Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Applets:Complementary Gaussian Error Functions"

From LNTwww
 
(20 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{LntAppletLink|qfunction}}
+
{{LntAppletLinkEnDe|qfunction_en|qfunction}}
    ''Hinweis:''   Das Applet ist für den '''CHROME''' browser optimiert. Bei anderen Browsern kommt es teilweise zu Darstellungsproblemen.
 
  
  
'''Das neue Applet ist noch in Bearbeitung –Hier auch die Vorgängerversion (ungeeignet für Smartphones)'''    
 
{{OldFlash|Z_ID157/QFunction}}
 
  
 +
==Applet Description==
 +
<br>
 +
This applet allows the calculation and graphical representation of the (complementary) Gaussian error functions&nbsp; Q(x)&nbsp; and &nbsp;1/2erfc(x), which are of great importance for error probability calculation.
 +
*Both the abscissa and the function value can be represented either linearly or logarithmically.
 +
*For both functions an upper bound&nbsp; (UB)&nbsp; and a lower bound&nbsp; (LB)&nbsp; are given.
  
==Programmbeschreibung==
+
==Theoretical Background==
 
<br>
 
<br>
Dieses Applet ermöglicht die Berechnung und graphische Darstellung der Gaußschen Fehlerfunktionen&nbsp; ${\rm Q}(x)$&nbsp; und &nbsp;$1/2\cdot {\rm erfc}(x)$, die für die Fehlerwahrscheinlichkeitsberechnung von großer Bedeutung sind.
+
In the study of digital transmission systems, it is often necessary to determine the probability that a (zero mean) Gaussian distributed random variable&nbsp; x&nbsp; with variance&nbsp; σ^2&nbsp; exceeds a given value&nbsp; $x_0$.&nbsp; For this probability holds:
*Sowohl die Abszisse als auch der Funktionswert können entweder linear oder logarithmisch dargestellt werden.
+
:$${\rm Pr}(x > x_0)={\rm Q}(\frac{x_0}{\sigma}) = 1/2 \cdot {\rm erfc}(\frac{x_0}{\sqrt{2} \cdot \sigma}).$$
*Für beide Funktionen wird jeweils eine obere Schranke (englisch:&nbsp; ''Upper Bound '') und eine untere Schranke (englisch:&nbsp; ''Lower Bound'') angegeben.
 
  
 +
===The function {\rm Q}(x )===
  
==Theoretischer Hintergrund==
+
The function&nbsp; {\rm Q}(x)&nbsp; is called the&nbsp; '''complementary Gaussian error integral'''.&nbsp; The following calculation rule applies:  
<br>
 
Bei der Untersuchung digitaler Übertragungssysteme muss oft die Wahrscheinlichkeit bestimmt werden, dass eine (mittelwertfreie) gaußverteilte Zufallsgröße&nbsp; x&nbsp; mit der Varianz&nbsp; σ^2&nbsp; einen vorgegebenen Wert&nbsp; x_0&nbsp; überschreitet. Für diese Wahrscheinlichkeit gilt:
 
:{\rm Pr}(x > x_0)={\rm Q}(\frac{x_0}{\sigma}) = 1/2 \cdot {\rm erfc}(\frac{x_0}{\sqrt{2} \cdot \sigma}).
 
<br>
 
 
===Die Funktion {\rm Q}(x )===
 
<br>
 
Die Funktion&nbsp; {\rm Q}(x)&nbsp; bezeichnet man als das ''Komplementäre Gaußsche Fehlerintegral''. Es gilt folgende Berechnungsvorschrift:  
 
 
:{\rm Q}(x ) = \frac{1}{\sqrt{2\pi}}\int_{x}^{ +\infty}\hspace{-0.2cm}{\rm e}^{-u^{2}/\hspace{0.05cm} 2}\,{\rm d} u .
 
:{\rm Q}(x ) = \frac{1}{\sqrt{2\pi}}\int_{x}^{ +\infty}\hspace{-0.2cm}{\rm e}^{-u^{2}/\hspace{0.05cm} 2}\,{\rm d} u .
*Dieses Integral ist nicht analytisch lösbar und muss &ndash; wenn man dieses Applet nicht zur Verfügung hat &ndash; aus Tabellen entnommen werden.  
+
*This integral cannot be solved analytically and must be taken from tables if one does not have this applet available.
*Speziell für größere&nbsp; x–Werte (also für kleine Fehlerwahrscheinlichkeiten) liefern die nachfolgend angegebenen Schranken eine brauchbare Abschätzung für das Komplementäre Gaußsche Fehlerintegral, die auch ohne Tabellen berechnet werden können.  
+
*Specially for larger&nbsp; x&nbsp; values&nbsp; (i.e., for small error probabilities), the bounds given below provide a useful estimate for&nbsp; ${\rm Q}(x)$, which can also be calculated without tables.  
*Eine obere Schranke (englisch:&nbsp; ''Upper Bound '') des Komplementären Gaußschen Fehlerintegrals lautet:  
+
*An upper bound&nbsp; $\rm  (UB)$&nbsp; of this function is:  
:$${\rm Q}_{\rm UB}(x )=\text{Upper Bound }\big [{\rm Q}(x ) \big ] = \frac{ 1}{\sqrt{2\pi}\cdot x}\cdot {\rm e}^{- x^{2}/\hspace{0.05cm}2} > {\rm Q}(x).$$
+
:{\rm Q}_{\rm UB}(x )=\text{Upper Bound }\big [{\rm Q}(x ) \big ] = \frac{ 1}{\sqrt{2\pi}\cdot x}\cdot {\rm e}^{- x^{2}/\hspace{0.05cm}2} > {\rm Q}(x).
*Entsprechend gilt für die untere Schranke (englisch:&nbsp; ''Lower Bound ''):  
+
*Correspondingly, for the lower bound&nbsp; $\rm  (LB)$:  
:$${\rm Q}_{\rm LB}(x )=\text{Lower Bound }\big [{\rm Q}(x ) \big ] =\frac{1-1/x^2}{\sqrt{2\pi}\cdot x}\cdot {\rm e}^{-x^ 2/\hspace{0.05cm}2} ={\rm Q}_{\rm UB}(x ) \cdot (1-1/x^2)< {\rm Q}(x).$$
+
:{\rm Q}_{\rm LB}(x )=\text{Lower Bound }\big [{\rm Q}(x ) \big ] =\frac{1-1/x^2}{\sqrt{2\pi}\cdot x}\cdot {\rm e}^{-x^ 2/\hspace{0.05cm}2} ={\rm Q}_{\rm UB}(x ) \cdot (1-1/x^2)< {\rm Q}(x).
  
In vielen Programmbibliotheken findet man allerdings  die Funktion&nbsp; {\rm Q}(x )&nbsp; nicht.
+
However, in many program libraries, the function&nbsp; {\rm Q}(x )&nbsp; cannot be found.
 
<br>
 
<br>
  
 +
===The function 1/2 \cdot {\rm erfc}(x )===
  
===Die Funktion 1/2 \cdot {\rm erfc}(x )===
+
On the other hand, in almost all program libraries, you can find the&nbsp; '''complementary Gaussian error function''':
<br>
+
:$${\rm erfc}(x) = \frac{2}{\sqrt{\pi}}\int_{x}^{ +\infty}\hspace{-0.2cm}{\rm e}^{-u^{2}}\,{\rm d} u ,$$
In fast allen Programmbibliotheken findet man dagegen die ''Komplementäre Gaußsche Fehlerfunktion'' (englisch:&nbsp; ''Complementary Gaussian Error Function'')
+
which is related to&nbsp; {\rm Q}(x)&nbsp; as follows: &nbsp; {\rm Q}(x)=1/2\cdot {\rm erfc}(x/{\sqrt{2}}).  
:$${\rm erfc}(x) = \frac{2}{\sqrt{\pi}}\int_{x}^{ +\infty}\hspace{-0.2cm}{\rm e}^{-u^{2}}\,{\rm d} u .$$
+
*Since in almost all applications this function is used with the factor&nbsp; 1/2, in this applet exactly this function was realized:
die mit&nbsp; {\rm Q}(x)&nbsp; wie folgt zusammenhängt: &nbsp; {\rm Q}(x)=1/2\cdot {\rm erfc}(x/{\sqrt{2}}). Da bei fast allen Anwendungen diese Funktion mit dem Faktor&nbsp; 1/2&nbsp; verwendet wird, wurde in diesem Applet genau diese Funktion realisiert:
 
 
:1/2 \cdot{\rm erfc}(x) = \frac{1}{\sqrt{\pi}}\int_{x}^{ +\infty}\hspace{-0.2cm}{\rm e}^{-u^{2}}\,{\rm d} u .
 
:1/2 \cdot{\rm erfc}(x) = \frac{1}{\sqrt{\pi}}\int_{x}^{ +\infty}\hspace{-0.2cm}{\rm e}^{-u^{2}}\,{\rm d} u .
  
*Auch für diese Funktion kann wieder eine obere und eine untere Schranke angegeben werden:  
+
*Once again, an upper and lower bound can be specified for this function:  
:$$\text{Upper Bound }\big [1/2 \cdot{\rm erfc}(x) \big ] = \frac{ 1}{\sqrt{\pi}\cdot 2x}\cdot {\rm e}^{- x^{2}} ,$$
+
:\text{Upper Bound }\big [1/2 \cdot{\rm erfc}(x) \big ] = \frac{ 1}{\sqrt{\pi}\cdot 2x}\cdot {\rm e}^{- x^{2}} ,
:$$\text{Lower Bound }\big [1/2 \cdot{\rm erfc}(x) \big ] = \frac{ {1-1/(2x^2)}}{\sqrt{\pi}\cdot 2x}\cdot {\rm e}^{- x^{2}} .$$
+
:\text{Lower Bound }\big [1/2 \cdot{\rm erfc}(x) \big ] = \frac{ {1-1/(2x^2)}}{\sqrt{\pi}\cdot 2x}\cdot {\rm e}^{- x^{2}} .
<br>
+
 
 +
===When which function offers advantages?===
  
===Wann bietet welche Funktion Vorteile?===
+
{{GreyBox|TEXT=   
<br>
+
$\text{Example 1:}$&nbsp; We consider binary baseband transmission. Here, the bit error probability&nbsp; p_{\rm B} = {\rm Q}({s_0}/{\sigma_d}), where the useful signal can take the values&nbsp; \pm s_0&nbsp; and the noise root-mean-square value&nbsp; \sigma_d&nbsp;.
{{GraueBox|TEXT=   
 
$\text{Beispiel 1:}$&nbsp; Wir betrachten die binäre Basisbandübertragung. Hier lautet die Bitfehlerwahrscheinlichkeit&nbsp; $p_{\rm B} = {\rm Q}({s_0}/{\sigma_d})$, wobei das Nutzsignal die Werte&nbsp; \pm s_0&nbsp; annehmen kann und der Rauscheffektivwert&nbsp; \sigma_d&nbsp; ist.
 
  
Es wird vorausgesetzt, dass Tabellen zur Verfügung stehen, in denen das Argument der Gaußschen Fehlerfunktionen im Abstand&nbsp; 0.1&nbsp; aufgelistet sind. Mit&nbsp; s_0/\sigma_d = 4&nbsp; erhält man für die Bitfehlerwahrscheinlichkeit gemäß der Q&ndash;Funktion:
+
It is assumed that tables are available listing the argument of the two Gaussian error functions at distance&nbsp; 0.1.&nbsp; With&nbsp; s_0/\sigma_d = 4&nbsp; one obtains for the bit error probability according to the function&nbsp; {\rm Q}(x ):
 
:p_{\rm B} = {\rm Q} (4) \approx 0.317 \cdot 10^{-4}\hspace{0.05cm}.
 
:p_{\rm B} = {\rm Q} (4) \approx 0.317 \cdot 10^{-4}\hspace{0.05cm}.
Nach der zweiten Gleichung ergibt sich:
+
According to the second equation, we get:
 
:p_{\rm B} = {1}/{2} \cdot {\rm erfc} ( {4}/{\sqrt{2} })= {1}/{2} \cdot {\rm erfc} ( 2.828)\approx {1}/{2} \cdot {\rm erfc} ( 2.8)= 0.375 \cdot 10^{-4}\hspace{0.05cm}.
 
:p_{\rm B} = {1}/{2} \cdot {\rm erfc} ( {4}/{\sqrt{2} })= {1}/{2} \cdot {\rm erfc} ( 2.828)\approx {1}/{2} \cdot {\rm erfc} ( 2.8)= 0.375 \cdot 10^{-4}\hspace{0.05cm}.
*Richtiger ist der erste Wert. Bei der zweiten Berechnungsart muss man runden oder &ndash; noch besser &ndash; interpolieren, was aufgrund der starken Nichtlinearität dieser Funktion sehr schwierig ist.<br>
+
*The first value is more correct.&nbsp; In the second method of calculation, one must round or &ndash; even better &ndash; interpolate, which is very difficult due to the strong nonlinearity of this function.<br>
*Bei den gegebenen Zahlenwerten ist demnach  Q&ndash;Funktion besser geeignet. Außerhalb von Übungsbeispielen wird allerdings&nbsp; s_0/\sigma_d&nbsp; in der Regel einen &bdquo;krummen&rdquo; Wert besitzen. In diesem Fall bietet&nbsp; {\rm Q}(x)&nbsp; natürlich keinen Vorteil gegenüber&nbsp; 1/2 \cdot{\rm erfc}(x). }}
+
*Accordingly, with the given numerical values, ${\rm Q}(x )$&nbsp; is more suitable.&nbsp; However, outside of exercise examples&nbsp; s_0/\sigma_d&nbsp; will usually have a "curvilinear" value.&nbsp; In this case, of course,&nbsp; {\rm Q}(x)&nbsp; offers no advantage over&nbsp; 1/2 \cdot{\rm erfc}(x). }}
  
  
{{GraueBox|TEXT=   
+
{{GreyBox|TEXT=   
$\text{Beispiel 2:}$&nbsp;  
+
$\text{Example 2:}$&nbsp;  
Mit der Energie pro Bit&nbsp; (E_{\rm B})&nbsp; und der Rauschleistungsdichte&nbsp; (N_0)&nbsp; gilt für die Bitfehlerwahrscheinlichkeit von ''Binary Phase Shift Keying''&nbsp; (BPSK):
+
With the energy per bit&nbsp; (E_{\rm B})&nbsp; and the noise power density&nbsp; (N_0)&nbsp; the bit error probability of ''Binary Phase Shift Keying''&nbsp; (BPSK) is:
:$$p_{\rm B} = {\rm Q} \left ( \sqrt{ {2 E_{\rm B} }/{N_0} }\right ) = {1}/{2} \cdot {\rm erfc} \left ( \sqrt{ {E_{\rm B} }/{N_0} }\right ) \hspace{0.05cm}.$$
+
:p_{\rm B} = {\rm Q} \left ( \sqrt{ {2 E_{\rm B} }/{N_0} }\right ) = {1}/{2} \cdot { \rm erfc} \left ( \sqrt{ {E_{\rm B} }/{N_0} }\right ) \hspace{0.05cm}.
Für die Zahlenwerte&nbsp; $E_{\rm B} = 16 \ \rm mWs$ und $N_0 = 16 \ \rm mW/Hz$&nbsp; erhält man:
+
For the numerical values&nbsp; E_{\rm B} = 16 \rm mWs&nbsp; and&nbsp; $N_0 = 1 \rm mW/Hz$&nbsp; we obtain:
:$$p_{\rm B} = {\rm Q} \left (4 \cdot \sqrt{ 2} \right ) = {1}/{2} \cdot {\rm erfc} \left ( 4\right ) \hspace{0.05cm}.$$
+
:p_{\rm B} = {\rm Q} \left (4 \cdot \sqrt{ 2} \right ) = {1}/{2} \cdot {\rm erfc} \left ( 4\right ) \hspace{0.05cm}.
*Der erste Weg führt zum Ergebnis&nbsp; $p_{\rm B} = {\rm Q} (5.657) \approx {\rm Q} (5.7) = 0.6 \cdot 10^{-8}\hspace{0.05cm}$, während&nbsp; 1/2 \cdot{\rm erfc}(x)&nbsp; hier den richtigeren Wert&nbsp; p_{\rm B} \approx 0.771 \cdot 10^{-8}&nbsp; liefert.  
+
*The first way leads to the result&nbsp; $p_{\rm B} = {\rm Q} (5.657) \approx {\rm Q} (5.7) = 0.6 \cdot 10^{-8}\hspace{0.01cm}$, while &nbsp; 1/2 \cdot{\rm erfc}(x)&nbsp; yields the more correct value&nbsp; p_{\rm B} \approx 0.771 \cdot 10^{-8}&nbsp; here.  
*Wie im ersten Beispiel erkennt man aber auch hier: &nbsp; Die Funktionen&nbsp; {\rm Q}(x)&nbsp; und&nbsp; 1/2 \cdot{\rm erfc}(x)&nbsp; sind grundsätzlich gleich gut geeignet. Vor&ndash; oder Nachteile der einen oder anderen Funktion ergeben sich nur bei konkreten Zahlenwerten.}}
+
*As in the first example, however, you can see: &nbsp; The functions&nbsp; {\rm Q}(x)&nbsp; and&nbsp; 1/2 \cdot{\rm erfc}(x)&nbsp; are basically equally well suited.  
 +
*Advantages or disadvantages of one or the other function arise only for concrete numerical values.}}
 
<br>
 
<br>
 +
 +
==Exercises==
 +
 +
* First select the number&nbsp; (1, 2, \text{...})&nbsp; of the exercise.&nbsp; The number&nbsp; 0&nbsp; corresponds to a "Reset":&nbsp; Same setting as at program start.
 +
*A task description is displayed.&nbsp; The parameter values ​​are adjusted.&nbsp; Solution after pressing "Show solution". <br>
 +
 +
 +
{{BlueBox|TEXT= 
 +
'''(1)''' &nbsp; Find the values of the function&nbsp; {\rm Q}(x)&nbsp; for&nbsp; x=1,&nbsp; x=2,&nbsp; x=4&nbsp; and&nbsp; x=6.&nbsp; Interpret the graphs for linear and logarithmic ordinates.}}
 +
 +
*The applet returns the values&nbsp; {\rm Q}(1)=1.5866 \cdot 10^{-1},&nbsp; {\rm Q}(2)=2. 275 \cdot 10^{-2},&nbsp; {\rm Q}(4)=3.1671 \cdot 10^{-5}&nbsp; and&nbsp; {\rm Q}(6)=9.8659 \cdot 10^{-10}.
 +
*With linear ordinate, the values for&nbsp; x>3&nbsp; are indistinguishable from the zero line.&nbsp; More interesting is the plot with logarithmic ordinate.
 +
 +
 +
{{BlueBox|TEXT= 
 +
'''(2)''' &nbsp; Evaluate the two bounds&nbsp; {\rm UB}(x )=\text{Upper Bound }\big [{\rm Q}(x ) \big ]&nbsp; and&nbsp; {\rm LB}(x )=\text{Lower Bound }\big [{\rm Q}(x ) \big ]&nbsp; for the&nbsp; {\rm Q}&nbsp; function. }}
 +
 +
*For&nbsp; x \ge 2&nbsp; the upper bound is only slightly above&nbsp; {\rm Q}(x)&nbsp; and the lower bound is only slightly below&nbsp; {\rm Q}(x).&nbsp;
 +
*For example:&nbsp; {\rm Q}(x=4)=3.1671 \cdot 10^{-5} &nbsp; &rArr; &nbsp; {\rm LB}(x=4)=3.1366 \cdot 10^{-5}, &nbsp; {\rm UB}(x=4)=3.3458 \cdot 10^{-5}.
 +
*The upper bound has greater significance for assessing a communications system than "LB",&nbsp; since this corresponds to a "worst case" consideration.
  
  
==Zur Handhabung des Applets==
+
{{BlueBox|TEXT=
 +
'''(3)''' &nbsp; Try to use the app to determine&nbsp; ${\rm Q}(x=2 \cdot \sqrt{2} \approx 2.828)$&nbsp; as accurately as possible despite the quantization of the input parameter. }}
 +
*The program returns for&nbsp; x=2.8&nbsp; the too large result&nbsp; 2.5551 \cdot 10^{-3}&nbsp; and for&nbsp; x=2.85&nbsp; the result&nbsp; 2.186 \cdot 10^{-3}.&nbsp; The exact value lies in between.
 +
*But it also holds:&nbsp; {\rm Q}(x=2 \cdot \sqrt{2})=0.5 \cdot {\rm erfc}(x=2).&nbsp; This gives the exact value&nbsp; {\rm Q}(x=2 \cdot \sqrt{2})=2.3389 \cdot 10^{-3}.
 +
 
 +
 
 +
{{BlueBox|TEXT= 
 +
'''(4)''' &nbsp; Find the values of the function&nbsp; 0.5 \cdot {\rm erfc}(x)&nbsp; for&nbsp; x=1,&nbsp; x=2,&nbsp; x=3&nbsp; and&nbsp; x=4.&nbsp; Interpret the exact results and the bounds.}}
 +
 
 +
*The applet returns:&nbsp; 0.5 \cdot {\rm erfc}(1)=7.865 \cdot 10^{-2},&nbsp; 0.5 \cdot {\rm erfc}(2)=2. 3389 \cdot 10^{-3},&nbsp; 0.5 \cdot {\rm erfc}(3)=1.1045 \cdot 10^{-5}&nbsp; and&nbsp; 0.5 \cdot {\rm erfc}(4)=7.7086 \cdot 10^{-9}.
 +
*All the above statements about&nbsp; {\rm Q}(x)&nbsp; with respect to suitable representation type and upper and lower bounds also apply to the function&nbsp; 0.5 \cdot {\rm erfc}(x).
 +
 
 +
 
 +
{{BlueBox|TEXT= 
 +
'''(5)''' &nbsp; The results of&nbsp; '''(4)'''&nbsp; are now to be converted for the case of a logarithmic abscissa.&nbsp; The conversion is done according to&nbsp; \rho\big[{\rm dB}\big ] = 20 \cdot \lg(x). }}
 +
 
 +
* The linear abscissa value&nbsp; x=1&nbsp; leads to the logarithmic abscissa value&nbsp; \rho=0\ \rm dB &nbsp; &rArr; &nbsp; 0. 5 \cdot {\rm erfc}(\rho=0\ {\rm dB})={0.5 \cdot \rm erfc}(x=1)=7.865 \cdot 10^{-2}.
 +
*Similarly&nbsp; 0.5 \cdot {\rm erfc}(\rho=6.021\ {\rm dB}) =0.5 \cdot {\rm erfc}(x=2)=2. 3389 \cdot 10^{-3}, &nbsp; &nbsp; 0.5 \cdot {\rm erfc}(\rho=9.542\ {\rm dB})=0.5 \cdot {\rm erfc}(3)=1.1045 \cdot 10^{-5},&nbsp; &nbsp;
 +
*0.5 \cdot {\rm erfc}(\rho=12.041\ {\rm dB})= 0.5 \cdot {\rm erfc}(4)=7.7086 \cdot 10^{-9}.
 +
*As per right diagram:&nbsp; 0.5 \cdot {\rm erfc}(\rho=6\ {\rm dB}) =2.3883 \cdot 10^{-3}, &nbsp; &nbsp; 0.5 \cdot {\rm erfc}(\rho=9. 5\ {\rm dB}) =1.2109 \cdot 10^{-5}, &nbsp; &nbsp; 0.5 \cdot {\rm erfc}(\rho=12\ {\rm dB}) =9.006 \cdot 10^{-9}.
 +
 
 +
 
 +
{{BlueBox|TEXT=
 +
'''(6)''' &nbsp; Find&nbsp; {\rm Q}(\rho=0\ {\rm dB}),&nbsp; {\rm Q}(\rho=5\ {\rm dB})&nbsp; and&nbsp; {\rm Q}(\rho=10\ {\rm dB}),&nbsp; and establish the relationship between linear and logarithmic abscissa.}}
 +
*The program returns for logarithmic abscissa&nbsp; {\rm Q}(\rho=0\ {\rm dB})=1. 5866 \cdot 10^{-1},&nbsp; {\rm Q}(\rho=5\ {\rm dB})=3.7679 \cdot 10^{-2},&nbsp; {\rm Q}(\rho=10\ {\rm dB})=7.827 \cdot 10^{-4}.
 +
*The conversion is done according to the equation&nbsp; x=10^{\hspace{0.05cm}0.05\hspace{0.05cm} \cdot\hspace{0.05cm} \rho[{\rm dB}]}.&nbsp; For&nbsp; \rho=0\ {\rm dB}&nbsp; we get&nbsp; x=1 &nbsp; &rArr; &nbsp; {\rm Q}(\rho=0\ {\rm dB})={\rm Q}(x=1) =1.5866 \cdot 10^{-1}.
 +
*For&nbsp; \rho=5\ {\rm dB}&nbsp; we get&nbsp; x=1.1778 &nbsp; &rArr; &nbsp; {\rm Q}(\rho=5\ {\rm dB})={\rm Q}(x=1. 778) =3.7679 \cdot 10^{-2}.&nbsp; From the left diagram:&nbsp; {\rm Q}(x=1.8) =3.593 \cdot 10^{-2}.
 +
*For&nbsp; \rho=10\ {\rm dB}&nbsp; we get&nbsp; x=3.162 &nbsp; &rArr; &nbsp; {\rm Q}(\rho=10\ {\rm dB})={\rm Q}(x=3. 162) =7.827 \cdot 10^{-4}.&nbsp; After "quantization":&nbsp; {\rm Q}(x=3.15) =8.1635 \cdot 10^{-4}.
 +
 
 +
 
 +
 
 +
 
 +
==Applet Manual==
 
<br>
 
<br>
  
 
[[File:Qfunction bedienung.png|right|550px]]
 
[[File:Qfunction bedienung.png|right|550px]]
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Verwendete Gleichungen am Beispiel &nbsp;{\rm Q}(x)
+
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Equations used in the example &nbsp;{\rm Q}(x)
  
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Auswahloption für &nbsp;{\rm Q}(x)&nbsp; oder &nbsp;{\rm 0.5 \cdot erfc}(x)
+
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Selection option for &nbsp;{\rm Q}(x)&nbsp; or &nbsp;{\rm 0.5 \cdot erfc}(x)
  
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Schranken &nbsp;{\rm LB}&nbsp; und &nbsp;{\rm UB}&nbsp; werden gezeichnet
+
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Bounds &nbsp;{\rm LB}&nbsp; and &nbsp;{\rm UB}&nbsp; are drawn
  
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Auswahl, ob Abszisse linear &nbsp;\rm (lin)&nbsp; oder logarithmisch &nbsp;\rm (log)&nbsp;
+
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Selection whether abscissa is linear &nbsp;\rm (lin)&nbsp; or logarithmic &nbsp;\rm (log)&nbsp;
  
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Auswahl, ob Ordinate linear &nbsp;\rm (lin)&nbsp; oder logarithmisch &nbsp;\rm (log)&nbsp;
+
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Select whether ordinate is linear &nbsp;\rm (lin)&nbsp; or logarithmic &nbsp;\rm (log)&nbsp;
  
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Numerikausgabe am Beispiel &nbsp;{\rm Q}(x)&nbsp; bei linearer Abszisse
+
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Numerical output using the example &nbsp;{\rm Q}(x)&nbsp; with linear abscissa
  
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Slidereingabe des Abszissenwertes &nbsp;x&nbsp; für lineare Abszisse
+
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Slider input of abscissa value &nbsp;x&nbsp; for linear abscissa
  
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Slidereingabe des Abszissenwertes &nbsp;\rho \ \rm [dB]&nbsp; für logarithmische Abszisse
+
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Slider input of abscissa value &nbsp;\rho \ \rm [dB]&nbsp; for logarithmic abscissa
  
&nbsp; &nbsp; '''(I)''' &nbsp; &nbsp; Grafikausgabe der Funktion  &nbsp;{\rm Q}(x)&nbsp; &ndash; hier:&nbsp; lineare Abszisse
+
&nbsp; &nbsp; '''(I)''' &nbsp; &nbsp; Graphical output of function &nbsp;{\rm Q}(x)&nbsp; &ndash; here:&nbsp; linear abscissa
  
&nbsp; &nbsp; '''(J)''' &nbsp; &nbsp; Grafikausgabe der Funktion  &nbsp;{\rm 0.5 \cdot erfc}(x)&nbsp; &ndash; hier:&nbsp; lineare Abszisse
+
&nbsp; &nbsp; '''(J)''' &nbsp; &nbsp; Graph output of function &nbsp;{\rm 0.5 \cdot erfc}(x)&nbsp; &ndash; here:&nbsp; linear abscissa
  
&nbsp; &nbsp; '''(K)''' &nbsp; &nbsp; Variationsmöglichkeit für die graphischen Darstellungen
+
&nbsp; &nbsp; '''(K)''' &nbsp; &nbsp; Variation possibility for the graphical representations
  
\hspace{1.5cm}&bdquo;+&rdquo; (Vergrößern),  
+
\hspace{1.5cm}"+" (zoom in),  
  
\hspace{1.5cm} &bdquo;-&rdquo; (Verkleinern)
+
\hspace{1.5cm}"-" (zoom out)
  
\hspace{1.5cm} &bdquo;\rm o&rdquo; (Zurücksetzen)
+
\hspace{1.5cm} "\rm o" (Reset)
  
\hspace{1.5cm} &bdquo;\leftarrow&rdquo; (Verschieben nach links), usw.
+
\hspace{1.5cm} "\leftarrow" (Move left), etc.
 
<br clear=all>
 
<br clear=all>
==Über die Autoren==
+
==About the Authors==
Dieses interaktive Berechnungstool  wurde am&nbsp; [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik]&nbsp; der&nbsp; [https://www.tum.de/ Technischen Universität München]&nbsp; konzipiert und realisiert.  
+
<br>
*Die erste Version wurde 2007 von&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Thomas_Gro.C3.9Fer_.28Diplomarbeit_LB_2006.2C_danach_freie_Mitarbeit_bis_2010.29|Thomas Großer]]&nbsp; im Rahmen seiner Diplomarbeit mit &bdquo;FlashMX&ndash;Actionscript&rdquo; erstellt (Betreuer:&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).  
+
This interactive calculation tool was designed and implemented at the&nbsp; [https://www.ei.tum.de/en/lnt/home/ Institute for Communications Engineering]&nbsp; at the&nbsp; [https://www.tum.de/en Technical University of Munich].  
*2018/2019 wurde das Programm  von&nbsp; ''Marwen Ben Ammar''&nbsp;  und&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Xiaohan_Liu_.28Bachelorarbeit_2018.29|Xiaohan Liu]]&nbsp; (Bachelorarbeit, Betreuer:&nbsp; [[Biografien_und_Bibliografien/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]] ) auf  &bdquo;HTML5&rdquo; umgesetzt und neu gestaltet.
+
*The first version was created in 2007 by&nbsp; [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Thomas_Gro.C3.9Fer_.28Diplomarbeit_LB_2006.2C_danach_freie_Mitarbeit_bis_2010.29|Thomas Großer]]&nbsp; as part of his diploma thesis with “FlashMX – Actionscript” (Supervisor: [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).  
 +
*In 2018 the program was redesigned by&nbsp; [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Xiaohan_Liu_.28Bachelorarbeit_2018.29|Xiaohan Liu]]&nbsp; as part of her bachelor thesis&nbsp; (Supervisor: [[Biographies_and_Bibliographies/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]] ) via "HTML5".
 +
*Last revision and English version 2021 by&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|Carolin Mirschina]]&nbsp; in the context of a working student activity.&nbsp;
 +
 
 +
 
 +
The conversion of this applet to HTML 5 was financially supported by&nbsp; [https://www.ei.tum.de/studium/studienzuschuesse/ "Studienzuschüsse"]&nbsp; (Faculty EI of the TU Munich).&nbsp; We thank.
 +
 
  
  
==Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster==
+
==Once again: Open Applet in new Tab==
 
<br>
 
<br>
{{LntAppletLink|qfunction}}
+
{{LntAppletLinkEnDe|qfunction_en|qfunction}}
&nbsp; &nbsp; ''Hinweis:'' &nbsp; Das Applet ist für '''CHROME''' optimiert. Bei anderen Browsern kommt es teilweise zu Darstellungsproblemen.
 

Latest revision as of 19:49, 16 April 2023

Open Applet in new Tab   Deutsche Version Öffnen


Applet Description


This applet allows the calculation and graphical representation of the (complementary) Gaussian error functions  {\rm Q}(x)  and  1/2\cdot {\rm erfc}(x), which are of great importance for error probability calculation.

  • Both the abscissa and the function value can be represented either linearly or logarithmically.
  • For both functions an upper bound  \rm (UB)  and a lower bound  \rm (LB)  are given.

Theoretical Background


In the study of digital transmission systems, it is often necessary to determine the probability that a (zero mean) Gaussian distributed random variable  x  with variance  σ^2  exceeds a given value  x_0.  For this probability holds:

{\rm Pr}(x > x_0)={\rm Q}(\frac{x_0}{\sigma}) = 1/2 \cdot {\rm erfc}(\frac{x_0}{\sqrt{2} \cdot \sigma}).

The function {\rm Q}(x )

The function  {\rm Q}(x)  is called the  complementary Gaussian error integral.  The following calculation rule applies:

{\rm Q}(x ) = \frac{1}{\sqrt{2\pi}}\int_{x}^{ +\infty}\hspace{-0.2cm}{\rm e}^{-u^{2}/\hspace{0.05cm} 2}\,{\rm d} u .
  • This integral cannot be solved analytically and must be taken from tables if one does not have this applet available.
  • Specially for larger  x  values  (i.e., for small error probabilities), the bounds given below provide a useful estimate for  {\rm Q}(x), which can also be calculated without tables.
  • An upper bound  \rm (UB)  of this function is:
{\rm Q}_{\rm UB}(x )=\text{Upper Bound }\big [{\rm Q}(x ) \big ] = \frac{ 1}{\sqrt{2\pi}\cdot x}\cdot {\rm e}^{- x^{2}/\hspace{0.05cm}2} > {\rm Q}(x).
  • Correspondingly, for the lower bound  \rm (LB):
{\rm Q}_{\rm LB}(x )=\text{Lower Bound }\big [{\rm Q}(x ) \big ] =\frac{1-1/x^2}{\sqrt{2\pi}\cdot x}\cdot {\rm e}^{-x^ 2/\hspace{0.05cm}2} ={\rm Q}_{\rm UB}(x ) \cdot (1-1/x^2)< {\rm Q}(x).

However, in many program libraries, the function  {\rm Q}(x )  cannot be found.

The function 1/2 \cdot {\rm erfc}(x )

On the other hand, in almost all program libraries, you can find the  complementary Gaussian error function:

{\rm erfc}(x) = \frac{2}{\sqrt{\pi}}\int_{x}^{ +\infty}\hspace{-0.2cm}{\rm e}^{-u^{2}}\,{\rm d} u ,

which is related to  {\rm Q}(x)  as follows:   {\rm Q}(x)=1/2\cdot {\rm erfc}(x/{\sqrt{2}}).

  • Since in almost all applications this function is used with the factor  1/2, in this applet exactly this function was realized:
1/2 \cdot{\rm erfc}(x) = \frac{1}{\sqrt{\pi}}\int_{x}^{ +\infty}\hspace{-0.2cm}{\rm e}^{-u^{2}}\,{\rm d} u .
  • Once again, an upper and lower bound can be specified for this function:
\text{Upper Bound }\big [1/2 \cdot{\rm erfc}(x) \big ] = \frac{ 1}{\sqrt{\pi}\cdot 2x}\cdot {\rm e}^{- x^{2}} ,
\text{Lower Bound }\big [1/2 \cdot{\rm erfc}(x) \big ] = \frac{ {1-1/(2x^2)}}{\sqrt{\pi}\cdot 2x}\cdot {\rm e}^{- x^{2}} .

When which function offers advantages?

\text{Example 1:}  We consider binary baseband transmission. Here, the bit error probability  p_{\rm B} = {\rm Q}({s_0}/{\sigma_d}), where the useful signal can take the values  \pm s_0  and the noise root-mean-square value  \sigma_d .

It is assumed that tables are available listing the argument of the two Gaussian error functions at distance  0.1.  With  s_0/\sigma_d = 4  one obtains for the bit error probability according to the function  {\rm Q}(x ):

p_{\rm B} = {\rm Q} (4) \approx 0.317 \cdot 10^{-4}\hspace{0.05cm}.

According to the second equation, we get:

p_{\rm B} = {1}/{2} \cdot {\rm erfc} ( {4}/{\sqrt{2} })= {1}/{2} \cdot {\rm erfc} ( 2.828)\approx {1}/{2} \cdot {\rm erfc} ( 2.8)= 0.375 \cdot 10^{-4}\hspace{0.05cm}.
  • The first value is more correct.  In the second method of calculation, one must round or – even better – interpolate, which is very difficult due to the strong nonlinearity of this function.
  • Accordingly, with the given numerical values, {\rm Q}(x )  is more suitable.  However, outside of exercise examples  s_0/\sigma_d  will usually have a "curvilinear" value.  In this case, of course,  {\rm Q}(x)  offers no advantage over  1/2 \cdot{\rm erfc}(x).


\text{Example 2:}  With the energy per bit  (E_{\rm B})  and the noise power density  (N_0)  the bit error probability of Binary Phase Shift Keying  (BPSK) is:

p_{\rm B} = {\rm Q} \left ( \sqrt{ {2 E_{\rm B} }/{N_0} }\right ) = {1}/{2} \cdot { \rm erfc} \left ( \sqrt{ {E_{\rm B} }/{N_0} }\right ) \hspace{0.05cm}.

For the numerical values  E_{\rm B} = 16 \rm mWs  and  N_0 = 1 \rm mW/Hz  we obtain:

p_{\rm B} = {\rm Q} \left (4 \cdot \sqrt{ 2} \right ) = {1}/{2} \cdot {\rm erfc} \left ( 4\right ) \hspace{0.05cm}.
  • The first way leads to the result  p_{\rm B} = {\rm Q} (5.657) \approx {\rm Q} (5.7) = 0.6 \cdot 10^{-8}\hspace{0.01cm}, while   1/2 \cdot{\rm erfc}(x)  yields the more correct value  p_{\rm B} \approx 0.771 \cdot 10^{-8}  here.
  • As in the first example, however, you can see:   The functions  {\rm Q}(x)  and  1/2 \cdot{\rm erfc}(x)  are basically equally well suited.
  • Advantages or disadvantages of one or the other function arise only for concrete numerical values.


Exercises

  • First select the number  (1, 2, \text{...})  of the exercise.  The number  0  corresponds to a "Reset":  Same setting as at program start.
  • A task description is displayed.  The parameter values ​​are adjusted.  Solution after pressing "Show solution".


(1)   Find the values of the function  {\rm Q}(x)  for  x=1x=2x=4  and  x=6.  Interpret the graphs for linear and logarithmic ordinates.

  • The applet returns the values  {\rm Q}(1)=1.5866 \cdot 10^{-1}{\rm Q}(2)=2. 275 \cdot 10^{-2}{\rm Q}(4)=3.1671 \cdot 10^{-5}  and  {\rm Q}(6)=9.8659 \cdot 10^{-10}.
  • With linear ordinate, the values for  x>3  are indistinguishable from the zero line.  More interesting is the plot with logarithmic ordinate.


(2)   Evaluate the two bounds  {\rm UB}(x )=\text{Upper Bound }\big [{\rm Q}(x ) \big ]  and  {\rm LB}(x )=\text{Lower Bound }\big [{\rm Q}(x ) \big ]  for the  {\rm Q}  function.

  • For  x \ge 2  the upper bound is only slightly above  {\rm Q}(x)  and the lower bound is only slightly below  {\rm Q}(x)
  • For example:  {\rm Q}(x=4)=3.1671 \cdot 10^{-5}   ⇒   {\rm LB}(x=4)=3.1366 \cdot 10^{-5},   {\rm UB}(x=4)=3.3458 \cdot 10^{-5}.
  • The upper bound has greater significance for assessing a communications system than "LB",  since this corresponds to a "worst case" consideration.


(3)   Try to use the app to determine  {\rm Q}(x=2 \cdot \sqrt{2} \approx 2.828)  as accurately as possible despite the quantization of the input parameter.

  • The program returns for  x=2.8  the too large result  2.5551 \cdot 10^{-3}  and for  x=2.85  the result  2.186 \cdot 10^{-3}.  The exact value lies in between.
  • But it also holds:  {\rm Q}(x=2 \cdot \sqrt{2})=0.5 \cdot {\rm erfc}(x=2).  This gives the exact value  {\rm Q}(x=2 \cdot \sqrt{2})=2.3389 \cdot 10^{-3}.


(4)   Find the values of the function  0.5 \cdot {\rm erfc}(x)  for  x=1x=2x=3  and  x=4.  Interpret the exact results and the bounds.

  • The applet returns:  0.5 \cdot {\rm erfc}(1)=7.865 \cdot 10^{-2}0.5 \cdot {\rm erfc}(2)=2. 3389 \cdot 10^{-3}0.5 \cdot {\rm erfc}(3)=1.1045 \cdot 10^{-5}  and  0.5 \cdot {\rm erfc}(4)=7.7086 \cdot 10^{-9}.
  • All the above statements about  {\rm Q}(x)  with respect to suitable representation type and upper and lower bounds also apply to the function  0.5 \cdot {\rm erfc}(x).


(5)   The results of  (4)  are now to be converted for the case of a logarithmic abscissa.  The conversion is done according to  \rho\big[{\rm dB}\big ] = 20 \cdot \lg(x).

  • The linear abscissa value  x=1  leads to the logarithmic abscissa value  \rho=0\ \rm dB   ⇒   0. 5 \cdot {\rm erfc}(\rho=0\ {\rm dB})={0.5 \cdot \rm erfc}(x=1)=7.865 \cdot 10^{-2}.
  • Similarly  0.5 \cdot {\rm erfc}(\rho=6.021\ {\rm dB}) =0.5 \cdot {\rm erfc}(x=2)=2. 3389 \cdot 10^{-3},     0.5 \cdot {\rm erfc}(\rho=9.542\ {\rm dB})=0.5 \cdot {\rm erfc}(3)=1.1045 \cdot 10^{-5},   
  • 0.5 \cdot {\rm erfc}(\rho=12.041\ {\rm dB})= 0.5 \cdot {\rm erfc}(4)=7.7086 \cdot 10^{-9}.
  • As per right diagram:  0.5 \cdot {\rm erfc}(\rho=6\ {\rm dB}) =2.3883 \cdot 10^{-3},     0.5 \cdot {\rm erfc}(\rho=9. 5\ {\rm dB}) =1.2109 \cdot 10^{-5},     0.5 \cdot {\rm erfc}(\rho=12\ {\rm dB}) =9.006 \cdot 10^{-9}.


(6)   Find  {\rm Q}(\rho=0\ {\rm dB}){\rm Q}(\rho=5\ {\rm dB})  and  {\rm Q}(\rho=10\ {\rm dB}),  and establish the relationship between linear and logarithmic abscissa.

  • The program returns for logarithmic abscissa  {\rm Q}(\rho=0\ {\rm dB})=1. 5866 \cdot 10^{-1}{\rm Q}(\rho=5\ {\rm dB})=3.7679 \cdot 10^{-2}{\rm Q}(\rho=10\ {\rm dB})=7.827 \cdot 10^{-4}.
  • The conversion is done according to the equation  x=10^{\hspace{0.05cm}0.05\hspace{0.05cm} \cdot\hspace{0.05cm} \rho[{\rm dB}]}.  For  \rho=0\ {\rm dB}  we get  x=1   ⇒   {\rm Q}(\rho=0\ {\rm dB})={\rm Q}(x=1) =1.5866 \cdot 10^{-1}.
  • For  \rho=5\ {\rm dB}  we get  x=1.1778   ⇒   {\rm Q}(\rho=5\ {\rm dB})={\rm Q}(x=1. 778) =3.7679 \cdot 10^{-2}.  From the left diagram:  {\rm Q}(x=1.8) =3.593 \cdot 10^{-2}.
  • For  \rho=10\ {\rm dB}  we get  x=3.162   ⇒   {\rm Q}(\rho=10\ {\rm dB})={\rm Q}(x=3. 162) =7.827 \cdot 10^{-4}.  After "quantization":  {\rm Q}(x=3.15) =8.1635 \cdot 10^{-4}.



Applet Manual


Qfunction bedienung.png

    (A)     Equations used in the example  {\rm Q}(x)

    (B)     Selection option for  {\rm Q}(x)  or  {\rm 0.5 \cdot erfc}(x)

    (C)     Bounds  {\rm LB}  and  {\rm UB}  are drawn

    (D)     Selection whether abscissa is linear  \rm (lin)  or logarithmic  \rm (log) 

    (E)     Select whether ordinate is linear  \rm (lin)  or logarithmic  \rm (log) 

    (F)     Numerical output using the example  {\rm Q}(x)  with linear abscissa

    (G)     Slider input of abscissa value  x  for linear abscissa

    (H)     Slider input of abscissa value  \rho \ \rm [dB]  for logarithmic abscissa

    (I)     Graphical output of function  {\rm Q}(x)  – here:  linear abscissa

    (J)     Graph output of function  {\rm 0.5 \cdot erfc}(x)  – here:  linear abscissa

    (K)     Variation possibility for the graphical representations

\hspace{1.5cm}"+" (zoom in),

\hspace{1.5cm}"-" (zoom out)

\hspace{1.5cm} "\rm o" (Reset)

\hspace{1.5cm} "\leftarrow" (Move left), etc.

About the Authors


This interactive calculation tool was designed and implemented at the  Institute for Communications Engineering  at the  Technical University of Munich.

  • The first version was created in 2007 by  Thomas Großer  as part of his diploma thesis with “FlashMX – Actionscript” (Supervisor: Günter Söder).
  • In 2018 the program was redesigned by  Xiaohan Liu  as part of her bachelor thesis  (Supervisor: Tasnád Kernetzky ) via "HTML5".
  • Last revision and English version 2021 by  Carolin Mirschina  in the context of a working student activity. 


The conversion of this applet to HTML 5 was financially supported by  "Studienzuschüsse"  (Faculty EI of the TU Munich).  We thank.


Once again: Open Applet in new Tab


Open Applet in new Tab   Deutsche Version Öffnen