Difference between revisions of "Aufgaben:Exercise 5.6: Error Correlation Duration"

From LNTwww
 
(9 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Bündelfehlerkanäle}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Burst_Error_Channels}}
  
[[File:P_ID1842__Dig_A_5_6.png|right|frame|Fehlerkorrelationsfunktion beim GE–Modell]]
+
[[File:P_ID1842__Dig_A_5_6.png|right|frame|Error correlation function of the GE model]]
Die Grafik zeigt die ''Fehlerkorrelationsfunktion''  (FKF) des ''Gilbert–Elliott–Modells''  mit den Parametern
+
The graph shows the ''error correlation function''  (ECF) of the ''Gilbert–Elliott model''  with the parameters
 
:$$p_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.001,
 
:$$p_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.001,
 
\hspace{0.2cm}p_{\rm B} = 0.1,\hspace{0.2cm}
 
\hspace{0.2cm}p_{\rm B} = 0.1,\hspace{0.2cm}
Line 11: Line 11:
 
B\hspace{0.05cm}|\hspace{0.05cm} G) = 0.01\hspace{0.05cm}$$
 
B\hspace{0.05cm}|\hspace{0.05cm} G) = 0.01\hspace{0.05cm}$$
  
in logarithmierter Darstellung.
+
in logarithmic representation.
  
Dieses Modell wird in der  [[Aufgaben:Aufgabe_5.6Z:_GE-Modelleigenschaften| Aufgabe 5.6Z]]  ausführlich behandelt. Insbesondere wird in dieser Aufgabe auch die Fehlerkorrelationsfunktion (FKF) berechnet. Mit den Hilfsgrößen
+
This model is discussed in detail in  [[Aufgaben:Exercise_5.6Z:_Gilbert-Elliott_Model|"Exercise 5.6Z"]].  In particular, the error correlation function (ECF) is also calculated in this exercise. With the auxiliary quantities
 
:$$A \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (p_{\rm B}- p_{\rm M})
 
:$$A \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (p_{\rm B}- p_{\rm M})
 
\cdot (p_{\rm M}- p_{\rm
 
\cdot (p_{\rm M}- p_{\rm
Line 21: Line 21:
 
G\hspace{0.05cm}|\hspace{0.05cm} B)$$
 
G\hspace{0.05cm}|\hspace{0.05cm} B)$$
  
kann für diese geschrieben werden:
+
it can be written for:
 
:$$\varphi_{e}(k) =
 
:$$\varphi_{e}(k) =
 
  \left\{ \begin{array}{c} p_{\rm M} \\
 
  \left\{ \begin{array}{c} p_{\rm M} \\
 
  p_{\rm M}^2 + A \cdot (1-B)^k \end{array} \right.\quad
 
  p_{\rm M}^2 + A \cdot (1-B)^k \end{array} \right.\quad
\begin{array}{*{1}c} f{\rm \ddot{u}r }\hspace{0.15cm}k = 0  \hspace{0.05cm},
+
\begin{array}{*{1}c} f{\rm or }\hspace{0.15cm}k = 0  \hspace{0.05cm},
\\  f{\rm \ddot{u}r }\hspace{0.15cm} k > 0 \hspace{0.05cm}.\\ \end{array}$$
+
\\  f{\rm or }\hspace{0.15cm} k > 0 \hspace{0.05cm}.\\ \end{array}$$
  
Hierbei handelt es sich um einen Bündelfehlerkanal. Zur quantitativen Beschreibung der statistischen Bindungen verwendet man oft die Korrelationsdauer gemäß der folgenden Definition:
+
This is a burst error channel. To quantitatively describe the statistical bonds, one often uses the correlation term according to the following definition:
 
:$$D_{\rm K} = \frac{1}{\varphi_{e0} - p_{\rm M}^2} \cdot \sum_{k = 1
 
:$$D_{\rm K} = \frac{1}{\varphi_{e0} - p_{\rm M}^2} \cdot \sum_{k = 1
 
}^{\infty}\hspace{0.1cm}\big [\varphi_{e}(k) - p_{\rm
 
}^{\infty}\hspace{0.1cm}\big [\varphi_{e}(k) - p_{\rm
 
M}^2 \big]\hspace{0.05cm}.$$
 
M}^2 \big]\hspace{0.05cm}.$$
  
Der Bezugswert&nbsp; $\varphi_{e0}$&nbsp; ergibt sich dabei durch <i>Extrapolation</i>&nbsp; der Fehlerkorrelationsfunktion in den Punkt&nbsp; $k = 0$. Ist wie hier der FKF&ndash;Verlauf analytisch gegeben, so kann man&nbsp; $\varphi_{e0}$&nbsp; auch dadurch berechnen, dass man in die eigentlich nur für&nbsp; $k > 0$&nbsp; gültige Gleichung den Wert&nbsp; $k = 0$&nbsp; einsetzt.
+
The reference value&nbsp; $\varphi_{e0}$&nbsp; is obtained by <i>extrapolation</i>&nbsp; of the error correlation function to the point&nbsp; $k = 0$. If, as here, the ECF curve is given analytically,&nbsp; $\varphi_{e0}$&nbsp; can also be calculated by inserting the value&nbsp; $k = 0$&nbsp; into the equation which is actually only valid for&nbsp; $k > 0$.&nbsp;  
  
  
Line 41: Line 41:
  
  
''Hinweise:''
+
''Notes:''
* Die Aufgabe gehört zum Kapitel&nbsp; [[Digitalsignal%C3%BCbertragung/B%C3%BCndelfehlerkan%C3%A4le| Bündelfehlerkanäle]].
+
* The exercise belongs to the chapter&nbsp; [[Digital_Signal_Transmission/Burst_Error_Channels| "Burst Error Channels"]].
*Bezug genommen wird insbesondere auf die Seite&nbsp; [[Digitalsignalübertragung/Bündelfehlerkanäle#Fehlerkorrelationsfunktion_des_GE.E2.80.93Modells|Fehlerkorrelationsfunktion des GE&ndash;Modells]].
+
*Reference is made in particular to the section&nbsp; [[Digital_Signal_Transmission/Burst_Error_Channels#Error_correlation_function_of_the_Gilbert-Elliott_model|"Error correlation function of the Gilbert-Elliott model"]].
 
   
 
   
  
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Welcher FKF&ndash;Wert gilt exakt für&nbsp; $k = 0$?
+
{Which ECF value is exactly valid for&nbsp; $k = 0$?
 
|type="{}"}
 
|type="{}"}
 
$\varphi_e(k = 0) \ = \ ${ 1 3% } $\ \cdot 10^{-2}$
 
$\varphi_e(k = 0) \ = \ ${ 1 3% } $\ \cdot 10^{-2}$
  
{Wie groß ist der aus der gegebenen FKF extrapolierte Wert für&nbsp; $k = 0$?
+
{What is the value extrapolated from the given ECF for&nbsp; $k = 0$?
 
|type="{}"}
 
|type="{}"}
 
$\varphi_{e0} \ = \ ${ 0.091 3% } $\ \cdot 10^{-2}$
 
$\varphi_{e0} \ = \ ${ 0.091 3% } $\ \cdot 10^{-2}$
  
{Welches Ergebnis erhält man für die Fehlerkorrelationsdauer&nbsp; $D_{\rm K}$&nbsp; mit den vorne definierte Größen&nbsp; $A$&nbsp; und&nbsp; $B$?
+
{What result is obtained for the error correlation duration&nbsp; $D_{\rm K}$&nbsp; with the quantities&nbsp; $A$&nbsp; and&nbsp; $B$ defined in front?
|type="[]"}
+
|type="()"}
 
- $D_{\rm K} = A \cdot B$,
 
- $D_{\rm K} = A \cdot B$,
 
- $D_{\rm K} = 1/A \, - B$,
 
- $D_{\rm K} = 1/A \, - B$,
 
+ $D_{\rm K} = 1/B \, -1$.
 
+ $D_{\rm K} = 1/B \, -1$.
  
{Welche Korrelationsdauer ergibt sich beim vorliegenden GE&ndash;Modell?
+
{What is the correlation duration for the GE model at hand?
 
|type="{}"}
 
|type="{}"}
 
$D_{\rm K} \ = \ ${ 8.091 3% }
 
$D_{\rm K} \ = \ ${ 8.091 3% }
  
{Welche Aussagen gelten bezüglich der Korrelationsdauer&nbsp; $D_{\rm K}$&nbsp; des GE&ndash;Modells? Beachten Sie für Ihre Antwort die logarithmische Ordinate.
+
{Which statements are valid regarding the correlation duration&nbsp; $D_{\rm K}$&nbsp; of the GE model? Note the logarithmic ordinate for your answer.
 
|type="[]"}
 
|type="[]"}
+ $D_{\rm K}$&nbsp; bleibt gleich, wenn man&nbsp; ${\rm Pr}({\rm B\hspace{0.05cm}|\hspace{0.05cm}G})$&nbsp; und&nbsp; ${\rm Pr(G\hspace{0.05cm}|\hspace{0.05cm}B)}$&nbsp; vertauscht.
+
+ $D_{\rm K}$&nbsp; remains the same if&nbsp; ${\rm Pr}({\rm B\hspace{0.05cm}|\hspace{0.05cm}G})$&nbsp; and&nbsp; ${\rm Pr(G\hspace{0.05cm}|\hspace{0.05cm}B)}$&nbsp; are interchanged.
- $D_{\rm K}$&nbsp; hängt nur von der Summe&nbsp; ${\rm Pr(G\hspace{0.05cm}|\hspace{0.05cm}B) + Pr(B\hspace{0.05cm}|\hspace{0.05cm}G)}$&nbsp; ab.
+
- $D_{\rm K}$&nbsp; depends only on the sum&nbsp; ${\rm Pr(G\hspace{0.05cm}|\hspace{0.05cm}B) + Pr(B\hspace{0.05cm}|\hspace{0.05cm}G)}$.&nbsp;
- Die rote Fläche in der Grafik ist gleich der blauen Rechteckfläche.
+
- The red area in the graph is equal to the blue rectangular area.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Der FKF&ndash;Wert $\varphi_e(k = 0)$ gibt stets die mittlere Fehlerwahrscheinlichkeit $p_{\rm M}$ an, während der FKF&ndash;Grenzwert für $k &#8594; &#8734;$ gleich $p_{\rm M}^2$ ist. Aus der Grafik auf der Angabenseite kann man $p_{\rm M} \ \underline {= 0.01}$ ablesen. In der [[Aufgaben:5.6Z_GE-Modelleigenschaften|Aufgabe 5.6Z]] wird dieser Wert auf anderem Wege berechnet.
+
'''(1)'''&nbsp; The ECF value $\varphi_e(k = 0)$ always indicates the mean error probability $p_{\rm M}$, while the ECF limit for $k &#8594; &#8734;$ is equal to $p_{\rm M}^2$.  
 +
*From the graph on the information section, one can read $p_{\rm M} \ \underline {= 0.01}$.  
 +
*In [[Aufgaben:Exercise_5.6Z:_Gilbert-Elliott_Model|"Exercise 5.6Z"]], this value is calculated in a different way.
  
  
'''(2)'''&nbsp; Setzt man in die untere FKF&ndash;Gleichung, die eigentlich nur für $k > 0$ gültig ist, den Parameter $k = 0$ ein, so erhält man den gesuchten Extrapolationswert.
+
 
 +
'''(2)'''&nbsp; If we insert the parameter $k = 0$ into the lower ECF equation, which is actually only valid for $k > 0$, we obtain the extrapolation value we are looking for.
 
:$$\varphi_{e0} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} p_{\rm M}^2 +
 
:$$\varphi_{e0} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} p_{\rm M}^2 +
 
  (p_{\rm B}- p_{\rm M}) \cdot (p_{\rm M}- p_{\rm
 
  (p_{\rm B}- p_{\rm M}) \cdot (p_{\rm M}- p_{\rm
Line 87: Line 90:
 
\hspace{0.15cm}\underline {\approx 0.091 \cdot 10^{-2}}\hspace{0.05cm}.$$
 
\hspace{0.15cm}\underline {\approx 0.091 \cdot 10^{-2}}\hspace{0.05cm}.$$
  
'''(3)'''&nbsp; Nach der allgemeinen Definitionsgleichung gilt für die Fehlerkorrelationsdauer
+
 
 +
'''(3)'''&nbsp; According to the general definition equation, the following holds for the error correlation period
 
:$$D_{\rm K} = \frac{1}{\varphi_{e0} - p_{\rm M}^2} \cdot \sum_{k = 1
 
:$$D_{\rm K} = \frac{1}{\varphi_{e0} - p_{\rm M}^2} \cdot \sum_{k = 1
 
}^{\infty}\hspace{0.1cm} [\varphi_{e}(k) - p_{\rm
 
}^{\infty}\hspace{0.1cm} [\varphi_{e}(k) - p_{\rm
 
M}^2]\hspace{0.05cm}.$$
 
M}^2]\hspace{0.05cm}.$$
  
Mit den Ausdrücken
+
*With the expressions
 
:$$A \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (p_{\rm B}- p_{\rm M})
 
:$$A \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (p_{\rm B}- p_{\rm M})
 
\cdot (p_{\rm M}- p_{\rm
 
\cdot (p_{\rm M}- p_{\rm
Line 100: Line 104:
 
G\hspace{0.05cm}|\hspace{0.05cm} B)$$
 
G\hspace{0.05cm}|\hspace{0.05cm} B)$$
  
lässt sich diese Gleichung wie folgt schreiben:
+
:this equation can be written as follows:
 
:$$D_{\rm K} = {1}/{A} \cdot \sum_{k = 1 }^{\infty}\hspace{0.1cm}
 
:$$D_{\rm K} = {1}/{A} \cdot \sum_{k = 1 }^{\infty}\hspace{0.1cm}
 
A \cdot (1 - B)^k = \sum_{k = 1 }^{\infty}\hspace{0.1cm} (1 -
 
A \cdot (1 - B)^k = \sum_{k = 1 }^{\infty}\hspace{0.1cm} (1 -
 
B)^k\hspace{0.05cm}.$$
 
B)^k\hspace{0.05cm}.$$
  
Mit der Summenformel einer geometrischen Reihe ergibt sich daraus das Endergebnis:
+
*Using the summation formula of a geometric series, this gives the final result:
 
:$$D_{\rm K} = {1}/{B} - 1 = \frac{1}{{\rm Pr}(\rm
 
:$$D_{\rm K} = {1}/{B} - 1 = \frac{1}{{\rm Pr}(\rm
 
B\hspace{0.05cm}|\hspace{0.05cm} G) + {\rm Pr}(\rm
 
B\hspace{0.05cm}|\hspace{0.05cm} G) + {\rm Pr}(\rm
 
G\hspace{0.05cm}|\hspace{0.05cm} B)} - 1\hspace{0.05cm}.$$
 
G\hspace{0.05cm}|\hspace{0.05cm} B)} - 1\hspace{0.05cm}.$$
  
Richtig ist also der <u>Lösungsvorschlag 3</u>.
+
*So <u>solution 3</u> is correct.
  
  
'''(4)'''&nbsp; Mit ${\rm Pr(B|G)} = 0.01$ und ${\rm Pr(G|B)} = 0.1$ ergibt sich
+
 
 +
'''(4)'''&nbsp; With ${\rm Pr(B|G)} = 0.01$ and ${\rm Pr(G|B)} = 0.1$ we get
 
:$$D_{\rm K} = \frac{1}{0.01 + 0.1} - 1 \hspace{0.15cm}\underline {\approx 8.091}\hspace{0.05cm}.$$
 
:$$D_{\rm K} = \frac{1}{0.01 + 0.1} - 1 \hspace{0.15cm}\underline {\approx 8.091}\hspace{0.05cm}.$$
  
'''(5)'''&nbsp; Richtig ist nur der <u>Lösungsvorschlag 1</u>, wie in den Musterlösungen zu den letzten Teilaufgaben gezeigt wurde:
+
 
*Damit liegt aber nur die Korrelationsdauer fest:  
+
'''(5)'''&nbsp; Only <u>solution 1</u> is correct, as shown in the sample solutions to the last subtasks:
*Mit ${\rm Pr(B\hspace{0.05cm}|\hspace{0.05cm}G)} = 0.1$ und $\rm Pr(G\hspace{0.05cm}|\hspace{0.05cm}B) = 0.01$ ergibt sich zwar das gleiche $D_{\rm K} = 8.091$ wie mit $\rm Pr(B\hspace{0.05cm}|\hspace{0.05cm}G) = 0.01$ und $\rm Pr(G\hspace{0.05cm}|\hspace{0.05cm}B) = 0.1$.  
+
*Thus the correlation term is fixed, for example:
*Aber nun ist die mittlere Fehlerwahrscheinlichkeit $p_{\rm M} \approx 9.1\%$ statt $1\%$, jeweils für $p_{\rm G} = 0.001$ und $p_{\rm B} = 0.1$.
+
*With ${\rm Pr(B\hspace{0.05cm}|\hspace{0.05cm}G)} = 0.1$ and $\rm Pr(G\hspace{0.05cm}|\hspace{0.05cm}B) = 0.01$ we get the same $D_{\rm K} = 8.091$ as with $\rm Pr(B\hspace{0.05cm}|\hspace{0.05cm}G) = 0.01$ and $\rm Pr(G\hspace{0.05cm}|\hspace{0.05cm}B) = 0.1$.  
*Auch die letzte Aussage ist falsch. Diese Aussage würde nur dann gelten, wenn $\varphi_e(k)$ linear aufgetragen wäre und nicht wie hier logarithmisch.
+
*But now the mean error probability&nbsp; $p_{\rm M} \approx 9.1\%$&nbsp; instead of&nbsp; $1\%$, respectively for&nbsp; $p_{\rm G} = 0.001$&nbsp; and &nbsp;$p_{\rm B} = 0.1$.
 +
*The last statement is also false. This statement would only be true if&nbsp; $\varphi_e(k)$&nbsp; was plotted linearly and not logarithmically as here.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^5.3 Bündelfehlerkanäle^]]
+
[[Category:Digital Signal Transmission: Exercises|^5.3 Burst Error Channels^]]

Latest revision as of 13:22, 19 October 2022

Error correlation function of the GE model

The graph shows the error correlation function  (ECF) of the Gilbert–Elliott model  with the parameters

$$p_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.001, \hspace{0.2cm}p_{\rm B} = 0.1,\hspace{0.2cm} {\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.1, \hspace{0.2cm} {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G) = 0.01\hspace{0.05cm}$$

in logarithmic representation.

This model is discussed in detail in  "Exercise 5.6Z".  In particular, the error correlation function (ECF) is also calculated in this exercise. With the auxiliary quantities

$$A \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (p_{\rm B}- p_{\rm M}) \cdot (p_{\rm M}- p_{\rm G})\hspace{0.05cm},$$
$$B\hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G) + {\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)$$

it can be written for:

$$\varphi_{e}(k) = \left\{ \begin{array}{c} p_{\rm M} \\ p_{\rm M}^2 + A \cdot (1-B)^k \end{array} \right.\quad \begin{array}{*{1}c} f{\rm or }\hspace{0.15cm}k = 0 \hspace{0.05cm}, \\ f{\rm or }\hspace{0.15cm} k > 0 \hspace{0.05cm}.\\ \end{array}$$

This is a burst error channel. To quantitatively describe the statistical bonds, one often uses the correlation term according to the following definition:

$$D_{\rm K} = \frac{1}{\varphi_{e0} - p_{\rm M}^2} \cdot \sum_{k = 1 }^{\infty}\hspace{0.1cm}\big [\varphi_{e}(k) - p_{\rm M}^2 \big]\hspace{0.05cm}.$$

The reference value  $\varphi_{e0}$  is obtained by extrapolation  of the error correlation function to the point  $k = 0$. If, as here, the ECF curve is given analytically,  $\varphi_{e0}$  can also be calculated by inserting the value  $k = 0$  into the equation which is actually only valid for  $k > 0$. 




Notes:



Questions

1

Which ECF value is exactly valid for  $k = 0$?

$\varphi_e(k = 0) \ = \ $

$\ \cdot 10^{-2}$

2

What is the value extrapolated from the given ECF for  $k = 0$?

$\varphi_{e0} \ = \ $

$\ \cdot 10^{-2}$

3

What result is obtained for the error correlation duration  $D_{\rm K}$  with the quantities  $A$  and  $B$ defined in front?

$D_{\rm K} = A \cdot B$,
$D_{\rm K} = 1/A \, - B$,
$D_{\rm K} = 1/B \, -1$.

4

What is the correlation duration for the GE model at hand?

$D_{\rm K} \ = \ $

5

Which statements are valid regarding the correlation duration  $D_{\rm K}$  of the GE model? Note the logarithmic ordinate for your answer.

$D_{\rm K}$  remains the same if  ${\rm Pr}({\rm B\hspace{0.05cm}|\hspace{0.05cm}G})$  and  ${\rm Pr(G\hspace{0.05cm}|\hspace{0.05cm}B)}$  are interchanged.
$D_{\rm K}$  depends only on the sum  ${\rm Pr(G\hspace{0.05cm}|\hspace{0.05cm}B) + Pr(B\hspace{0.05cm}|\hspace{0.05cm}G)}$. 
The red area in the graph is equal to the blue rectangular area.


Solution

(1)  The ECF value $\varphi_e(k = 0)$ always indicates the mean error probability $p_{\rm M}$, while the ECF limit for $k → ∞$ is equal to $p_{\rm M}^2$.

  • From the graph on the information section, one can read $p_{\rm M} \ \underline {= 0.01}$.
  • In "Exercise 5.6Z", this value is calculated in a different way.


(2)  If we insert the parameter $k = 0$ into the lower ECF equation, which is actually only valid for $k > 0$, we obtain the extrapolation value we are looking for.

$$\varphi_{e0} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} p_{\rm M}^2 + (p_{\rm B}- p_{\rm M}) \cdot (p_{\rm M}- p_{\rm G})\hspace{0.05cm} = 10^{-4} + (0.1- 0.01) \cdot (0.01- 0.001)=10^{-4} + 0.09 \cdot 0.009 \hspace{0.15cm}\underline {\approx 0.091 \cdot 10^{-2}}\hspace{0.05cm}.$$


(3)  According to the general definition equation, the following holds for the error correlation period

$$D_{\rm K} = \frac{1}{\varphi_{e0} - p_{\rm M}^2} \cdot \sum_{k = 1 }^{\infty}\hspace{0.1cm} [\varphi_{e}(k) - p_{\rm M}^2]\hspace{0.05cm}.$$
  • With the expressions
$$A \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (p_{\rm B}- p_{\rm M}) \cdot (p_{\rm M}- p_{\rm G}) = \varphi_{e0} - p_{\rm M}^2\hspace{0.05cm},$$
$$B\hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G) + {\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)$$
this equation can be written as follows:
$$D_{\rm K} = {1}/{A} \cdot \sum_{k = 1 }^{\infty}\hspace{0.1cm} A \cdot (1 - B)^k = \sum_{k = 1 }^{\infty}\hspace{0.1cm} (1 - B)^k\hspace{0.05cm}.$$
  • Using the summation formula of a geometric series, this gives the final result:
$$D_{\rm K} = {1}/{B} - 1 = \frac{1}{{\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G) + {\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)} - 1\hspace{0.05cm}.$$
  • So solution 3 is correct.


(4)  With ${\rm Pr(B|G)} = 0.01$ and ${\rm Pr(G|B)} = 0.1$ we get

$$D_{\rm K} = \frac{1}{0.01 + 0.1} - 1 \hspace{0.15cm}\underline {\approx 8.091}\hspace{0.05cm}.$$


(5)  Only solution 1 is correct, as shown in the sample solutions to the last subtasks:

  • Thus the correlation term is fixed, for example:
  • With ${\rm Pr(B\hspace{0.05cm}|\hspace{0.05cm}G)} = 0.1$ and $\rm Pr(G\hspace{0.05cm}|\hspace{0.05cm}B) = 0.01$ we get the same $D_{\rm K} = 8.091$ as with $\rm Pr(B\hspace{0.05cm}|\hspace{0.05cm}G) = 0.01$ and $\rm Pr(G\hspace{0.05cm}|\hspace{0.05cm}B) = 0.1$.
  • But now the mean error probability  $p_{\rm M} \approx 9.1\%$  instead of  $1\%$, respectively for  $p_{\rm G} = 0.001$  and  $p_{\rm B} = 0.1$.
  • The last statement is also false. This statement would only be true if  $\varphi_e(k)$  was plotted linearly and not logarithmically as here.