Difference between revisions of "Aufgaben:Exercise 5.5Z: About the Rake Receiver"
From LNTwww
(17 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Modulation_Methods/Error_Probability_of_Direct-Sequence_Spread_Spectrum_Modulation |
}} | }} | ||
− | [[File: | + | [[File:EN_Mod_Z_5_5.png|right|frame|Two-way channel <br>& rake receiver]] |
− | + | The diagram shows a two-way channel (yellow background). The corresponding descriptive equation is: | |
:r(t)=0.6⋅s(t)+0.4⋅s(t−τ). | :r(t)=0.6⋅s(t)+0.4⋅s(t−τ). | ||
− | + | Let the delay on the secondary path be τ = 1 \ \rm µ s. | |
− | + | Drawn below is the structure of a rake receiver (green background) with general coefficients K, h_0, h_1, τ_0 and τ_1. | |
+ | |||
+ | *The purpose of the rake receiver is to combine the energy of the two signal paths, making the decision more reliable. | ||
+ | |||
+ | *The combined impulse response of the channel (German: "Kanal" ⇒ subscript "K") and the rake receiver can be expressed in the form | ||
:h_{\rm KR}(t) = A_0 \cdot \delta (t ) + A_1 \cdot \delta (t - \tau) + A_2 \cdot \delta (t - 2\tau) | :h_{\rm KR}(t) = A_0 \cdot \delta (t ) + A_1 \cdot \delta (t - \tau) + A_2 \cdot \delta (t - 2\tau) | ||
− | + | :but only if the rake coefficients h_0, h_1, τ_0 and τ_1 are appropriately chosen. | |
− | + | *The main part of h_{\rm KR}(t) is supposed to be at t = τ. | |
− | + | *The constant K is to be chosen so that the amplitude of the main path A_1 = 1 : | |
:K= \frac{1}{h_0^2 + h_1^2}. | :K= \frac{1}{h_0^2 + h_1^2}. | ||
− | + | Apart from the rake parameters, the signals r(t) and b(t) are sought when s(t) is a rectangle of height s_0 = 1 and width T = \ \rm 5 µ s. | |
− | + | Notes: | |
− | + | *The exercise belongs to the chapter [[Modulation_Methods/Error_Probability_of_Direct-Sequence_Spread_Spectrum_Modulation|Error Probability of Direct-Sequence Spread Spectrum Modulation]]. | |
− | * | + | *Reference is made in particular to the section [[Modulation_Methods/Error_Probability_of_Direct-Sequence_Spread_Spectrum_Modulation#Principle_of_the_rake_receiver |Principle of the rake receiver]]. |
− | * | ||
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Which statements are valid for the channel impulse response h_{\rm K}(t)? |
|type="[]"} | |type="[]"} | ||
− | + h_{\rm K}(t) | + | + h_{\rm K}(t) consists of two Dirac delta functions. |
− | - h_{\rm K}(t) | + | - h_{\rm K}(t) is complex-valued. |
− | - h_{\rm K}(t) | + | - h_{\rm K}(t) is a function periodic with delay time \tau. |
− | { | + | {Which statements are true for the channel frequency response H_{\rm K}(f)? |
|type="[]"} | |type="[]"} | ||
− | - | + | - H_{\rm K}(f = 0) = 2 is true. |
− | + H_{\rm K}(f) | + | + H_{\rm K}(f) is complex-valued. |
− | + |H_{\rm K}(f)| | + | + |H_{\rm K}(f)| is a function periodic with frequency 1/τ. |
− | { | + | {Set K = 1, h_0 = 0.6 and h_1 = 0.4. Determine the delays τ_0 and τ_1 so that the h_{\rm KR}(t) equation is satisfied with A_0 = A_2. |
|type="{}"} | |type="{}"} | ||
τ_0 \ = \ { 1 3% } \ \rm µ s | τ_0 \ = \ { 1 3% } \ \rm µ s | ||
τ_1 \ = \ { 0. } \ \rm µ s | τ_1 \ = \ { 0. } \ \rm µ s | ||
− | { | + | {What value should be chosen for the constant K? |
|type="{}"} | |type="{}"} | ||
K \ = \ { 1.923 3% } | K \ = \ { 1.923 3% } | ||
− | { | + | {Which statements are valid for the signals r(t) and b(t)? |
|type="[]"} | |type="[]"} | ||
− | + | + | + The maximum value of r(t) is 1. |
− | - | + | - The width of r(t) is 7 \ µ s. |
− | - | + | - The maximum value of b(t) is 1. |
− | + | + | + The width of b(t) is 7 \ µ s. |
Line 62: | Line 65: | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' <u>Solution 1</u> is correct: |
− | * | + | *The impulse response h_{\rm K}(t) is obtained as the received signal r(t) when there is a Dirac delta pulse at the input ⇒ s(t) = δ(t). It follows that: |
− | : h_(t) = 0.6 \cdot \delta (t ) + 0.4 \cdot \delta (t - \tau) \hspace{0.05cm}. | + | :$$ h_{\rm K}(t) = 0.6 \cdot \delta (t ) + 0.4 \cdot \delta (t - \tau) \hspace{0.05cm}.$$ |
+ | |||
− | '''(2)''' | + | '''(2)''' <u>Solutions 2 and 3</u> are correct: |
− | * | + | *By definition, the channel frequency response H_{\rm K}(f) is the Fourier transform of the impulse response h_{\rm K}(t). With the shift theorem this results in: |
:H_{\rm K}(f) = 0.6 + 0.4 \cdot {\rm e}^{ \hspace{0.03cm}{\rm j} \hspace{0.03cm} \cdot \hspace{0.03cm}2 \pi f \tau}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} H_{\rm K}(f= 0) = 0.6 + 0.4 = 1 \hspace{0.05cm}. | :H_{\rm K}(f) = 0.6 + 0.4 \cdot {\rm e}^{ \hspace{0.03cm}{\rm j} \hspace{0.03cm} \cdot \hspace{0.03cm}2 \pi f \tau}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} H_{\rm K}(f= 0) = 0.6 + 0.4 = 1 \hspace{0.05cm}. | ||
− | * | + | *Accordingly, the first proposed solution is incorrect in contrast to the other two: |
− | :|H_{\rm K}(f)|^2 = \left [0.6 + 0.4 \cdot \cos(2 \pi f \tau) \right ]^2 + \left [ 0.4 \cdot \sin(2 \pi f \tau) \right ]^2 = \left [0.6^2 + 0.4^2 \cdot \left ( \cos^2(2 \pi f \tau) + \sin^2(2 \pi f \tau)\right ) \right ] + 2 \cdot 0.6 \cdot 0.4 \cdot \cos(2 \pi f \tau) | + | # H_{\rm K}(f) is complex-valued and |
− | * | + | # the magnitude is periodic with 1/τ, as the following calculation shows: |
+ | :$$|H_{\rm K}(f)|^2 = \left [0.6 + 0.4 \cdot \cos(2 \pi f \tau) \right ]^2 + \left [ 0.4 \cdot \sin(2 \pi f \tau) \right ]^2 = \left [0.6^2 + 0.4^2 \cdot \left ( \cos^2(2 \pi f \tau) + \sin^2(2 \pi f \tau)\right ) \right ] + 2 \cdot 0.6 \cdot 0.4 \cdot \cos(2 \pi f \tau).$$ | ||
+ | *For f = 0, |H_{\rm K}(f)| = 1. This value is repeated in the respective frequency spacing 1/τ. | ||
+ | |||
− | '''(3)''' | + | |
+ | '''(3)''' We first set K = 1 as agreed. | ||
+ | *Altogether we get from s(t) to the output signal b(t) via four paths. | ||
+ | *To satisfy the given h_{\rm KR}(t) equation, either τ_0 = 0 must hold or τ_1 = 0. With τ_0 = 0 we obtain for the impulse response: | ||
:h_{\rm KR}(t) = 0.6 \cdot h_0 \cdot \delta (t ) + 0.4 \cdot h_0 \cdot \delta (t - \tau) + 0.6 \cdot h_1 \cdot \delta (t -\tau_1) + 0.4 \cdot h_1 \cdot \delta (t - \tau-\tau_1) \hspace{0.05cm}. | :h_{\rm KR}(t) = 0.6 \cdot h_0 \cdot \delta (t ) + 0.4 \cdot h_0 \cdot \delta (t - \tau) + 0.6 \cdot h_1 \cdot \delta (t -\tau_1) + 0.4 \cdot h_1 \cdot \delta (t - \tau-\tau_1) \hspace{0.05cm}. | ||
− | * | + | *To be able to focus the "main energy" at a certain time point, τ_1 = τ would have to be chosen. |
+ | * With h_0 = 0.6 and h_1 = 0.4, we then obtain A_0 ≠ A_2: | ||
:h_{\rm KR}(t) = 0.36 \cdot \delta (t ) +0.48 \cdot \delta (t - \tau) + 0.16 \cdot \delta (t - 2\tau)\hspace{0.05cm}. | :h_{\rm KR}(t) = 0.36 \cdot \delta (t ) +0.48 \cdot \delta (t - \tau) + 0.16 \cdot \delta (t - 2\tau)\hspace{0.05cm}. | ||
− | * | + | *In contrast, with h_0 = 0.6, h_1 = 0.4, τ_0 = τ and τ_1 = 0: |
:h_{\rm KR}(t) = 0.6 \cdot h_0 \cdot \delta (t - \tau ) + 0.4 \cdot h_0 \cdot \delta (t - 2\tau) + 0.6 \cdot h_1 \cdot \delta (t) + 0.4 \cdot h_1 \cdot \delta (t - \tau)= 0.24 \cdot \delta (t ) +0.52 \cdot \delta (t - \tau) + 0.24 \cdot \delta (t - 2\tau) \hspace{0.05cm}. | :h_{\rm KR}(t) = 0.6 \cdot h_0 \cdot \delta (t - \tau ) + 0.4 \cdot h_0 \cdot \delta (t - 2\tau) + 0.6 \cdot h_1 \cdot \delta (t) + 0.4 \cdot h_1 \cdot \delta (t - \tau)= 0.24 \cdot \delta (t ) +0.52 \cdot \delta (t - \tau) + 0.24 \cdot \delta (t - 2\tau) \hspace{0.05cm}. | ||
− | + | *Here, the additional condition A_0 = A_2 is satisfied. Thus, the result we are looking for is: | |
− | :$$ \underline{\tau_0 = \tau = 1\,{\rm | + | :$$ \underline{\tau_0 = \tau = 1\,{\rm µ s} \hspace{0.05cm},\hspace{0.2cm}\tau_1 =0} \hspace{0.05cm}.$$ |
− | '''(4)''' | + | |
+ | |||
+ | '''(4)''' The following must apply to the normalization factor: | ||
:K= \frac{1}{h_0^2 + h_1^2} = \frac{1}{0.6^2 + 0.4^2} = \frac{1}{0.52} \hspace{0.15cm}\underline {\approx 1.923} \hspace{0.05cm}. | :K= \frac{1}{h_0^2 + h_1^2} = \frac{1}{0.6^2 + 0.4^2} = \frac{1}{0.52} \hspace{0.15cm}\underline {\approx 1.923} \hspace{0.05cm}. | ||
− | + | *This gives for the common impulse response $(it holds 0.24/0.52 = 6/13)$: | |
: h_{\rm KR}(t) = \frac{6}{13} \cdot \delta (t ) + 1.00 \cdot \delta (t - \tau) + \frac{6}{13} \cdot \delta (t - 2\tau)\hspace{0.05cm}. | : h_{\rm KR}(t) = \frac{6}{13} \cdot \delta (t ) + 1.00 \cdot \delta (t - \tau) + \frac{6}{13} \cdot \delta (t - 2\tau)\hspace{0.05cm}. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | [[File:P_ID1902__Mod_Z_5_5e.png| | + | |
+ | [[File:P_ID1902__Mod_Z_5_5e.png|right|frame|Signals to illustrate the rake receiver]] | ||
+ | '''(5)''' <u>Statements 1 and 4</u> are correct, as shown in the diagram: | ||
+ | *For the received signal r(t) holds: | ||
+ | :r(t) = 0.6 \cdot s(t) + 0.4 \cdot s (t - 1\,{\rm µ s})\hspace{0.05cm}, | ||
+ | *and for the rake output signal b(t): | ||
+ | :b(t) = \frac{6}{13} \cdot s(t) + 1 \cdot s (t - 1\,{\rm µ s}) + \frac{6}{13} \cdot s (t - 2\,{\rm µ s}) \hspace{0.05cm}. | ||
+ | *The overshoot of the output signal ⇒ b(t) > 1 is due to the normalization factor K = 25/13. | ||
+ | *With K = 1, the maximum value of b(t) would actually be 1. | ||
{{ML-Fuß}} | {{ML-Fuß}} | ||
Line 103: | Line 118: | ||
− | [[Category: | + | [[Category:Modulation Methods: Exercises|^5.4 BER of the PN Modulation^]] |
Latest revision as of 17:03, 7 February 2023
The diagram shows a two-way channel (yellow background). The corresponding descriptive equation is:
- r(t) =0.6 \cdot s(t) + 0.4 \cdot s (t - \tau) \hspace{0.05cm}.
Let the delay on the secondary path be τ = 1 \ \rm µ s.
Drawn below is the structure of a rake receiver (green background) with general coefficients K, h_0, h_1, τ_0 and τ_1.
- The purpose of the rake receiver is to combine the energy of the two signal paths, making the decision more reliable.
- The combined impulse response of the channel (German: "Kanal" ⇒ subscript "K") and the rake receiver can be expressed in the form
- h_{\rm KR}(t) = A_0 \cdot \delta (t ) + A_1 \cdot \delta (t - \tau) + A_2 \cdot \delta (t - 2\tau)
- but only if the rake coefficients h_0, h_1, τ_0 and τ_1 are appropriately chosen.
- The main part of h_{\rm KR}(t) is supposed to be at t = τ.
- The constant K is to be chosen so that the amplitude of the main path A_1 = 1 :
- K= \frac{1}{h_0^2 + h_1^2}.
Apart from the rake parameters, the signals r(t) and b(t) are sought when s(t) is a rectangle of height s_0 = 1 and width T = \ \rm 5 µ s.
Notes:
- The exercise belongs to the chapter Error Probability of Direct-Sequence Spread Spectrum Modulation.
- Reference is made in particular to the section Principle of the rake receiver.
Questions
Solution
(1) Solution 1 is correct:
- The impulse response h_{\rm K}(t) is obtained as the received signal r(t) when there is a Dirac delta pulse at the input ⇒ s(t) = δ(t). It follows that:
- h_{\rm K}(t) = 0.6 \cdot \delta (t ) + 0.4 \cdot \delta (t - \tau) \hspace{0.05cm}.
(2) Solutions 2 and 3 are correct:
- By definition, the channel frequency response H_{\rm K}(f) is the Fourier transform of the impulse response h_{\rm K}(t). With the shift theorem this results in:
- H_{\rm K}(f) = 0.6 + 0.4 \cdot {\rm e}^{ \hspace{0.03cm}{\rm j} \hspace{0.03cm} \cdot \hspace{0.03cm}2 \pi f \tau}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} H_{\rm K}(f= 0) = 0.6 + 0.4 = 1 \hspace{0.05cm}.
- Accordingly, the first proposed solution is incorrect in contrast to the other two:
- H_{\rm K}(f) is complex-valued and
- the magnitude is periodic with 1/τ, as the following calculation shows:
- |H_{\rm K}(f)|^2 = \left [0.6 + 0.4 \cdot \cos(2 \pi f \tau) \right ]^2 + \left [ 0.4 \cdot \sin(2 \pi f \tau) \right ]^2 = \left [0.6^2 + 0.4^2 \cdot \left ( \cos^2(2 \pi f \tau) + \sin^2(2 \pi f \tau)\right ) \right ] + 2 \cdot 0.6 \cdot 0.4 \cdot \cos(2 \pi f \tau).
- For f = 0, |H_{\rm K}(f)| = 1. This value is repeated in the respective frequency spacing 1/τ.
(3) We first set K = 1 as agreed.
- Altogether we get from s(t) to the output signal b(t) via four paths.
- To satisfy the given h_{\rm KR}(t) equation, either τ_0 = 0 must hold or τ_1 = 0. With τ_0 = 0 we obtain for the impulse response:
- h_{\rm KR}(t) = 0.6 \cdot h_0 \cdot \delta (t ) + 0.4 \cdot h_0 \cdot \delta (t - \tau) + 0.6 \cdot h_1 \cdot \delta (t -\tau_1) + 0.4 \cdot h_1 \cdot \delta (t - \tau-\tau_1) \hspace{0.05cm}.
- To be able to focus the "main energy" at a certain time point, τ_1 = τ would have to be chosen.
- With h_0 = 0.6 and h_1 = 0.4, we then obtain A_0 ≠ A_2:
- h_{\rm KR}(t) = 0.36 \cdot \delta (t ) +0.48 \cdot \delta (t - \tau) + 0.16 \cdot \delta (t - 2\tau)\hspace{0.05cm}.
- In contrast, with h_0 = 0.6, h_1 = 0.4, τ_0 = τ and τ_1 = 0:
- h_{\rm KR}(t) = 0.6 \cdot h_0 \cdot \delta (t - \tau ) + 0.4 \cdot h_0 \cdot \delta (t - 2\tau) + 0.6 \cdot h_1 \cdot \delta (t) + 0.4 \cdot h_1 \cdot \delta (t - \tau)= 0.24 \cdot \delta (t ) +0.52 \cdot \delta (t - \tau) + 0.24 \cdot \delta (t - 2\tau) \hspace{0.05cm}.
- Here, the additional condition A_0 = A_2 is satisfied. Thus, the result we are looking for is:
- \underline{\tau_0 = \tau = 1\,{\rm µ s} \hspace{0.05cm},\hspace{0.2cm}\tau_1 =0} \hspace{0.05cm}.
(4) The following must apply to the normalization factor:
- K= \frac{1}{h_0^2 + h_1^2} = \frac{1}{0.6^2 + 0.4^2} = \frac{1}{0.52} \hspace{0.15cm}\underline {\approx 1.923} \hspace{0.05cm}.
- This gives for the common impulse response (it holds 0.24/0.52 = 6/13):
- h_{\rm KR}(t) = \frac{6}{13} \cdot \delta (t ) + 1.00 \cdot \delta (t - \tau) + \frac{6}{13} \cdot \delta (t - 2\tau)\hspace{0.05cm}.
(5) Statements 1 and 4 are correct, as shown in the diagram:
- For the received signal r(t) holds:
- r(t) = 0.6 \cdot s(t) + 0.4 \cdot s (t - 1\,{\rm µ s})\hspace{0.05cm},
- and for the rake output signal b(t):
- b(t) = \frac{6}{13} \cdot s(t) + 1 \cdot s (t - 1\,{\rm µ s}) + \frac{6}{13} \cdot s (t - 2\,{\rm µ s}) \hspace{0.05cm}.
- The overshoot of the output signal ⇒ b(t) > 1 is due to the normalization factor K = 25/13.
- With K = 1, the maximum value of b(t) would actually be 1.