Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 2.12Z: Reed-Solomon Syndrome Calculation"

From LNTwww
 
(14 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Fehlerkorrektur nach Reed–Solomon–Codierung}}
+
{{quiz-Header|Buchseite=Channel_Coding/Error_Correction_According_to_Reed-Solomon_Coding}}
  
[[File:P_ID2559__KC_T_2_5_Darstellung.png|right|frame|Umrechnungstabelle für das Galoisfeld  GF(23)]]
+
[[File:EN_KC_Z_2_5_neu.png|right|frame|GF(23)  representation as powers, polynomials, vectors]]
Wie in der  [[Aufgaben:Aufgabe_2.12:_Decodierung_beim_RSC_(7,_4,_4)_zur_Basis_8|Aufgabe 2.12]]  betrachten wir den Reed–Solomon–Code  (7,4,4)8, der auf dem Galoisfeld  GF(q)  mit  q=8=23  basiert. Die Grafik zeigt die zugehörige Umrechnungstabelle.  
+
As in the  [[Aufgaben:Exercise_2.12:_Decoding_at_RSC_(7,_4,_4)_to_Base_8|"Exercise 2. 12"]]  we consider the Reed–Solomon code  (7,4,4)8  based on the Galois field  GF(q)  with   q=8=23.   The graph shows the corresponding conversion table.  
  
Gegeben sind die möglichen Codesymbole in Exponentendarstellung (Potenzen von  α)  sowie in Polynom– und Koeffizientenvektordarstellung.
+
Given are the possible code symbols in  
 +
# exponent representation  (powers of  α)   
 +
# polynomialrepresentation,
 +
# coefficient vector representation.
  
Vorgegeben ist das Empfangswort  y_=(α,0,α3,0,1,α,0). Anhand des Syndroms
 
:\underline {s} = (s_0, s_1, s_2) = \underline {y}  \cdot { \boldsymbol{\rm H }}^{\rm T}
 
  
soll überprüft werden, ob einzelne Symbole des Empfangsvektors  \underline{y}  bei der Übertragung verfälscht wurden. Gegeben ist hierzu die Prüfmatrix  \mathbf{H}  des betrachteten Codes und deren Transponierte:
+
Given is the received word   $\underline{y} = (\alpha, \, 0, \, \alpha^3, \, 0, \, 1, \, \alpha, \, 0)$.
 +
 
 +
*Based on the syndrome   \underline {s} = (s_0, s_1, s_2) = \underline {y}  \cdot { \boldsymbol{\rm H }}^{\rm T}   it is to check whether individual symbols of the received vector  \underline{y}  were falsified during transmission.  
 +
 
 +
*Given is the parity-check matrix  \mathbf{H}  of the considered code and its transpose:
 
:$${ \boldsymbol{\rm H}} =  
 
:$${ \boldsymbol{\rm H}} =  
 
\begin{pmatrix}
 
\begin{pmatrix}
Line 29: Line 34:
  
  
 
+
Hints:  This exercise refers to the section  [[Channel_Coding/Error_Correction_According_to_Reed-Solomon_Coding#Step_.28A.29:_Evaluation_of_the_syndrome_in_BDD| "Step (A): Evaluation of the syndrome in BDD"]]  of the chapter  "Error Correction according to Reed–Solomon Coding".
 
 
 
 
 
 
 
 
''Hinweis:''
 
* Die Aufgabe bezieht sich auf die Seite  [[Kanalcodierung/Fehlerkorrektur_nach_Reed%E2%80%93Solomon%E2%80%93Codierung#Schritt_.28A.29:_Auswertung_des_Syndroms_beim_BDD| Schritt  $\rm (A)$: Auswertung des Syndroms beim BDD]]  des Kapitels „Fehlercodierung nach Reed–Solomon–Codierung”.
 
 
   
 
   
  
Line 41: Line 40:
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Empfangen wurde&nbsp; \underline{y} = (\alpha, \, 0, \, \alpha^3, \, 0, \, 1, \, \alpha, \, 0). Geben Sie das erste Element des Syndroms&nbsp; \underline{s} = (s_0, \, s_1, \, s_2)&nbsp; an.
+
{It holds for the weceived word: &nbsp; \underline{y} = (\alpha, \, 0, \, \alpha^3, \, 0, \, 1, \, \alpha, \, 0). Specify the first element of the syndrome&nbsp; \underline{s} = (s_0, \, s_1, \, s_2).
 
|type="()"}
 
|type="()"}
 
+ s_0 = \alpha^4,
 
+ s_0 = \alpha^4,
 
- s_0 = \alpha^5,
 
- s_0 = \alpha^5,
 
- s_0 = \alpha^6,
 
- s_0 = \alpha^6,
- s_0 = 0, \, 1, \, \alpha, \, \alpha^2&nbsp; oder&nbsp; \alpha^3.
+
- s_0 = 0, \, 1, \, \alpha, \, \alpha^2&nbsp; or&nbsp; \alpha^3.
  
{Wie lautet bei gleichem Empfangswort das zweite Syndromelement?
+
{What is the second syndrome element for the same received word?
 
|type="()"}
 
|type="()"}
 
- s_1 = \alpha^4,
 
- s_1 = \alpha^4,
 
+ s_1 = \alpha^5,
 
+ s_1 = \alpha^5,
 
- s_1 = \alpha^6,
 
- s_1 = \alpha^6,
- s_1 = 0, \, 1, \, \alpha, \, \alpha^2&nbsp; oder&nbsp; \alpha^3.
+
- s_1 = 0, \, 1, \, \alpha, \, \alpha^2&nbsp; or&nbsp; \alpha^3.
  
{Wie lautet bei gleichem Empfangswort das dritte Syndromelement?
+
{What is the third syndrome element for the same received word?
 
|type="()"}
 
|type="()"}
 
- s_2 = \alpha^4,
 
- s_2 = \alpha^4,
Line 64: Line 63:
 
- s_2 = 0, \, 1, \, \alpha, \, \alpha^2 oder \alpha^3.
 
- s_2 = 0, \, 1, \, \alpha, \, \alpha^2 oder \alpha^3.
  
{Bekannt ist, dass das vorliegende Empfangswort&nbsp; \underline{y}&nbsp; richtig decodiert werden kann. Wieviele Symbolfehler beinhaltet das Empfangswort?
+
{Known is that the received word &nbsp; \underline{y} &nbsp; can be decoded correctly.&nbsp; How many symbol errors does the received word contain?
 
|type="{}"}
 
|type="{}"}
 
r \ = \ { 1 3% }
 
r \ = \ { 1 3% }
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
[[File:P_ID2560__KC_T_2_5_Darstellung.png|right|frame|Umrechnungstabellen für das Galoisfeld \rm GF(2^3)]]  
+
[[File:EN_KC_Z_2_5_neu.png|right|frame|Conversion tables for the Galois field&nbsp; \rm GF(2^3)]]
'''(1)'''&nbsp; Die entsprechende Gleichung zur Syndromberechnung lautet:
+
'''(1)'''&nbsp; The corresponding equation for syndrome calculation is:
 
:$$\underline {s} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (s_0, s_1, s_2) =
 
:$$\underline {s} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (s_0, s_1, s_2) =
 
\begin{pmatrix}
 
\begin{pmatrix}
Line 88: Line 87:
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Das erste Element ergibt sich zu
+
*The first element results in
 
:$$s_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \alpha \cdot 1 + \alpha^3 \cdot \alpha^2 + 1 \cdot \alpha^4 + \alpha \cdot \alpha^5=
 
:$$s_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \alpha \cdot 1 + \alpha^3 \cdot \alpha^2 + 1 \cdot \alpha^4 + \alpha \cdot \alpha^5=
 
\alpha  + \alpha^5 + \alpha^4+ \alpha^6$$
 
\alpha  + \alpha^5 + \alpha^4+ \alpha^6$$
 
:\Rightarrow\hspace{0.3cm} s_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  (\alpha) + (\alpha^2 + \alpha+ 1)+ (\alpha^2 + \alpha) + + (\alpha^2 +  1) = \alpha^2 + \alpha = \alpha^4\hspace{0.05cm}.
 
:\Rightarrow\hspace{0.3cm} s_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  (\alpha) + (\alpha^2 + \alpha+ 1)+ (\alpha^2 + \alpha) + + (\alpha^2 +  1) = \alpha^2 + \alpha = \alpha^4\hspace{0.05cm}.
  
Richtig ist der <u>Lösungsvorschlag 1</u>.
+
*Correct is the&nbsp; <u>proposed solution 1</u>.
  
  
'''(2)'''&nbsp; Entsprechend gilt für das zweite Syndromelement entsprechend dem der <u>Lösungsvorschlag 2</u>:
+
'''(2)'''&nbsp; Correspondingly,&nbsp; for the second syndrome element,&nbsp; the&nbsp; <u>proposed solution 2</u>&nbsp; applies accordingly:
 
:$$s_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \alpha \cdot 1 + \alpha^3 \cdot \alpha^4 + 1 \cdot \alpha^1 + \alpha \cdot \alpha^3=
 
:$$s_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \alpha \cdot 1 + \alpha^3 \cdot \alpha^4 + 1 \cdot \alpha^1 + \alpha \cdot \alpha^3=
 
\alpha  + \alpha^7 + \alpha+ \alpha^4= 1 + \alpha^4 = \alpha^2 + \alpha + 1 =  \alpha^5
 
\alpha  + \alpha^7 + \alpha+ \alpha^4= 1 + \alpha^4 = \alpha^2 + \alpha + 1 =  \alpha^5
Line 102: Line 101:
  
  
'''(3)'''&nbsp; Zur Berechnung von s_2 muss mit der letzten Matrixspalte multipliziert werden:
+
'''(3)'''&nbsp; To calculate s_2,&nbsp; the received word must be multiplied by the last matrix column:
 
:$$s_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \alpha \cdot 1 + \alpha^3 \cdot \alpha^6 + 1 \cdot \alpha^5 + \alpha \cdot \alpha^1=
 
:$$s_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \alpha \cdot 1 + \alpha^3 \cdot \alpha^6 + 1 \cdot \alpha^5 + \alpha \cdot \alpha^1=
 
\alpha  + \alpha^2 + \alpha^5 + \alpha^2=\alpha^5 + \alpha = (\alpha^2 + \alpha + 1) + \alpha = \alpha^2  + 1 = \alpha^5
 
\alpha  + \alpha^2 + \alpha^5 + \alpha^2=\alpha^5 + \alpha = (\alpha^2 + \alpha + 1) + \alpha = \alpha^2  + 1 = \alpha^5
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Richtig ist der  <u>Lösungsvorschlag 3</u>.
+
*Correct is the&nbsp; <u>proposed solution 3</u>.
 +
 
 +
 
 +
'''(4)'''&nbsp; Due to the calculated syndrome &nbsp; \underline{s} = (\alpha^4, \, \alpha^5, \, \alpha^6) &ne; 0,&nbsp; the received word contains at least one symbol error &nbsp; &#8658; &nbsp; r > 0.
 +
*The present Reed&ndash;Solomon&ndash;code&nbsp; (7, \, 4, \, 4)_8 \ \Rightarrow \ d_{\rm min} = 4&nbsp; cannot correct more than&nbsp; t = &lfloor;d_{\rm min}/2&rfloor; = 1&nbsp; errors.
  
 +
* Since the received word can actually be decoded according to the specification &nbsp; &rArr; &nbsp; \underline{r = 1}.
  
'''(4)'''&nbsp; Aufgrund des errechneten Syndroms $\underline{s} = (\alpha^4, \, \alpha^5, \, \alpha^6) &ne; 0$ beinhaltet das Empfangswort mindestens einen Symbolfehler &nbsp; &#8658; &nbsp; r > 0. Da der vorliegende Reed&ndash;Solomon&ndash;Code (7, \, 4, \, 4)_8 \ \Rightarrow \ d_{\rm min} = 4 auch nicht mehr als t = &lfloor;d_{\rm min}/2&rfloor; = 1 Fehler korrigieren kann und das Empfangswort gemäß der Angabe tatsächlich decodiert werden kann, gilt \underline{r = 1}.
+
*Without this specification&nbsp; "The received word can be decoded",&nbsp; this subtask would not be solvable.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu  Kanalcodierung|^2.5 Fehlerkorrektur nach RSC^]]
+
[[Category:Channel Coding: Exercises|^2.5 Reed-Solomon Error Correction^]]

Latest revision as of 17:30, 23 January 2023

\rm GF(2^3)  representation as powers, polynomials, vectors

As in the  "Exercise 2. 12"  we consider the Reed–Solomon code  (7, \, 4, \, 4)_8  based on the Galois field  {\rm GF}(q)  with   q = 8 = 2^3.   The graph shows the corresponding conversion table.

Given are the possible code symbols in

  1. exponent representation  (powers of  \alpha) 
  2. polynomialrepresentation,
  3. coefficient vector representation.


Given is the received word   \underline{y} = (\alpha, \, 0, \, \alpha^3, \, 0, \, 1, \, \alpha, \, 0).

  • Based on the syndrome   \underline {s} = (s_0, s_1, s_2) = \underline {y} \cdot { \boldsymbol{\rm H }}^{\rm T}   it is to check whether individual symbols of the received vector  \underline{y}  were falsified during transmission.
  • Given is the parity-check matrix  \mathbf{H}  of the considered code and its transpose:
{ \boldsymbol{\rm H}} = \begin{pmatrix} 1 & \alpha^1 & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6\\ 1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^1 & \alpha^{3} & \alpha^{5}\\ 1 & \alpha^3 & \alpha^6 & \alpha^2 & \alpha^{5} & \alpha^{1} & \alpha^{4} \end{pmatrix} \hspace{0.05cm},\hspace{0.4cm} { \boldsymbol{\rm H}}^{\rm T} = \begin{pmatrix} 1 & 1 & 1 \\ \alpha^1 & \alpha^2 & \alpha^3 \\ \alpha^2 & \alpha^4 & \alpha^6 \\ \alpha^3 & \alpha^6 & \alpha^2 \\ \alpha^4 & \alpha^1 & \alpha^{5} \\ \alpha^5 & \alpha^{3} & \alpha^{1} \\ \alpha^6 & \alpha^{5} & \alpha^{4} \end{pmatrix} \hspace{0.05cm}.


Hints:  This exercise refers to the section  "Step (A): Evaluation of the syndrome in BDD"  of the chapter  "Error Correction according to Reed–Solomon Coding".



Questions

1

It holds for the weceived word:   \underline{y} = (\alpha, \, 0, \, \alpha^3, \, 0, \, 1, \, \alpha, \, 0). Specify the first element of the syndrome  \underline{s} = (s_0, \, s_1, \, s_2).

s_0 = \alpha^4,
s_0 = \alpha^5,
s_0 = \alpha^6,
s_0 = 0, \, 1, \, \alpha, \, \alpha^2  or  \alpha^3.

2

What is the second syndrome element for the same received word?

s_1 = \alpha^4,
s_1 = \alpha^5,
s_1 = \alpha^6,
s_1 = 0, \, 1, \, \alpha, \, \alpha^2  or  \alpha^3.

3

What is the third syndrome element for the same received word?

s_2 = \alpha^4,
s_2 = \alpha^5,
s_2 = \alpha^6,
s_2 = 0, \, 1, \, \alpha, \, \alpha^2 oder \alpha^3.

4

Known is that the received word   \underline{y}   can be decoded correctly.  How many symbol errors does the received word contain?

r \ = \


Solution

Conversion tables for the Galois field  \rm GF(2^3)

(1)  The corresponding equation for syndrome calculation is:

\underline {s} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (s_0, s_1, s_2) = \begin{pmatrix} \alpha,0, \alpha^3,0, 1, \alpha,0 \end{pmatrix}\cdot \begin{pmatrix} 1 & 1 & 1 \\ \alpha^1 & \alpha^2 & \alpha^3 \\ \alpha^2 & \alpha^4 & \alpha^6 \\ \alpha^3 & \alpha^6 & \alpha^2 \\ \alpha^4 & \alpha^1 & \alpha^{5} \\ \alpha^5 & \alpha^{3} & \alpha^{1} \\ \alpha^6 & \alpha^{5} & \alpha^{4} \end{pmatrix} \hspace{0.05cm}.
  • The first element results in
s_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot 1 + \alpha^3 \cdot \alpha^2 + 1 \cdot \alpha^4 + \alpha \cdot \alpha^5= \alpha + \alpha^5 + \alpha^4+ \alpha^6
\Rightarrow\hspace{0.3cm} s_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (\alpha) + (\alpha^2 + \alpha+ 1)+ (\alpha^2 + \alpha) + + (\alpha^2 + 1) = \alpha^2 + \alpha = \alpha^4\hspace{0.05cm}.
  • Correct is the  proposed solution 1.


(2)  Correspondingly,  for the second syndrome element,  the  proposed solution 2  applies accordingly:

s_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot 1 + \alpha^3 \cdot \alpha^4 + 1 \cdot \alpha^1 + \alpha \cdot \alpha^3= \alpha + \alpha^7 + \alpha+ \alpha^4= 1 + \alpha^4 = \alpha^2 + \alpha + 1 = \alpha^5 \hspace{0.05cm}.


(3)  To calculate s_2,  the received word must be multiplied by the last matrix column:

s_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot 1 + \alpha^3 \cdot \alpha^6 + 1 \cdot \alpha^5 + \alpha \cdot \alpha^1= \alpha + \alpha^2 + \alpha^5 + \alpha^2=\alpha^5 + \alpha = (\alpha^2 + \alpha + 1) + \alpha = \alpha^2 + 1 = \alpha^5 \hspace{0.05cm}.
  • Correct is the  proposed solution 3.


(4)  Due to the calculated syndrome   \underline{s} = (\alpha^4, \, \alpha^5, \, \alpha^6) ≠ 0,  the received word contains at least one symbol error   ⇒   r > 0.

  • The present Reed–Solomon–code  (7, \, 4, \, 4)_8 \ \Rightarrow \ d_{\rm min} = 4  cannot correct more than  t = ⌊d_{\rm min}/2⌋ = 1  errors.
  • Since the received word can actually be decoded according to the specification   ⇒   \underline{r = 1}.
  • Without this specification  "The received word can be decoded",  this subtask would not be solvable.