Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 1.6: Root Nyquist System"

From LNTwww
 
(11 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Optimierung der Basisbandübertragungssysteme
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems
 
}}
 
}}
  
  
[[File:P_ID1292__Dig_A_1_6.png|right|frame|Sender & Empfänger: Cosinus-Spektrum]]
+
[[File:P_ID1292__Dig_A_1_6.png|right|frame|Cosine spectrum (transmitter & receiver)]]
Die nebenstehende Grafik zeigt
+
The diagram on the right shows
*das Spektrum  Gs(f)  des Sendegrundimpulses,
+
*the spectrum  Gs(f)  of the basic transmission pulse,
*den Frequenzgang  HE(f)  des Empfangsfilters
+
*the frequency response  HE(f)  of the receiver filter
  
  
eines binären und bipolaren Übertragungssystems, die zueinander formgleich sind:
+
of a binary and bipolar transmission system, which are identical in shape to each other:
 
:$$G_s(f)  =  \left\{ \begin{array}{c} A \cdot \cos \left( \frac {\pi \cdot f}{2 \cdot f_2} \right)  \\
 
:$$G_s(f)  =  \left\{ \begin{array}{c} A \cdot \cos \left( \frac {\pi \cdot f}{2 \cdot f_2} \right)  \\
 
  \\ 0 \\  \end{array} \right.\quad
 
  \\ 0 \\  \end{array} \right.\quad
\begin{array}{*{1}c} {\rm{f\ddot{u}r}}\\  \\  \\ \end{array}
+
\begin{array}{*{1}c} {\rm{for}}\\  \\  \\ \end{array}
\begin{array}{*{20}c}|f| \le f_2 \hspace{0.05cm}, \\ \\  {\rm sonst }\hspace{0.05cm}, \\
+
\begin{array}{*{20}c}|f| \le f_2 \hspace{0.05cm}, \\ \\  {\rm else }\hspace{0.05cm}, \\
 
\end{array}$$
 
\end{array}$$
 
:$$H_{\rm E }(f)  =  \left\{ \begin{array}{c} 1 \cdot \cos \left( \frac {\pi \cdot f}{2 \cdot f_2} \right)  \\
 
:$$H_{\rm E }(f)  =  \left\{ \begin{array}{c} 1 \cdot \cos \left( \frac {\pi \cdot f}{2 \cdot f_2} \right)  \\
 
  \\ 0 \\  \end{array} \right.\quad
 
  \\ 0 \\  \end{array} \right.\quad
\begin{array}{*{1}c} {\rm{f\ddot{u}r}}\\  \\  \\ \end{array}
+
\begin{array}{*{1}c} {\rm{for}}\\  \\  \\ \end{array}
\begin{array}{*{20}c}|f| \le f_2 \hspace{0.05cm}, \\ \\  {\rm sonst }\hspace{0.05cm}. \\
+
\begin{array}{*{20}c}|f| \le f_2 \hspace{0.05cm}, \\ \\  {\rm else }\hspace{0.05cm}. \\
 
\end{array}$$
 
\end{array}$$
In der gesamten Aufgabe gelte  A = 10^{–6} \ \rm V/Hz  und  f_{2} = 1 \ \rm MHz.
+
In the whole exercise  A = 10^{–6} \ \rm V/Hz  and  f_{2} = 1 \ \rm MHz are valid.
  
*Unter der Voraussetzung, dass die Bitrate  R = 1/T  richtig gewählt wird, erfüllt der Detektionsgrundimpuls  g_{d}(t) = g_{s}(t) ∗ h_{\rm E}(t)  das erste Nyquistkriterium.  
+
*Assuming that the bit rate  R = 1/T  is chosen correctly,  the basic transmitter pulse  g_{d}(t) = g_{s}(t) ∗ h_{\rm E}(t)  satisfies the first Nyquist criterion.
*Bei der dazugehörigen Spektralfunktion  G_{d}(f)  erfolgt dabei der Flankenabfall cosinusförmig ähnlich einem Cosinus–Rolloff–Spektrum.  
+
*For the associated spectral function  G_{d}(f),  the rolloff thereby occurs cosinusoidally similar to a cosine rolloff spectrum.
*Der Rolloff–Faktor  r  ist in dieser Aufgabe zu ermitteln.
+
*The rolloff factor  r  is to be determined in this exercise.
  
  
  
  
 +
Notes:
 +
*The exercise belongs to the chapter   [[Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems|"Optimization of Baseband Transmission Systems"]].
 +
 +
*Numerical values of the Q-function are provided,  for example,  by the interactive HTML5/JS applet  [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|"Complementary Gaussian Error Functions"]].
  
 
+
*The crest factor is the quotient of the maximum and the rms value of the transmitted signal and thus a measure of the intersymbol interfering at the transmitting end:
''Hinweise:''
 
*Die Aufgabe gehört zum  Kapitel   [[Digitalsignalübertragung/Optimierung_der_Basisbandübertragungssysteme|Optimierung der Basisbandübertragungssysteme]].
 
 
*Zahlenwerte der Q–Funktion liefert zum Beispiel das interaktive Applet  [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen_(neues_Applet)|Komplementäre Gaußsche Fehlerfunktionen]].
 
*Der Crestfaktor ist der Qotient aus Maximalwert und Effektivwert des Sendesignals und damit ein Maß für die sendeseitigen Impulsinterferenzen:
 
 
:C_{\rm S} =  \frac{s_0}{\sqrt{E_{\rm B}/T}} = \frac{{\rm Max}[s(t)]}{\sqrt{{\rm E}[s^2(t)]}}=  {s_0}/{s_{\rm eff}}.
 
:C_{\rm S} =  \frac{s_0}{\sqrt{E_{\rm B}/T}} = \frac{{\rm Max}[s(t)]}{\sqrt{{\rm E}[s^2(t)]}}=  {s_0}/{s_{\rm eff}}.
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie das Nyquistspektrum &nbsp;G_{d}(f). Wie groß sind die Nyquistfrequenz und der Rolloff–Faktor?
+
{Calculate the Nyquist spectrum &nbsp;G_{d}(f).&nbsp; What is the Nyquist frequency and the rolloff factor?
 
|type="{}"}
 
|type="{}"}
 
f_{\rm Nyq} \ = \ { 0.5 3% } \ \rm MHz
 
f_{\rm Nyq} \ = \ { 0.5 3% } \ \rm MHz
 
r \ = \ { 1 3% }
 
r \ = \ { 1 3% }
  
{Wie groß ist die Bitrate des vorliegenden Nyquistsystems?
+
{What is the bit rate of the Nyquist system at hand?
 
|type="{}"}
 
|type="{}"}
 
R \ = \ { 1 3% } \ \rm Mbit/s
 
R \ = \ { 1 3% } \ \rm Mbit/s
  
{Warum handelt es sich unter der Nebenbedingung „Leistungsbegrenzung” um ein optimales System?
+
{Why is it an optimal system under the constraint&nbsp; "power limitation"?
 
|type="[]"}
 
|type="[]"}
+Das Gesamtsystem erfüllt die Nyquistbedingung.
+
+The overall system satisfies the Nyquist condition.
-Der Crestfaktor ist &nbsp;C_{\rm S} = 1.
+
-The crest factor is &nbsp;C_{\rm S} = 1.
+Das Empfangsfilter &nbsp;H_{\rm E}(f)&nbsp; ist an den Sendegrundimpuls &nbsp;G_{s}(f)&nbsp; angepasst.
+
+The receiver filter &nbsp;H_{\rm E}(f)&nbsp; is matched to the basic transmission pulse &nbsp;G_{s}(f).&nbsp;  
  
{Welche Bitfehlerwahrscheinlichkeit ergibt sich, wenn für die Leistungsdichte des AWGN–Rauschens &nbsp;N_{0} = 8 \cdot 10^{–8}\ \rm V^{2}/Hz&nbsp; (bezogen auf &nbsp;1 Ω)&nbsp; gilt?
+
{What is the bit error probability if the power density of the AWGN noise is &nbsp;N_{0} = 8 \cdot 10^{–8}\ \rm V^{2}/Hz&nbsp; (referenced to &nbsp;1 Ω)?&nbsp;  
 
|type="{}"}
 
|type="{}"}
 
p_{\rm B} \ = \ { 0.287 3% } \ \cdot 10^{-6}
 
p_{\rm B} \ = \ { 0.287 3% } \ \cdot 10^{-6}
Line 66: Line 65:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Mit den Funktionen G_{s}(f) und H_{\rm E}(f) gilt für das Spektrum des Detektionsgrundimpulses für |f| \leq f_{2}:
+
'''(1)'''&nbsp; With the functions&nbsp; G_{s}(f)&nbsp; and&nbsp; H_{\rm E}(f),&nbsp; the spectrum of the basic detection pulse for&nbsp; |f| \leq f_{2}:
 
:G_d(f)  =  G_s(f) \cdot H_{\rm E}(f) = A \cdot \cos^2 \left( \frac {\pi \cdot f}{2 \cdot f_2} \right).
 
:G_d(f)  =  G_s(f) \cdot H_{\rm E}(f) = A \cdot \cos^2 \left( \frac {\pi \cdot f}{2 \cdot f_2} \right).
Nach der allgemeinen Definition des Cosinus–Rolloff–Spektrums ergeben sich die Eckfrequenzen f_{1} = 0 und f_{2} = 1\ \rm MHz. Daraus folgt für die Nyquistfrequenz (Symmetriepunkt bezüglich des Flankenabfalls):
+
*According to the general definition of the cosine rolloff spectrum,&nbsp; the corner frequencies are&nbsp; f_{1} = 0&nbsp; and&nbsp; f_{2} = 1\ \rm MHz.
 +
* From this follows for the Nyquist frequency&nbsp; (symmetry point with respect to the rolloff):
 
:$$f_{\rm Nyq} =  \frac{f_1 +f_2 }
 
:$$f_{\rm Nyq} =  \frac{f_1 +f_2 }
 
{2 } \hspace{0.1cm}\underline { = 0.5\,{\rm MHz}}\hspace{0.05cm}.$$
 
{2 } \hspace{0.1cm}\underline { = 0.5\,{\rm MHz}}\hspace{0.05cm}.$$
Der Rolloff–Faktor beträgt
+
*The rolloff factor is
 
:r = \frac{f_2 -f_1 } {f_2 +f_1 } \hspace{0.1cm}\underline {= 1} \hspace{0.05cm}.
 
:r = \frac{f_2 -f_1 } {f_2 +f_1 } \hspace{0.1cm}\underline {= 1} \hspace{0.05cm}.
Das bedeutet: G_{d}(f) beschreibt ein \cos^{2}–Spektrum.
+
*This means: &nbsp; G_{d}(f) describes a \cos^{2} spectrum.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; The relationship between Nyquist frequency and symbol duration&nbsp; T&nbsp; is&nbsp; f_{\rm Nyq} = 1/(2T).
 +
*From this it follows for the bit rate&nbsp; R = 1/T = 2 \cdot f_{\rm Nyq}\ \underline{= 1 \ \rm Mbit/s}.
 +
*Note the different units for frequency and bit rate.
  
  
'''(2)'''&nbsp; Der Zusammenhang zwischen Nyquistfrequenz und Symboldauer T lautet f_{\rm Nyq} = 1/(2T). Daraus folgt für die Bitrate R = 1/T = 2 \cdot f_{\rm Nyq}\ \underline{= 1 \ \rm Mbit/s}. Beachten Sie die unterschiedlichen Einheiten für Frequenz und Bitrate.
 
  
 +
'''(3)'''&nbsp; The&nbsp; <u>first and third solutions</u>&nbsp; are correct:
 +
*This is an optimal binary system under the constraint of power limitation.
 +
*The crest factor is not important under power limitation.&nbsp; With the conditions given here,&nbsp; C_{\rm S} > 1 would apply.
  
'''(3)'''&nbsp; Die <u>erste und die dritte Lösungsalternative</u> sind zutreffend:
 
*Es handelt es sich um ein optimales Binärsystem unter der Nebenbedingung der Leistungsbegrenzung.
 
*Der Crestfaktor ist bei Leistungsbegrenzung nicht von Bedeutung. Bei den hier gegebenen Voraussetzungen würde C_{\rm S} > 1 gelten.
 
  
  
'''(4)'''&nbsp; Die Bitfehlerwahrscheinlichkeit eines optimalen Systems kann wie folgt berechnet werden:
+
'''(4)'''&nbsp; The bit error probability of an optimal system can be calculated as follows:
 
:p_{\rm B} =  {\rm Q} \left( \sqrt{{2 \cdot E_{\rm B}}/{N_0}}\right)\hspace{0.05cm}.
 
:p_{\rm B} =  {\rm Q} \left( \sqrt{{2 \cdot E_{\rm B}}/{N_0}}\right)\hspace{0.05cm}.
Im vorliegenden Beispiel erhält man für die mittlere Energie pro Bit:
+
*In the given example,&nbsp; we obtain for the average energy per bit:
 
:$$E_{\rm B}  = \
 
:$$E_{\rm B}  = \
 
  \int_{-\infty}^{+\infty}|G_s(f)|^2 \,{\rm d} f  =
 
  \int_{-\infty}^{+\infty}|G_s(f)|^2 \,{\rm d} f  =
 
  A^2 \cdot \int_{-1/T}^{+1/T} H_{\rm Nyq}(f) \,{\rm d} f  
 
  A^2 \cdot \int_{-1/T}^{+1/T} H_{\rm Nyq}(f) \,{\rm d} f  
 
   = \ \frac {A^2}{T} = \frac {(10^{-6}\,{\rm V/Hz})^2}{10^{-6}\,{\rm s}} = 10^{-6}\,{\rm V^2s}\hspace{0.05cm}.$$
 
   = \ \frac {A^2}{T} = \frac {(10^{-6}\,{\rm V/Hz})^2}{10^{-6}\,{\rm s}} = 10^{-6}\,{\rm V^2s}\hspace{0.05cm}.$$
Mit N_{0} = 8 \cdot 10^{–8} \ \rm V^{2}/Hz ergibt sich daraus weiter:
+
*With&nbsp; N_{0} = 8 \cdot 10^{–8} \ \rm V^{2}/Hz,&nbsp; this further gives:
 
:$$p_{\rm B} =  {\rm Q} \left( \sqrt{\frac{2 \cdot 10^{-6}\,{\rm V^2s}}{8 \cdot 10^{-8}\,{\rm
 
:$$p_{\rm B} =  {\rm Q} \left( \sqrt{\frac{2 \cdot 10^{-6}\,{\rm V^2s}}{8 \cdot 10^{-8}\,{\rm
 
  V^2/Hz}}}\right)=
 
  V^2/Hz}}}\right)=
Line 103: Line 108:
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^1.4 Optimierung der Basisbandsysteme^]]
+
[[Category:Digital Signal Transmission: Exercises|^1.4 Optimization of Baseband Systems^]]

Latest revision as of 17:51, 13 March 2023


Cosine spectrum (transmitter & receiver)

The diagram on the right shows

  • the spectrum  G_{s}(f)  of the basic transmission pulse,
  • the frequency response  H_{\rm E}(f)  of the receiver filter


of a binary and bipolar transmission system, which are identical in shape to each other:

G_s(f) = \left\{ \begin{array}{c} A \cdot \cos \left( \frac {\pi \cdot f}{2 \cdot f_2} \right) \\ \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}}\\ \\ \\ \end{array} \begin{array}{*{20}c}|f| \le f_2 \hspace{0.05cm}, \\ \\ {\rm else }\hspace{0.05cm}, \\ \end{array}
H_{\rm E }(f) = \left\{ \begin{array}{c} 1 \cdot \cos \left( \frac {\pi \cdot f}{2 \cdot f_2} \right) \\ \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}}\\ \\ \\ \end{array} \begin{array}{*{20}c}|f| \le f_2 \hspace{0.05cm}, \\ \\ {\rm else }\hspace{0.05cm}. \\ \end{array}

In the whole exercise  A = 10^{–6} \ \rm V/Hz  and  f_{2} = 1 \ \rm MHz are valid.

  • Assuming that the bit rate  R = 1/T  is chosen correctly,  the basic transmitter pulse  g_{d}(t) = g_{s}(t) ∗ h_{\rm E}(t)  satisfies the first Nyquist criterion.
  • For the associated spectral function  G_{d}(f),  the rolloff thereby occurs cosinusoidally similar to a cosine rolloff spectrum.
  • The rolloff factor  r  is to be determined in this exercise.



Notes:

  • The crest factor is the quotient of the maximum and the rms value of the transmitted signal and thus a measure of the intersymbol interfering at the transmitting end:
C_{\rm S} = \frac{s_0}{\sqrt{E_{\rm B}/T}} = \frac{{\rm Max}[s(t)]}{\sqrt{{\rm E}[s^2(t)]}}= {s_0}/{s_{\rm eff}}.


Questions

1

Calculate the Nyquist spectrum  G_{d}(f).  What is the Nyquist frequency and the rolloff factor?

f_{\rm Nyq} \ = \

\ \rm MHz
r \ = \

2

What is the bit rate of the Nyquist system at hand?

R \ = \

\ \rm Mbit/s

3

Why is it an optimal system under the constraint  "power limitation"?

The overall system satisfies the Nyquist condition.
The crest factor is  C_{\rm S} = 1.
The receiver filter  H_{\rm E}(f)  is matched to the basic transmission pulse  G_{s}(f)

4

What is the bit error probability if the power density of the AWGN noise is  N_{0} = 8 \cdot 10^{–8}\ \rm V^{2}/Hz  (referenced to  1 Ω)

p_{\rm B} \ = \

\ \cdot 10^{-6}


Solution

(1)  With the functions  G_{s}(f)  and  H_{\rm E}(f),  the spectrum of the basic detection pulse for  |f| \leq f_{2}:

G_d(f) = G_s(f) \cdot H_{\rm E}(f) = A \cdot \cos^2 \left( \frac {\pi \cdot f}{2 \cdot f_2} \right).
  • According to the general definition of the cosine rolloff spectrum,  the corner frequencies are  f_{1} = 0  and  f_{2} = 1\ \rm MHz.
  • From this follows for the Nyquist frequency  (symmetry point with respect to the rolloff):
f_{\rm Nyq} = \frac{f_1 +f_2 } {2 } \hspace{0.1cm}\underline { = 0.5\,{\rm MHz}}\hspace{0.05cm}.
  • The rolloff factor is
r = \frac{f_2 -f_1 } {f_2 +f_1 } \hspace{0.1cm}\underline {= 1} \hspace{0.05cm}.
  • This means:   G_{d}(f) describes a \cos^{2} spectrum.


(2)  The relationship between Nyquist frequency and symbol duration  T  is  f_{\rm Nyq} = 1/(2T).

  • From this it follows for the bit rate  R = 1/T = 2 \cdot f_{\rm Nyq}\ \underline{= 1 \ \rm Mbit/s}.
  • Note the different units for frequency and bit rate.


(3)  The  first and third solutions  are correct:

  • This is an optimal binary system under the constraint of power limitation.
  • The crest factor is not important under power limitation.  With the conditions given here,  C_{\rm S} > 1 would apply.


(4)  The bit error probability of an optimal system can be calculated as follows:

p_{\rm B} = {\rm Q} \left( \sqrt{{2 \cdot E_{\rm B}}/{N_0}}\right)\hspace{0.05cm}.
  • In the given example,  we obtain for the average energy per bit:
E_{\rm B} = \ \int_{-\infty}^{+\infty}|G_s(f)|^2 \,{\rm d} f = A^2 \cdot \int_{-1/T}^{+1/T} H_{\rm Nyq}(f) \,{\rm d} f = \ \frac {A^2}{T} = \frac {(10^{-6}\,{\rm V/Hz})^2}{10^{-6}\,{\rm s}} = 10^{-6}\,{\rm V^2s}\hspace{0.05cm}.
  • With  N_{0} = 8 \cdot 10^{–8} \ \rm V^{2}/Hz,  this further gives:
p_{\rm B} = {\rm Q} \left( \sqrt{\frac{2 \cdot 10^{-6}\,{\rm V^2s}}{8 \cdot 10^{-8}\,{\rm V^2/Hz}}}\right)= {\rm Q} \left( \sqrt{25}\right)= {\rm Q} (5) \hspace{0.1cm}\underline {= 0.287 \cdot 10^{-6}}\hspace{0.05cm}.