signal_Representation/Time_Discrete_Signal_Representation#Diracpulse_in_Time_and_in_Frequency_Domain|Dirac comb]]&nbsp; $p_δ(t)$&nbsp; :
 
:$$ q_{\rm A}(t) = p_{\delta}(t) \cdot q(t) \hspace{0.05cm}.$$
 
:$$ q_{\rm A}(t) = p_{\delta}(t) \cdot q(t) \hspace{0.05cm}.$$
Diracimpulse – unendlich schmal und unendlich hoch – und dementsprechend auch der Diracpuls &nbsp;$p_δ(t)$&nbsp; lassen sich in der Praxis jedoch nicht realisieren. Hier muss statt dessen vom Rechteckpuls &nbsp;$p_{\rm R}(t)$&nbsp; ausgegangen werden, wobei folgender Zusammenhang gilt:
+
Dirac impulses&nbsp; &ndash; infinitely narrow and infinitely high &ndash;&nbsp; and accordingly also the&nbsp; "Dirac comb" &nbsp;$p_δ(t)$&nbsp; cannot be realized in practice,&nbsp; however.&nbsp;
:$$ p_{\rm R}(t) = \left [ \frac{1}{T_{\rm A}} \cdot p_{\rm \delta}(t) \right ]\star g_{\rm R}(t)\hspace{0.9cm}\text{mit}\hspace{0.9cm}
+
 
 +
Here we must assume instead the&nbsp; "rectangular pulse comb" &nbsp;$p_{\rm R}(t)$&nbsp; where the following relation holds:
 +
:$$ p_{\rm R}(t) = \left [ \frac{1}{T_{\rm A}} \cdot p_{\rm \delta}(t) \right ]\star g_{\rm R}(t)\hspace{0.4cm}\text{with}\hspace{0.4cm}
 
  g_{\rm R}(t) = \left\{ \begin{array}{l} 1 \\ 1/2 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{f\ddot{u}r}} \\{\rm{f\ddot{u}r}} \\{\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{10}c} {\hspace{0.04cm}\left|\hspace{0.06cm} t \hspace{0.05cm} \right|} < T_{\rm R}/2\hspace{0.05cm}, \\ {\hspace{0.04cm}\left|\hspace{0.06cm} t \hspace{0.05cm} \right|} = T_{\rm R}/2\hspace{0.05cm}, \\ {\hspace{0.005cm}\left|\hspace{0.06cm} t \hspace{0.05cm} \right|} > T_{\rm R}/2\hspace{0.05cm}. \\ \end{array}$$
 
  g_{\rm R}(t) = \left\{ \begin{array}{l} 1 \\ 1/2 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{f\ddot{u}r}} \\{\rm{f\ddot{u}r}} \\{\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{10}c} {\hspace{0.04cm}\left|\hspace{0.06cm} t \hspace{0.05cm} \right|} < T_{\rm R}/2\hspace{0.05cm}, \\ {\hspace{0.04cm}\left|\hspace{0.06cm} t \hspace{0.05cm} \right|} = T_{\rm R}/2\hspace{0.05cm}, \\ {\hspace{0.005cm}\left|\hspace{0.06cm} t \hspace{0.05cm} \right|} > T_{\rm R}/2\hspace{0.05cm}. \\ \end{array}$$
Die Dauer &nbsp;$T_{\rm R}$&nbsp; eines Rechteckimpulses &nbsp;$g_{\rm R}(t)$&nbsp; sollte dabei (deutlich) kleiner sein als der Abstand $T_{\rm A}$ zweier Abtastwerte. In der Grafik ist dieses Verhältnis mit $T_{\rm R}/T_{\rm A} = 0.5$ sehr groß gewählt, um den Unterschied zwischen der ''natürlichen Abtastung'' und der ''diskreten Abtastung'' besonders deutlich werden zu lassen:
+
The duration &nbsp;$T_{\rm R}$&nbsp; of a rectangular pulse &nbsp;$g_{\rm R}(t)$&nbsp; should be (significantly) smaller than the distance $T_{\rm A}$ of two samples.  
* Bei natürlicher Abtastung ist das abgetastete Signal &nbsp;$q_{\rm A}(t)$&nbsp; gleich dem Produkt aus Rechteckpuls &nbsp;$p_{\rm R}(t)$&nbsp; und analogem Quellensignal &nbsp;$q(t)$:
+
 
 +
In the diagram this ratio is chosen with&nbsp; $T_{\rm R}/T_{\rm A} = 0.5$&nbsp;  very large to make the difference between&nbsp; "natural sampling"&nbsp; and&nbsp; "discrete sampling"&nbsp; especially clear:
 +
* In natural sampling,&nbsp; the sampled signal &nbsp;$q_{\rm A}(t)$&nbsp; is equal to the product of the rectangular pulse comb &nbsp;$p_{\rm R}(t)$&nbsp; and the analog source signal &nbsp;$q(t)$:
 
:$$q_{\rm A}(t) = p_{\rm R}(t) \cdot q(t) = \left [ \frac{1}{T_{\rm A}} \cdot p_{\rm \delta}(t) \star g_{\rm R}(t)\right ]\cdot q(t)\hspace{0.05cm}.$$
 
:$$q_{\rm A}(t) = p_{\rm R}(t) \cdot q(t) = \left [ \frac{1}{T_{\rm A}} \cdot p_{\rm \delta}(t) \star g_{\rm R}(t)\right ]\cdot q(t)\hspace{0.05cm}.$$
* Dagegen lautet die entsprechende Gleichung für die diskrete Abtastung:
+
* In contrast,&nbsp; the corresponding equation for discrete sampling is:
 
:$$ q_{\rm A}(t) = \left [ \frac{1}{T_{\rm A}} \cdot p_{\rm \delta}(t) \cdot q(t)\right ]\star g_{\rm R}(t)\hspace{0.05cm}.$$
 
:$$ q_{\rm A}(t) = \left [ \frac{1}{T_{\rm A}} \cdot p_{\rm \delta}(t) \cdot q(t)\right ]\star g_{\rm R}(t)\hspace{0.05cm}.$$
  
In der Grafik sind diese Signale in blau (natürliche Abtastung) bzw. grün (diskrete Abtastung) skizziert.
+
In the graph,&nbsp; these signals are sketched in blue&nbsp; (natural sampling)&nbsp; and green&nbsp; (discrete sampling)&nbsp; respectively.
  
Zur Signalrekonstruktion wird ein rechteckförmiger Tiefpass $H(f)$ mit der Grenzfrequenz $f_{\rm G} = f_{\rm A}/2$ und der Verstärkung $T_{\rm A}/T_{\rm R}$ im Durchlassbereich eingesetzt:
+
For signal reconstruction,&nbsp; a rectangular low-pass filter&nbsp; $H(f)$&nbsp; with cutoff frequency&nbsp; $f_{\rm G} = f_{\rm A}/2$&nbsp; and gain&nbsp; $T_{\rm A}/T_{\rm R}$&nbsp; is used in the passband:
 
:$$H(f) = \left\{ \begin{array}{l} T_{\rm A}/T_{\rm R} \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{f\ddot{u}r}} \\{\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{10}c} {\hspace{0.04cm}\left| \hspace{0.005cm} f\hspace{0.05cm} \right| < f_{\rm A}/2}\hspace{0.05cm}, \\ {\hspace{0.04cm}\left| \hspace{0.005cm} f\hspace{0.05cm} \right| > f_{\rm A}/2}\hspace{0.05cm}. \\ \end{array}$$
 
:$$H(f) = \left\{ \begin{array}{l} T_{\rm A}/T_{\rm R} \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{f\ddot{u}r}} \\{\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{10}c} {\hspace{0.04cm}\left| \hspace{0.005cm} f\hspace{0.05cm} \right| < f_{\rm A}/2}\hspace{0.05cm}, \\ {\hspace{0.04cm}\left| \hspace{0.005cm} f\hspace{0.05cm} \right| > f_{\rm A}/2}\hspace{0.05cm}. \\ \end{array}$$
  
  
  
 
+
Hints:
 
+
*The exercise belongs to the chapter&nbsp; [[Modulation_Methods/Pulse_Code_Modulation|"Pulse Code Modulation"]].
 
+
*Reference is made in particular to the page&nbsp; [[Modulation_Methods/Pulse_Code_Modulation#Natural_and_discrete_sampling|"Natural and discrete sampling"]].
''Hinweise:''
+
*The sampled source signal is denoted by&nbsp; $q_{\rm A}(t)$&nbsp; and its spectral function by&nbsp; $Q_{\rm A}(f)$.
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Modulationsverfahren/Pulscodemodulation|Pulscodemodulation]].
+
* Sampling is always performed at&nbsp; \cdot T_{\rm A}$.
*Bezug genommen wird insbesondere auf die Seite&nbsp; [[Modulationsverfahren/Pulscodemodulation#Nat.C3.BCrliche_und_diskrete_Abtastung|Natürliche und diskrete Abtastung]].
 
*Das abgetastete Quellensignal wird mit $q_{\rm A}(t)$ bezeichnet und dessen Spektralfunktion mit $Q_{\rm A}(f)$. Die Abtastung erfolgt stets bei · T_{\rm A}$.
 
 
   
 
   
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Es gelte &nbsp;$T_{\rm R}/T_{\rm A} = 0.5$. Geben Sie hierfür das normierte Spektrum &nbsp;$G_{\rm R}(f)/T_{\rm A}$&nbsp; an. Welcher Spektralwert tritt bei &nbsp;$f = 0$&nbsp; auf?
+
{Let &nbsp;$T_{\rm R}/T_{\rm A} = 0.5$.&nbsp; For this,&nbsp; give the normalized spectrum &nbsp;$G_{\rm R}(f)/T_{\rm A}$.&nbsp; What spectral value occurs at &nbsp;$f = 0$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$G_{\rm R}(f=0)/T_{\rm A} \ = \ $ { 0.5 3% }  
 
$G_{\rm R}(f=0)/T_{\rm A} \ = \ $ { 0.5 3% }  
  
{Wie lautet das Spektrum &nbsp;$Q_{\rm A}(f)$&nbsp; bei natürlicher Abtastung? Vorschläge:
+
{What is the spectrum &nbsp;$Q_{\rm A}(f)$&nbsp; in natural sampling?&nbsp; Suggestions:
 
|type="[]"}
 
|type="[]"}
- Es gilt &nbsp;$Q_{\rm A}(f) = P_{\rm δ}(f) ∗ Q(f)$.
+
- It holds &nbsp;$Q_{\rm A}(f) = P_{\rm δ}(f) ∗ Q(f)$.
+ Es gilt &nbsp;$Q_{\rm A}(f) = \big[{\rm δ}(f) · (G_{\rm R}(f)/T_{\rm A})\big] ∗ Q(f)$.
+
+ It holds &nbsp;$Q_{\rm A}(f) = \big[{\rm δ}(f) \cdot (G_{\rm R}(f)/T_{\rm A})\big] ∗ Q(f)$.
- Es gilt &nbsp;$Q_{\rm A}(f) = \big[P_{\rm δ}(f) ∗ Q(f)\big] · (G_{\rm R}(f)/T_{\rm A})$.
+
- It holds &nbsp;$Q_{\rm A}(f) = \big[P_{\rm δ}(f) ∗ Q(f)\big] \cdot (G_{\rm R}(f)/T_{\rm A})$.
  
{ Eignet sich bei natürlicher Abtastung der angegebene Tiefpass zur Interpolation?
+
{ For natural sampling:&nbsp; Is the specified low-pass suitable for interpolation?
 
|type="()"}
 
|type="()"}
+ Ja.  
+
+ Yes.  
- Nein.  
+
- No.  
  
{ Wie lautet das Spektrum &nbsp;$Q_{\rm A}(f)$&nbsp; bei diskreter Abtastung? Vorschläge:
+
{ What is the spectrum &nbsp;$Q_{\rm A}(f)$&nbsp; for discrete sampling?&nbsp; Suggestions:
 
|type="[]"}
 
|type="[]"}
- Es gilt &nbsp;$Q_{\rm A}(f) = P_{\rm δ}(f) ∗ Q(f)$.
+
- It holds &nbsp;$Q_{\rm A}(f) = P_{\rm δ}(f) ∗ Q(f)$.
- Es gilt &nbsp;$Q_{\rm A}(f) = \big[{\rm δ}(f) · (G_{\rm R}(f)/T_{\rm A})\big] ∗ Q(f)$.
+
- It holds &nbsp;$Q_{\rm A}(f) = \big[{\rm δ}(f) \cdot (G_{\rm R}(f)/T_{\rm A})\big] ∗ Q(f)$.
+ Es gilt &nbsp;$Q_{\rm A}(f) = \big[P_{\rm δ}(f) ∗ Q(f)\big] · (G_{\rm R}(f)/T_{\rm A})$.
+
+ It holds &nbsp;$Q_{\rm A}(f) = \big[P_{\rm δ}(f) ∗ Q(f)\big] \cdot (G_{\rm R}(f)/T_{\rm A})$.
  
{Eignet sich bei diskreter Abtastung der angegebene Tiefpass zur Interpolation?
+
{For discrete sampling:&nbsp; Is the specified low-pass suitable for interpolation?
 
|type="()"}
 
|type="()"}
- Ja.  
+
- Yes.  
+ Nein.  
+
+ No.  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Das Spektrum des Rechteckimpulses $g_{\rm R}(t)$ mit Amplitude $1$ und Dauer $T_{\rm R}$ lautet:
+
'''(1)'''&nbsp; The spectrum of the rectangular pulse&nbsp; $g_{\rm R}(t)$&nbsp; with amplitude&nbsp; $1$&nbsp; and duration&nbsp; $T_{\rm R}$&nbsp; is:
:$$ G_{\rm R}(f) = T_{\rm R} \cdot {\rm si}(\pi f T_{\rm R}) \hspace{0.3cm} {\rm mit}\hspace{0.3cm} {\rm si}(x) = \sin(x)/x \hspace{0.3cm}  
+
:$$ G_{\rm R}(f) = T_{\rm R} \cdot {\rm sinc}(f T_{\rm R}) \hspace{0.3cm} {\rm with}\hspace{0.3cm} {\rm sinc}(x) = \sin(\pi x)/(\pi x)\hspace{0.3cm}  
\Rightarrow \hspace{0.3cm} \frac{G_{\rm R}(f)}{T_{\rm A}} = \frac{T_{\rm R}}{T_{\rm A}} \cdot {\rm si}(\pi f T_{\rm R}) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac{G_{\rm R}(f = 0)}{T_{\rm A}} =\frac{T_{\rm R}}{T_{\rm A}}\hspace{0.15cm}\underline { = 0.5} \hspace{0.05cm}.$$
+
\Rightarrow \hspace{0.3cm} \frac{G_{\rm R}(f)}{T_{\rm A}} = \frac{T_{\rm R}}{T_{\rm A}} \cdot {\rm sinc}(f T_{\rm R})\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac{G_{\rm R}(f = 0)}{T_{\rm A}} =\frac{T_{\rm R}}{T_{\rm A}}\hspace{0.15cm}\underline { = 0.5} \hspace{0.05cm}.$$
 +
 
  
'''(2)'''&nbsp; Richtig ist der <u>zweite Lösungsvorschlag</u>:  
+
'''(2)'''&nbsp; The correct solution is the&nbsp; <u>second suggested solution</u>:  
*Aus der angegebenen Gleichung im Zeitbereich ergibt sich mit dem Faltungssatz:
+
*From the given equation in the time domain,&nbsp; the convolution theorem gives:
 
:$$q_{\rm A}(t) = \left [ \frac{1}{T_{\rm A}} \cdot p_{\rm \delta}(t) \star g_{\rm R}(t)\right ]\cdot q(t) \hspace{0.3cm}
 
:$$q_{\rm A}(t) = \left [ \frac{1}{T_{\rm A}} \cdot p_{\rm \delta}(t) \star g_{\rm R}(t)\right ]\cdot q(t) \hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}Q_{\rm A}(f) = \left [ \frac{1}{T_{\rm A}}\cdot P_{\rm \delta}(f) \cdot G_{\rm R}(f) \right ] \star Q(f) = \left [ P_{\rm \delta}(f) \cdot \frac{G_{\rm R}(f)}{{T_{\rm A}}} \right ] \star Q(f) \hspace{0.05cm}.$$
 
\Rightarrow \hspace{0.3cm}Q_{\rm A}(f) = \left [ \frac{1}{T_{\rm A}}\cdot P_{\rm \delta}(f) \cdot G_{\rm R}(f) \right ] \star Q(f) = \left [ P_{\rm \delta}(f) \cdot \frac{G_{\rm R}(f)}{{T_{\rm A}}} \right ] \star Q(f) \hspace{0.05cm}.$$
*Der erste Lösungsvorschlag gilt nur bei idealer Abtastung (mit einem Diracpuls) und der letzte bei diskreter Abtastung.
+
*The first proposed solution is valid only for ideal sampling &nbsp; (with a Dirac comb) &nbsp; and the last one for discrete sampling.
  
  
'''(3)'''&nbsp; Die Antwort ist <u>JA</u>:
+
 
* Ausgehend von dem Ergebnis der Teilaufgabe (2) erhält man mit der Spektralfunktion des Diracpulses
+
'''(3)'''&nbsp; The answer is&nbsp; <u>YES</u>:
 +
* Starting from the result of the subtask&nbsp; '''(2)'''&nbsp; using the spectral function of the Dirac comb,&nbsp; we obtain.
 
:$$Q_{\rm A}(f) = \left [ P_{\rm \delta}(f) \cdot \frac{G_{\rm R}(f)}{{T_{\rm A}}} \right ] \star Q(f)= \left [ \frac{G_{\rm R}(f)}{{T_{\rm A}}} \cdot \sum_{\mu = -\infty}^{+\infty} \delta(f - \mu \cdot f_{\rm A})\right ] \star Q(f) \hspace{0.05cm}.$$
 
:$$Q_{\rm A}(f) = \left [ P_{\rm \delta}(f) \cdot \frac{G_{\rm R}(f)}{{T_{\rm A}}} \right ] \star Q(f)= \left [ \frac{G_{\rm R}(f)}{{T_{\rm A}}} \cdot \sum_{\mu = -\infty}^{+\infty} \delta(f - \mu \cdot f_{\rm A})\right ] \star Q(f) \hspace{0.05cm}.$$
*Ist das Abtasttheorem erfüllt und der Tiefpass richtig dimensioniert, so liegen von den unendlich vielen Faltungsprodukten nur das Faltungsprodukt mit $μ = 0$ im Durchlassbereich.  
+
*When the sampling theorem is satisfied and the low-pass filter is correct:&nbsp; <br>From the infinite convolution products&nbsp; only the convolution product with&nbsp; $μ = 0$&nbsp; lie in the passband.  
*Unter Berücksichtigung des Verstärkungsfaktors $T_{\rm A}/T_{\rm R}$ erhält man somit für das Spektrum am Filterausgang:
+
*Taking into account the gain factor&nbsp; $T_{\rm A}/T_{\rm R}$,&nbsp; we thus obtain for the spectrum at the filter output:
 
:$$V(f) = \frac{T_{\rm A}}{T_{\rm R}} \cdot \left [ \frac{G_{\rm R}(f = 0)}{{T_{\rm A}}} \cdot \delta(f )\right ] \star Q(f)= Q(f) \hspace{0.05cm}.$$
 
:$$V(f) = \frac{T_{\rm A}}{T_{\rm R}} \cdot \left [ \frac{G_{\rm R}(f = 0)}{{T_{\rm A}}} \cdot \delta(f )\right ] \star Q(f)= Q(f) \hspace{0.05cm}.$$
  
'''(4)'''&nbsp;  Richtig ist der<u> letzte Lösungsvorschlag</u>.
 
*Verlagert man den Faktor $1/T_A$ zum Rechteckimpuls, so erhält man bei diskreter Abtastung mit dem Faltungssatz:
 
$$ q_{\rm A}(t) = \left [ p_{\rm \delta}(t)\cdot q(t) \right ] \star \frac{g_{\rm R}(t)}{T_{\rm A}}\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}Q_{\rm A}(f)= \left [ P_{\rm \delta}(f)\star Q(f) \right ] \cdot \frac{G_{\rm R}(f)}{T_{\rm A}}\hspace{0.05cm}.$$
 
  
'''(5)'''&nbsp; Die Antwort ist <u>NEIN</u>:
+
 
* Die Gewichtungsfunktion $G_{\rm R}(f)$ betrifft nun auch den inneren Kern ($μ = 0$) des Faltungsproduktes.  
+
'''(4)'''&nbsp; The&nbsp; <u>last suggested solution</u>&nbsp; is correct.
*Alle anderen Terme ($μ ≠ 0$) werden durch den Tiefpass eliminiert. Man erhält hier im relevanten Bereich $|f| < f_{\rm A}/2$:
+
*Shifting the factor&nbsp; $1/T_{\rm A}$&nbsp; to the rectangular pulse,&nbsp; we obtain with discrete sampling using the convolution theorem:
:$$V(f) = \frac{T_{\rm A}}{T_{\rm R}} \cdot \frac{G_{\rm R}(f )}{{T_{\rm A}}} \cdot Q(f) = 2 \cdot 0.5 \cdot {\rm si}(\pi f T_{\rm R})\cdot Q(f) \hspace{0.3cm}\Rightarrow \hspace{0.3cm}V(f) = Q(f) \cdot {\rm si}(\pi f T_{\rm R})\hspace{0.05cm}.$$
+
:$$ q_{\rm A}(t) = \big [ p_{\rm \delta}(t)\cdot q(t) \big ] \star \frac{g_{\rm R}(t)}{T_{\rm A}}\hspace{0.3cm}
*Sieht man hier keine zusätzliche Entzerrung vor, so werden die höheren Frequenzen entsprechend der si–Funktion gedämpft.  
+
\Rightarrow \hspace{0.3cm}Q_{\rm A}(f)= \big [ P_{\rm \delta}(f)\star Q(f) \big ] \cdot \frac{G_{\rm R}(f)}{T_{\rm A}}\hspace{0.05cm}.$$
*Die höchste Signalfrequenz ($f = f_{\rm A}/2$) wird hierbei am stärksten abgesenkt:
+
 
:$$V(f = \frac{f_{\rm A}}{2}) = Q( \frac{f_{\rm A}}{2}) \cdot {\rm si}(\pi \cdot \frac{T_{\rm R}}{2 \cdot T_{\rm A}})=
+
 
  Q( \frac{f_{\rm A}}{2}) \cdot {\rm si}(\pi \cdot \frac{\sin(\pi/4)}{\pi/4})\approx 0.9 \cdot Q( \frac{f_{\rm A}}{2}) \hspace{0.05cm}.$$
+
'''(5)'''&nbsp; The answer is&nbsp; <u>NO</u>:
 +
*The weighting function&nbsp; $G_{\rm R}(f)$&nbsp; now involves the inner kernel&nbsp; $(μ = 0)$&nbsp; of the convolution product.  
 +
*All other terms&nbsp; $(μ ≠ 0)$&nbsp; are eliminated by the low-pass filter.&nbsp;
 +
*One obtains here in the relevant range&nbsp; $|f| < f_{\rm A}/2$:
 +
:$$V(f) = \frac{T_{\rm A}}{T_{\rm R}} \cdot \frac{G_{\rm R}(f )}{{T_{\rm A}}} \cdot Q(f) = 2 \cdot 0.5 \cdot {\rm sinc}(f T_{\rm R})\cdot Q(f) \hspace{0.3cm}\Rightarrow \hspace{0.3cm}V(f) = Q(f) \cdot {\rm sinc}(f T_{\rm R})\hspace{0.05cm}.$$
 +
*If no additional equalization is provided here, the higher frequencies are attenuated according to the&nbsp; $\rm sinc$ function.  
 +
*The highest&nbsp; signal frequency&nbsp; $(f = f_{\rm A}/2)$&nbsp; is attenuated the most here:
 +
:$$V(f = f_{\rm A}/2) = Q( f_{\rm A}/2) \cdot {\rm sinc}( \frac{T_{\rm R}}{2 \cdot T_{\rm A}})=
 +
  Q( f_{\rm A}/2) \cdot \frac{\sin(\pi/4)}{\pi/4}\approx 0.9 \cdot Q( f_{\rm A}/2) \hspace{0.05cm}.$$
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 102: Line 110:
  
  
[[Category:Aufgaben zu Modulationsverfahren|^4.1 Pulscodemodulation^]]
+
[[Category:Modulation Methods: Exercises|^4.1 Pulse Code Modulation^]]

Latest revision as of 16:13, 8 April 2022

For natural and discrete sampling

Ideal sampling can be described in time domain by multiplying the analog source signal  $q(t)$  by a  Dirac comb  $p_δ(t)$  :

$$ q_{\rm A}(t) = p_{\delta}(t) \cdot q(t) \hspace{0.05cm}.$$

Dirac impulses  – infinitely narrow and infinitely high –  and accordingly also the  "Dirac comb"  $p_δ(t)$  cannot be realized in practice,  however. 

Here we must assume instead the  "rectangular pulse comb"  $p_{\rm R}(t)$  where the following relation holds:

$$ p_{\rm R}(t) = \left [ \frac{1}{T_{\rm A}} \cdot p_{\rm \delta}(t) \right ]\star g_{\rm R}(t)\hspace{0.4cm}\text{with}\hspace{0.4cm} g_{\rm R}(t) = \left\{ \begin{array}{l} 1 \\ 1/2 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{f\ddot{u}r}} \\{\rm{f\ddot{u}r}} \\{\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{10}c} {\hspace{0.04cm}\left|\hspace{0.06cm} t \hspace{0.05cm} \right|} < T_{\rm R}/2\hspace{0.05cm}, \\ {\hspace{0.04cm}\left|\hspace{0.06cm} t \hspace{0.05cm} \right|} = T_{\rm R}/2\hspace{0.05cm}, \\ {\hspace{0.005cm}\left|\hspace{0.06cm} t \hspace{0.05cm} \right|} > T_{\rm R}/2\hspace{0.05cm}. \\ \end{array}$$

The duration  $T_{\rm R}$  of a rectangular pulse  $g_{\rm R}(t)$  should be (significantly) smaller than the distance $T_{\rm A}$ of two samples.

In the diagram this ratio is chosen with  $T_{\rm R}/T_{\rm A} = 0.5$  very large to make the difference between  "natural sampling"  and  "discrete sampling"  especially clear:

  • In natural sampling,  the sampled signal  $q_{\rm A}(t)$  is equal to the product of the rectangular pulse comb  $p_{\rm R}(t)$  and the analog source signal  $q(t)$:
$$q_{\rm A}(t) = p_{\rm R}(t) \cdot q(t) = \left [ \frac{1}{T_{\rm A}} \cdot p_{\rm \delta}(t) \star g_{\rm R}(t)\right ]\cdot q(t)\hspace{0.05cm}.$$
  • In contrast,  the corresponding equation for discrete sampling is:
$$ q_{\rm A}(t) = \left [ \frac{1}{T_{\rm A}} \cdot p_{\rm \delta}(t) \cdot q(t)\right ]\star g_{\rm R}(t)\hspace{0.05cm}.$$

In the graph,  these signals are sketched in blue  (natural sampling)  and green  (discrete sampling)  respectively.

For signal reconstruction,  a rectangular low-pass filter  $H(f)$  with cutoff frequency  $f_{\rm G} = f_{\rm A}/2$  and gain  $T_{\rm A}/T_{\rm R}$  is used in the passband:

$$H(f) = \left\{ \begin{array}{l} T_{\rm A}/T_{\rm R} \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{f\ddot{u}r}} \\{\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{10}c} {\hspace{0.04cm}\left| \hspace{0.005cm} f\hspace{0.05cm} \right| < f_{\rm A}/2}\hspace{0.05cm}, \\ {\hspace{0.04cm}\left| \hspace{0.005cm} f\hspace{0.05cm} \right| > f_{\rm A}/2}\hspace{0.05cm}. \\ \end{array}$$


Hints:

  • The exercise belongs to the chapter  "Pulse Code Modulation".
  • Reference is made in particular to the page  "Natural and discrete sampling".
  • The sampled source signal is denoted by  $q_{\rm A}(t)$  and its spectral function by  $Q_{\rm A}(f)$.
  • Sampling is always performed at  $ν \cdot T_{\rm A}$.



Questions

1

Let  $T_{\rm R}/T_{\rm A} = 0.5$.  For this,  give the normalized spectrum  $G_{\rm R}(f)/T_{\rm A}$.  What spectral value occurs at  $f = 0$ ?

$G_{\rm R}(f=0)/T_{\rm A} \ = \ $

2

What is the spectrum  $Q_{\rm A}(f)$  in natural sampling?  Suggestions:

It holds  $Q_{\rm A}(f) = P_{\rm δ}(f) ∗ Q(f)$.
It holds  $Q_{\rm A}(f) = \big[{\rm δ}(f) \cdot (G_{\rm R}(f)/T_{\rm A})\big] ∗ Q(f)$.
It holds  $Q_{\rm A}(f) = \big[P_{\rm δ}(f) ∗ Q(f)\big] \cdot (G_{\rm R}(f)/T_{\rm A})$.

3

For natural sampling:  Is the specified low-pass suitable for interpolation?

Yes.
No.

4

What is the spectrum  $Q_{\rm A}(f)$  for discrete sampling?  Suggestions:

It holds  $Q_{\rm A}(f) = P_{\rm δ}(f) ∗ Q(f)$.
It holds  $Q_{\rm A}(f) = \big[{\rm δ}(f) \cdot (G_{\rm R}(f)/T_{\rm A})\big] ∗ Q(f)$.
It holds  $Q_{\rm A}(f) = \big[P_{\rm δ}(f) ∗ Q(f)\big] \cdot (G_{\rm R}(f)/T_{\rm A})$.

5

For discrete sampling:  Is the specified low-pass suitable for interpolation?

Yes.
No.


Solution

(1)  The spectrum of the rectangular pulse  $g_{\rm R}(t)$  with amplitude  $1$  and duration  $T_{\rm R}$  is:

$$ G_{\rm R}(f) = T_{\rm R} \cdot {\rm sinc}(f T_{\rm R}) \hspace{0.3cm} {\rm with}\hspace{0.3cm} {\rm sinc}(x) = \sin(\pi x)/(\pi x)\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac{G_{\rm R}(f)}{T_{\rm A}} = \frac{T_{\rm R}}{T_{\rm A}} \cdot {\rm sinc}(f T_{\rm R})\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac{G_{\rm R}(f = 0)}{T_{\rm A}} =\frac{T_{\rm R}}{T_{\rm A}}\hspace{0.15cm}\underline { = 0.5} \hspace{0.05cm}.$$


(2)  The correct solution is the  second suggested solution:

  • From the given equation in the time domain,  the convolution theorem gives:
$$q_{\rm A}(t) = \left [ \frac{1}{T_{\rm A}} \cdot p_{\rm \delta}(t) \star g_{\rm R}(t)\right ]\cdot q(t) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}Q_{\rm A}(f) = \left [ \frac{1}{T_{\rm A}}\cdot P_{\rm \delta}(f) \cdot G_{\rm R}(f) \right ] \star Q(f) = \left [ P_{\rm \delta}(f) \cdot \frac{G_{\rm R}(f)}{{T_{\rm A}}} \right ] \star Q(f) \hspace{0.05cm}.$$
  • The first proposed solution is valid only for ideal sampling   (with a Dirac comb)   and the last one for discrete sampling.


(3)  The answer is  YES:

  • Starting from the result of the subtask  (2)  using the spectral function of the Dirac comb,  we obtain.
$$Q_{\rm A}(f) = \left [ P_{\rm \delta}(f) \cdot \frac{G_{\rm R}(f)}{{T_{\rm A}}} \right ] \star Q(f)= \left [ \frac{G_{\rm R}(f)}{{T_{\rm A}}} \cdot \sum_{\mu = -\infty}^{+\infty} \delta(f - \mu \cdot f_{\rm A})\right ] \star Q(f) \hspace{0.05cm}.$$
  • When the sampling theorem is satisfied and the low-pass filter is correct: 
    From the infinite convolution products  only the convolution product with  $μ = 0$  lie in the passband.
  • Taking into account the gain factor  $T_{\rm A}/T_{\rm R}$,  we thus obtain for the spectrum at the filter output:
$$V(f) = \frac{T_{\rm A}}{T_{\rm R}} \cdot \left [ \frac{G_{\rm R}(f = 0)}{{T_{\rm A}}} \cdot \delta(f )\right ] \star Q(f)= Q(f) \hspace{0.05cm}.$$


(4)  The  last suggested solution  is correct.

  • Shifting the factor  $1/T_{\rm A}$  to the rectangular pulse,  we obtain with discrete sampling using the convolution theorem:
$$ q_{\rm A}(t) = \big [ p_{\rm \delta}(t)\cdot q(t) \big ] \star \frac{g_{\rm R}(t)}{T_{\rm A}}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}Q_{\rm A}(f)= \big [ P_{\rm \delta}(f)\star Q(f) \big ] \cdot \frac{G_{\rm R}(f)}{T_{\rm A}}\hspace{0.05cm}.$$


(5)  The answer is  NO:

  • The weighting function  $G_{\rm R}(f)$  now involves the inner kernel  $(μ = 0)$  of the convolution product.
  • All other terms  $(μ ≠ 0)$  are eliminated by the low-pass filter. 
  • One obtains here in the relevant range  $|f| < f_{\rm A}/2$:
$$V(f) = \frac{T_{\rm A}}{T_{\rm R}} \cdot \frac{G_{\rm R}(f )}{{T_{\rm A}}} \cdot Q(f) = 2 \cdot 0.5 \cdot {\rm sinc}(f T_{\rm R})\cdot Q(f) \hspace{0.3cm}\Rightarrow \hspace{0.3cm}V(f) = Q(f) \cdot {\rm sinc}(f T_{\rm R})\hspace{0.05cm}.$$
  • If no additional equalization is provided here, the higher frequencies are attenuated according to the  $\rm sinc$ function.
  • The highest  signal frequency  $(f = f_{\rm A}/2)$  is attenuated the most here:
$$V(f = f_{\rm A}/2) = Q( f_{\rm A}/2) \cdot {\rm sinc}( \frac{T_{\rm R}}{2 \cdot T_{\rm A}})= Q( f_{\rm A}/2) \cdot \frac{\sin(\pi/4)}{\pi/4}\approx 0.9 \cdot Q( f_{\rm A}/2) \hspace{0.05cm}.$$