Difference between revisions of "Aufgaben:Exercise 2.3: Reducible and Irreducible Polynomials"

From LNTwww
 
(14 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Erweiterungskörper}}
+
{{quiz-Header|Buchseite=Channel_Coding/Extension_Field}}
  
[[File:P_ID2503__KC_A_2_3.png|right|frame|Polynome von Grad  m=2,  m=3  und  m=4]]
+
[[File:P_ID2503__KC_A_2_3.png|right|frame|Polynomials of degree  m=2,  m=3,  m=4]]
Wichtige Voraussetzungen für das Verständnis der Kanalcodierung sind Kenntnisse der Polynomeigenschaften. Wir betrachten in dieser Aufgabe Polynome der Form
+
Important prerequisites for understanding channel coding are knowledge of polynomial properties.  
 +
 
 +
In this exercise we consider polynomials of the form
 
:$$a(x) =  a_0 + a_1 \cdot x + a_2 \cdot x^2 + \hspace{0.1cm}... \hspace{0.1cm} + a_m \cdot x^{m}
 
:$$a(x) =  a_0 + a_1 \cdot x + a_2 \cdot x^2 + \hspace{0.1cm}... \hspace{0.1cm} + a_m \cdot x^{m}
 
\hspace{0.05cm},$$
 
\hspace{0.05cm},$$
  
wobei für die Koeffizienten  a_i ∈ {\rm GF}(2) = \{0, \, 1\}  gilt  (0 ≤ i ≤ m) und der höchste Koeffizient stets zu  am=1  vorausgesetzt wird. Man bezeichnet  m  als den ''Grad''  des Polynoms. Nebenstehend sind zehn Polynome angegeben, wobei der Polynomgrad entweder  m=2  (rote Schrift),  m=3  (blaue Schrift) oder  m=4  (grüne Schrift) ist.
+
*where for the coefficients  a_i ∈ {\rm GF}(2) = \{0, \, 1\}  holds  (0 ≤ i ≤ m)
 +
 +
*and the highest coefficient is always assumed to  am=1.   
  
Ein Polynom&nbsp; a(x)&nbsp; bezeichnet man als <b>reduzibel</b>, wenn es als Produkt zweier Polynome&nbsp; p(x)&nbsp; und&nbsp; q(x)&nbsp; mit jeweils niedrigerem Grad dargestellt werden kann:
+
 
 +
One refers to&nbsp; m&nbsp; as the&nbsp; "degree"&nbsp; of the polynomial.
 +
 
 +
Adjacent ten polynomials are given where the polynomial degree is either&nbsp;
 +
*m=2&nbsp; (red font),&nbsp;
 +
*m=3&nbsp; (blue font)&nbsp; or&nbsp;
 +
*m=4&nbsp; (green font).
 +
 
 +
 
 +
A polynomial&nbsp; a(x)&nbsp; is called&nbsp; <b>reducible</b>&nbsp; if it can be represented as the product of two polynomials&nbsp; p(x)&nbsp; and&nbsp; q(x)&nbsp; of lower degree:
 
:a(x)=p(x)q(x)
 
:a(x)=p(x)q(x)
  
Ist dies nicht möglich, das heißt, wenn für das Polynom
+
If this splitting is not possible,&nbsp; that is,&nbsp; if for the polynomial
 
:a(x)=p(x)q(x)+r(x)
 
:a(x)=p(x)q(x)+r(x)
  
mit einem Restpolynom&nbsp; r(x) &ne; 0&nbsp; gilt, so nennt an das Polynom <b>irreduzibel</b>. Solche irreduziblen Polynome sind für die Beschreibung von Fehlerkorrekturverfahren von besonderer Bedeutung.
+
with a residual polynomial&nbsp; r(x) &ne; 0&nbsp; holds,&nbsp; then the polynomial is called&nbsp; '''irreducible'''.&nbsp; Such irreducible polynomials are of special importance for the description of error correction methods.
  
Der Nachweis, dass ein Polynom&nbsp; a(x)&nbsp; vom Grad&nbsp; m&nbsp; irreduzibel ist, erfordert mehrere Polynomdivisionen&nbsp; a(x)/q(x), wobei der Grad des jeweiligen Divisorpolynoms&nbsp; q(x)&nbsp; stets kleiner ist als&nbsp; m. Nur wenn alle diese Modulo&ndash;2&ndash;Divisionen stets einen Rest&nbsp; r(x) &ne; 0&nbsp; liefern, ist nachgewiesen, dass&nbsp; a(x)&nbsp; tatsächlich ein irreduzibles Polynom ist.
+
&rArr; &nbsp; The proof that a polynomial&nbsp; a(x)&nbsp; of degree&nbsp; m&nbsp; is irreducible requires several polynomial divisions&nbsp; a(x)/q(x),&nbsp; where the degree of the respective divisor polynomial&nbsp; q(x)&nbsp; is always smaller than&nbsp; m. &nbsp; Only if all these  divisions&nbsp; (modulo $2)$&nbsp; always yield a remainder&nbsp; r(x) &ne; 0&nbsp; it is proved that&nbsp; a(x)&nbsp; is indeed an irreducible polynomial.
  
Dieser exakte Nachweis ist sehr aufwändig. Notwendige Voraussetzungen dafür, dass&nbsp; a(x)&nbsp; überhaupt ein irreduzibles Polynom sein könnte, sind die beiden Bedingungen (bei nichtbinärer Betrachtungsweise wäre &bdquo;x=1&rdquo; durch &bdquo;x&ne;0&rdquo; zu ersetzen):
+
&rArr; &nbsp; This exact proof is very complex.&nbsp; Necessary conditions for&nbsp; a(x)&nbsp; to be an irreducible polynomial at all are the two conditions&nbsp; $($in nonbinary approach&nbsp; "x=1"&nbsp; would have to be replaced by&nbsp; "x&ne;0"$)$:
 
* a(x=0)=1,
 
* a(x=0)=1,
 +
 
* a(x=1)=1.
 
* a(x=1)=1.
  
  
Ansonsten könnte man für das zu untersuchende Polynom schreiben:
+
Otherwise,&nbsp; one could write for the polynomial under investigation:
:$$a(x) = q(x) \cdot x \hspace{0.5cm}{\rm bzw.}\hspace{0.5cm}a(x) = q(x) \cdot (x+1)\hspace{0.05cm}.$$
+
:$$a(x) = q(x) \cdot x \hspace{0.5cm}{\rm resp.}\hspace{0.5cm}a(x) = q(x) \cdot (x+1)\hspace{0.05cm}.$$
  
Die oben genannten Voraussetzungen sind zwar notwendig, jedoch nicht hinreichend, wie das folgende Beispiel zeigt:
+
The above conditions are necessary,&nbsp; but not sufficient,&nbsp; as the following example shows:
 
:$$a(x) = x^5 + x^4 +1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}a(x = 0) = 1\hspace{0.05cm},\hspace{0.2cm}a(x = 1) = 1
 
:$$a(x) = x^5 + x^4 +1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}a(x = 0) = 1\hspace{0.05cm},\hspace{0.2cm}a(x = 1) = 1
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Trotzdem ist dieses Polynom reduzibel:
+
Nevertheless,&nbsp; this polynomial is reducible:
 
:a(x)=(x3+x+1)(x2+x+1).
 
:a(x)=(x3+x+1)(x2+x+1).
  
  
  
 
+
Hint:&nbsp; This exercise belongs to the chapter&nbsp; [[Channel_Coding/Extension_Field| "Extension field"]].
 
 
''Hinweis:''
 
* Die Aufgabe gehört zum Kapitel&nbsp; [[Kanalcodierung/Erweiterungsk%C3%B6rper| Erweiterungskörper]].
 
  
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Wieviele Polynomdivisionen (ND) sind erforderlich, um exakt nachzuweisen, dass ein GF(2)&ndash;Polynom a(x) vom Grad m irreduzibel ist?
+
{How many polynomial divisions&nbsp; (ND)&nbsp; are required to prove exactly that a&nbsp; GF(2) polynomial&nbsp; a(x)&nbsp; of degree&nbsp; m&nbsp; is irreducible?
 
|type="{}"}
 
|type="{}"}
 
m=2:ND = { 2 3% }
 
m=2:ND = { 2 3% }
Line 50: Line 61:
 
m=4:ND = { 14 3% }
 
m=4:ND = { 14 3% }
  
{Welche der Grad&ndash;2&ndash;Polynome sind irreduzibel?
+
{Which of the degree&ndash;2 polynomials are irreducible?
 
|type="[]"}
 
|type="[]"}
 
- a1(x)=x2+x,
 
- a1(x)=x2+x,
 
+ a2(x)=x2+x+1.
 
+ a2(x)=x2+x+1.
  
{Welche der Grad&ndash;3&ndash;Polynome sind irreduzibel?
+
{Which of the degree&ndash;3 polynomials are irreducible?
 
|type="[]"}
 
|type="[]"}
 
- a3(x)=x3,
 
- a3(x)=x3,
Line 63: Line 74:
 
+ a7(x)=x3+x2+1.
 
+ a7(x)=x3+x2+1.
  
{Welche der Grad&ndash;4&ndash;Polynome sind irreduzibel?
+
{Which of the degree&ndash;4 polynomials are irreducible?
 
|type="[]"}
 
|type="[]"}
 
- a8(x)=x4+1,
 
- a8(x)=x4+1,
Line 70: Line 81:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Das Polynom $a(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \hspace{0.1cm}... \hspace{0.1cm} + a_m \cdot x^{m}$
+
'''(1)'''&nbsp; The polynomial&nbsp; a(x)=a0+a1x+a2x2+...+amxm
*mit am=1  
+
*with&nbsp; am=1
*und gegebenen Koeffizienten a0, a1, ..., am1 (jeweils $0$ oder 1)  
+
 +
*and given coefficients&nbsp; $a_0, \ a_1, \hspace{0.05cm}\text{ ...} \hspace{0.1cm} , \ a_{m-1}$&nbsp; (0&nbsp; or&nbsp; $1$&nbsp; in each case$)$
  
  
ist dann irreduzibel, wenn es kein einziges Polynom q(x) gibt, so dass die Modulo&ndash;2&ndash;Division a(x)/q(x) keinen Rest ergibt. Der Grad aller zu betrachtenden Teilerpolynome q(x) ist mindestens 1 und höchstens m1.
+
is irreducible if there is no single polynomial&nbsp; q(x)&nbsp; such that the modulo&nbsp; 2&nbsp; division&nbsp; a(x)/q(x)&nbsp; yields no remainder.&nbsp; The degree of all divisor polynomials&nbsp; q(x)&nbsp; to be considered is at least&nbsp; 1&nbsp; and at most&nbsp; m1.
* Für m=2 sind zwei Polynomdivisionen a(x)/qi(x) erforderlich, nämlich mit
+
* For&nbsp; m=2&nbsp; two polynomial divisions&nbsp; a(x)/qi(x)&nbsp; are necessary,&nbsp; namely with
:$$q_1(x) = x \hspace{0.5cm}{\rm und}\hspace{0.5cm}q_2(x) = x+1
+
:$$q_1(x) = x \hspace{0.5cm}{\rm and}\hspace{0.5cm}q_2(x) = x+1
 
\hspace{0.3cm} \Rightarrow\hspace{0.3cm}N_{\rm D}\hspace{0.15cm}\underline{= 2}
 
\hspace{0.3cm} \Rightarrow\hspace{0.3cm}N_{\rm D}\hspace{0.15cm}\underline{= 2}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
* Für m=3 gibt es schon ND =6_ Teilerpolynome, nämlich neben q1(x)=x und q2(x)=x+1 noch
+
* For&nbsp; m=3&nbsp; there are already&nbsp; ND =6_&nbsp; divisor polynomials,&nbsp; namely besides&nbsp; q1(x)=x&nbsp; and&nbsp; q2(x)=x+1&nbsp; also
 
:$$q_3(x) = x^2\hspace{0.05cm},\hspace{0.2cm}q_4(x) = x^2+1\hspace{0.05cm},\hspace{0.2cm}
 
:$$q_3(x) = x^2\hspace{0.05cm},\hspace{0.2cm}q_4(x) = x^2+1\hspace{0.05cm},\hspace{0.2cm}
 
q_5(x) = x^2 + x\hspace{0.05cm},\hspace{0.2cm}q_6(x) = x^2+x+1\hspace{0.05cm}.$$
 
q_5(x) = x^2 + x\hspace{0.05cm},\hspace{0.2cm}q_6(x) = x^2+x+1\hspace{0.05cm}.$$
  
* Für m=4 müssen außer q1(x), ..., q6(x) auch noch alle möglichen Teilerpolynome mit Grad m=3 berücksichtigt werden, also:
+
* For&nbsp; m=4,&nbsp; besides&nbsp; q1(x), ..., q6(x)&nbsp; all possible divisor polynomials with degree&nbsp; m=3&nbsp; must also be considered,&nbsp; thus:
 
:$$q_i(x) =  a_0 + a_1 \cdot x + a_2 \cdot x^2 + x^3\hspace{0.05cm},\hspace{0.5cm}a_0, a_1, a_2 \in \{0,1\}  
 
:$$q_i(x) =  a_0 + a_1 \cdot x + a_2 \cdot x^2 + x^3\hspace{0.05cm},\hspace{0.5cm}a_0, a_1, a_2 \in \{0,1\}  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
:Für den Index gilt dabei 7 &#8804; i &#8804; 14 \ \Rightarrow \ N_{\rm D} \ \underline{= 14}.
+
:For the index, 7 &#8804; i &#8804; 14 \ \Rightarrow \ N_{\rm D} \ \underline{= 14}.
  
  
'''(2)'''&nbsp; Für das erste Polynom gilt: a1(x=0)=0. Deshalb ist dieses Polynom reduzibel: a1(x)=x(x+1).
+
'''(2)'''&nbsp; For the first polynomial holds:&nbsp; a1(x=0)=0.&nbsp; Therefore this polynomial is reducible:
 +
:$$a_1(x) = x \cdot (x + 1).$$
  
Dagegen gilt für das zweite Polynom:
+
On the other hand,&nbsp; the following is true for the second polynomial:
 
:$$a_2(x = 0) = 1\hspace{0.05cm},\hspace{0.2cm}a_2(x = 1) = 1
 
:$$a_2(x = 0) = 1\hspace{0.05cm},\hspace{0.2cm}a_2(x = 1) = 1
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Diese notwendige, aber nicht hinreichende Eigenschaft zeigt, dass a2(x) irreduzibel sein könnte. Der endgültige Beweis ergibt sich erst durch zwei Modulo&ndash;2&ndash;Divisionen:
+
This necessary but not sufficient property shows that&nbsp; a2(x)&nbsp; could be irreducible.&nbsp; The final proof is obtained only by two modulo-2 divisions:
* a2(x) geteilt durch x liefert x+1, Rest r(x)=1,
+
* a2(x)&nbsp; divided by&nbsp; x&nbsp; yields&nbsp; x+1,&nbsp; remainder&nbsp; r(x)=1,
* a2(x) geteilt durch x+1 liefert x, Rest r(x)=1.
+
 
 +
* a2(x)&nbsp; divided by&nbsp; x+1&nbsp; yields&nbsp; x,&nbsp; remainder r(x)=1.
  
  
Richtig ist demnach der <u>Lösungsvorschlag 2</u>.
+
The correct solution is therefore the&nbsp; <u>proposed solution 2</u>.
  
  
'''(3)'''&nbsp; Die drei ersten Polynome sind reduzibel, wie die folgenden Rechenergebnisse zeigen:
+
'''(3)'''&nbsp; The first three polynomials are reducible,&nbsp; as the following calculation results show:
 
:$$a_3(x = 0) = 0\hspace{0.05cm},\hspace{0.2cm}a_4(x = 1) = 0\hspace{0.05cm},\hspace{0.2cm}a_5(x = 0) = 0\hspace{0.05cm},\hspace{0.2cm}a_5(x = 1) = 0
 
:$$a_3(x = 0) = 0\hspace{0.05cm},\hspace{0.2cm}a_4(x = 1) = 0\hspace{0.05cm},\hspace{0.2cm}a_5(x = 0) = 0\hspace{0.05cm},\hspace{0.2cm}a_5(x = 1) = 0
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Das hätte man auch durch Nachdenken herausfinden können:
+
This could have been found out by thinking:
 
:a3(x) = xxx,
 
:a3(x) = xxx,
 
:a4(x) = (x2+x+1)(x+1),
 
:a4(x) = (x2+x+1)(x+1),
 
:a5(x) = x(x+1)(x+1).
 
:a5(x) = x(x+1)(x+1).
  
Das Polynom a6(x) ist sowohl für x=0 als auch für x=1 ungleich 0. Das heißt, dass
+
The polynomial&nbsp; a6(x)&nbsp; is not equal to&nbsp; 0&nbsp; for both&nbsp; x=0&nbsp; and&nbsp; x=1&nbsp;. This means that
* &bdquo;nichts dagegen spricht&rdquo;, dass a6(x) irreduzibel ist,
+
* "nothing speaks against"&nbsp; a6(x)&nbsp; being irreducible,
* die Division durch die irreduziblen Grad&ndash;1&ndash;Polynome x bzw. x+1 nicht ohne Rest möglich ist.
+
* division by the irreducible degree-1 polynomials&nbsp; x&nbsp; and&nbsp; x+1,&nbsp; respectively,&nbsp; is not possible without remainder.
  
  
Da aber auch die Division durch das einzige irreduzible Grad&ndash;2&ndash;Polynom einen Rest liefert, ist bewiesen, dass a6(x) ein irreduzibles Polynom ist:  
+
However,&nbsp; since division by the single irreducible degree-2 polynomial also yields a remainder,&nbsp; it is proved that&nbsp; a6(x)&nbsp; is an irreducible polynomial:  
 
:(x3+x+1)/(x2+x+1)=x+1,Restr(x)=x,
 
:(x3+x+1)/(x2+x+1)=x+1,Restr(x)=x,
  
Mit gleichem Rechengang kann auch gezeigt werden, dass a7(x) ebenfalls irreduzibel ist &nbsp; &#8658; &nbsp; <u>Lösungsvorschläge 4 und 5</u>.
+
Using the same computational procedure,&nbsp; it can also be shown that&nbsp; a7(x)&nbsp; is also irreducible &nbsp; &#8658; &nbsp; <u>Solutions 4 and 5</u>.
  
  
'''(4)'''&nbsp; Aus a8(x+1)=0 folgt die Reduzibilität von a8(x). Für die beiden anderen Polynome gilt dagegen:
+
'''(4)'''&nbsp; From&nbsp; a8(x+1)=0&nbsp; follows the reducibility of&nbsp; a8(x).&nbsp; For the other two polynomials,&nbsp; however,&nbsp; holds:
 
:a9(x=0) = 1,a9(x=1)=1,
 
:a9(x=0) = 1,a9(x=1)=1,
 
:a10(x=0) = 1,a10(x=1)=1.
 
:a10(x=0) = 1,a10(x=1)=1.
  
Beide könnten also irreduzibel sein. Der exakte Nachweis der Irreduzibilität ist aufwändiger:  
+
So both could be irreducible.&nbsp; The exact proof of irreducibility is more complicated:  
*Man muss zur Überprüfung zwar nicht alle vier Divisorpolynome mit Grad m=2 heranziehen, nämlich x2, x2+1, x2+x+1, sondern es genügt die Division durch das einzige irreduzible Grad&ndash;2&ndash;Polynom. Man erhält hinsichtlich des Polynoms a9(x):
+
*It is not necessary to use all four divisor polynomials with degree&nbsp; m=2,&nbsp; namely x2, x2+1, x2+x+1,&nbsp; but it is sufficient to divide by the only irreducible degree-2 polynomial.&nbsp; One obtains with respect to the polynomial&nbsp; a9(x):
:$$(x^4 + x^3+1)/(x^2 + x+1) = x^2 + 1 \hspace{0.05cm},\hspace{0.4cm}{\rm Rest}\hspace{0.15cm} r(x) = x\hspace{0.05cm}.$$
+
:$$(x^4 + x^3+1)/(x^2 + x+1) = x^2 + 1 \hspace{0.05cm},\hspace{0.4cm}{\rm remainder}\hspace{0.15cm} r(x) = x\hspace{0.05cm}.$$
  
Auch die Division durch die beiden irreduziblen Grad&ndash;3&ndash;Polynome liefert jeweils einen Rest:
+
Also the division by the two irreducible degree-3 polynomials yields a remainder in each case:
:$$(x^4 + x^3+1)/(x^3 + x+1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x + 1 \hspace{0.05cm},\hspace{0.4cm}{\rm Rest}\hspace{0.15cm} r(x) = x^2\hspace{0.05cm},$$
+
:$$(x^4 + x^3+1)/(x^3 + x+1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x + 1 \hspace{0.05cm},\hspace{0.4cm}{\rm remainder}\hspace{0.15cm} r(x) = x^2\hspace{0.05cm},$$
:$$(x^4 + x^3+1)/(x^3 + x^2+1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x  \hspace{0.05cm},\hspace{0.95cm}{\rm Rest}\hspace{0.15cm} r(x) = x +1\hspace{0.05cm}.$$
+
:$$(x^4 + x^3+1)/(x^3 + x^2+1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x  \hspace{0.05cm},\hspace{0.95cm}{\rm remainder}\hspace{0.15cm} r(x) = x +1\hspace{0.05cm}.$$
  
Betrachten wir schließlich noch das Polynom a10(x)=x4+x2+1. Hier gilt
+
Finally,&nbsp; let us consider the polynomial&nbsp; a10(x)=x4+x2+1.&nbsp; Here holds
:$$(x^4 + x^2+1)/(x^2 + x+1) = x^2 + x+1 \hspace{0.05cm},\hspace{0.4cm}{\rm Rest}\hspace{0.15cm} r(x) = 0\hspace{0.05cm}.$$
+
:$$(x^4 + x^2+1)/(x^2 + x+1) = x^2 + x+1 \hspace{0.05cm},\hspace{0.4cm}{\rm remainder}\hspace{0.15cm} r(x) = 0\hspace{0.05cm}.$$
  
Daraus folgt: Nur das Polynom a9(x) ist irreduzibel &nbsp;&#8658;&nbsp; <u>Lösungsvorschlag 2</u>.
+
It follows:&nbsp; Only the polynomial&nbsp; a9(x)&nbsp; is irreducible &nbsp; &#8658; &nbsp; <u>proposed solution 2</u>.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu  Kanalcodierung|^2.2 Erweiterungskörper^]]
+
[[Category:Channel Coding: Exercises|^2.2 Extension Field^]]

Latest revision as of 17:14, 29 September 2022

Polynomials of degree  m=2m=3m=4

Important prerequisites for understanding channel coding are knowledge of polynomial properties.

In this exercise we consider polynomials of the form

a(x)=a0+a1x+a2x2+...+amxm,
  • where for the coefficients  aiGF(2)={0,1}  holds  (0im)
  • and the highest coefficient is always assumed to  am=1


One refers to  m  as the  "degree"  of the polynomial.

Adjacent ten polynomials are given where the polynomial degree is either 

  • m=2  (red font), 
  • m=3  (blue font)  or 
  • m=4  (green font).


A polynomial  a(x)  is called  reducible  if it can be represented as the product of two polynomials  p(x)  and  q(x)  of lower degree:

a(x)=p(x)q(x)

If this splitting is not possible,  that is,  if for the polynomial

a(x)=p(x)q(x)+r(x)

with a residual polynomial  r(x)0  holds,  then the polynomial is called  irreducible.  Such irreducible polynomials are of special importance for the description of error correction methods.

⇒   The proof that a polynomial  a(x)  of degree  m  is irreducible requires several polynomial divisions  a(x)/q(x),  where the degree of the respective divisor polynomial  q(x)  is always smaller than  m.   Only if all these divisions  (modulo 2)  always yield a remainder  r(x)0  it is proved that  a(x)  is indeed an irreducible polynomial.

⇒   This exact proof is very complex.  Necessary conditions for  a(x)  to be an irreducible polynomial at all are the two conditions  (in nonbinary approach  "x=1"  would have to be replaced by  "x0"):

  • a(x=0)=1,
  • a(x=1)=1.


Otherwise,  one could write for the polynomial under investigation:

a(x)=q(x)xresp.a(x)=q(x)(x+1).

The above conditions are necessary,  but not sufficient,  as the following example shows:

a(x)=x5+x4+1a(x=0)=1,a(x=1)=1.

Nevertheless,  this polynomial is reducible:

a(x)=(x3+x+1)(x2+x+1).


Hint:  This exercise belongs to the chapter  "Extension field".


Questions

1

How many polynomial divisions  (ND)  are required to prove exactly that a  GF(2) polynomial  a(x)  of degree  m  is irreducible?

m=2:ND = 

m=3:ND = 

m=4:ND = 

2

Which of the degree–2 polynomials are irreducible?

a1(x)=x2+x,
a2(x)=x2+x+1.

3

Which of the degree–3 polynomials are irreducible?

a3(x)=x3,
a4(x)=x3+1,
a5(x)=x3+x,
a6(x)=x3+x+1,
a7(x)=x3+x2+1.

4

Which of the degree–4 polynomials are irreducible?

a8(x)=x4+1,
a9(x)=x4+x3+1,
a10(x)=x4+x2+1.


Solution

(1)  The polynomial  a(x)=a0+a1x+a2x2+...+amxm

  • with  am=1
  • and given coefficients  a0, a1, ..., am1  (0  or  1  in each case)


is irreducible if there is no single polynomial  q(x)  such that the modulo  2  division  a(x)/q(x)  yields no remainder.  The degree of all divisor polynomials  q(x)  to be considered is at least  1  and at most  m1.

  • For  m=2  two polynomial divisions  a(x)/qi(x)  are necessary,  namely with
q1(x)=xandq2(x)=x+1ND=2_.
  • For  m=3  there are already  ND =6_  divisor polynomials,  namely besides  q1(x)=x  and  q2(x)=x+1  also
q3(x)=x2,q4(x)=x2+1,q5(x)=x2+x,q6(x)=x2+x+1.
  • For  m=4,  besides  q1(x), ..., q6(x)  all possible divisor polynomials with degree  m=3  must also be considered,  thus:
qi(x)=a0+a1x+a2x2+x3,a0,a1,a2{0,1}.
For the index, 7i14  ND =14_.


(2)  For the first polynomial holds:  a1(x=0)=0.  Therefore this polynomial is reducible:

a1(x)=x(x+1).

On the other hand,  the following is true for the second polynomial:

a2(x=0)=1,a2(x=1)=1.

This necessary but not sufficient property shows that  a2(x)  could be irreducible.  The final proof is obtained only by two modulo-2 divisions:

  • a2(x)  divided by  x  yields  x+1,  remainder  r(x)=1,
  • a2(x)  divided by  x+1  yields  x,  remainder r(x)=1.


The correct solution is therefore the  proposed solution 2.


(3)  The first three polynomials are reducible,  as the following calculation results show:

a3(x=0)=0,a4(x=1)=0,a5(x=0)=0,a5(x=1)=0.

This could have been found out by thinking:

a3(x) = xxx,
a4(x) = (x2+x+1)(x+1),
a5(x) = x(x+1)(x+1).

The polynomial  a6(x)  is not equal to  0  for both  x=0  and  x=1 . This means that

  • "nothing speaks against"  a6(x)  being irreducible,
  • division by the irreducible degree-1 polynomials  x  and  x+1,  respectively,  is not possible without remainder.


However,  since division by the single irreducible degree-2 polynomial also yields a remainder,  it is proved that  a6(x)  is an irreducible polynomial:

(x3+x+1)/(x2+x+1)=x+1,Restr(x)=x,

Using the same computational procedure,  it can also be shown that  a7(x)  is also irreducible   ⇒   Solutions 4 and 5.


(4)  From  a8(x+1)=0  follows the reducibility of  a8(x).  For the other two polynomials,  however,  holds:

a9(x=0) = 1,a9(x=1)=1,
a10(x=0) = 1,a10(x=1)=1.

So both could be irreducible.  The exact proof of irreducibility is more complicated:

  • It is not necessary to use all four divisor polynomials with degree  m=2,  namely x2, x2+1, x2+x+1,  but it is sufficient to divide by the only irreducible degree-2 polynomial.  One obtains with respect to the polynomial  a9(x):
(x4+x3+1)/(x2+x+1)=x2+1,remainderr(x)=x.

Also the division by the two irreducible degree-3 polynomials yields a remainder in each case:

(x4+x3+1)/(x3+x+1) = x+1,remainderr(x)=x2,
(x4+x3+1)/(x3+x2+1) = x,remainderr(x)=x+1.

Finally,  let us consider the polynomial  a10(x)=x4+x2+1.  Here holds

(x4+x2+1)/(x2+x+1)=x2+x+1,remainderr(x)=0.

It follows:  Only the polynomial  a9(x)  is irreducible   ⇒   proposed solution 2.