Difference between revisions of "Aufgaben:Exercise 1.4Z: Modified MS43 Code"

From LNTwww
 
(12 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Beispiele von Nachrichtensystemen/ISDN-Basisanschluss
+
{{quiz-Header|Buchseite=Examples_of_Communication_Systems/ISDN_Basic_Access
 
}}
 
}}
  
[[File:P_ID1583__Bei_Z_1_4.png|right|frame|Codetabelle des MMS43-Codes]]
+
[[File:EN_Bei_Z_1_4.png|right|frame|Code table of the MMS43 code]]
Bei der ISDN–Datenübertragung wird in Deutschland und Belgien auf der so genannten  $\rm U_{\rm K0}$–Schnittstelle  (Übertragungsstrecke zwischen der Vermittlungsstelle und dem NTBA)  der MMS43–Code eingesetzt.
+
For ISDN data transmission,  the MMS43 code is used in Germany and Belgium on the so-called  "$\rm U_{\rm K0}$"  interface  $($transmission path between the exchange and the NTBA$)$.   
  
Die Abkürzung „MMS43” steht für '''M'''odified '''M'''onitored '''S'''um '''4'''B'''3'''T.
+
The abbreviation  "MMS43"  stands for  "'''M'''odified '''M'''onitored '''S'''um '''4'''B'''3'''T".
  
Es handelt sich hierbei um einen 4B3T–Blockcode mit den vier in der Grafik gezeigten Codetabellen, die gemäß der so genannten „Laufenden Digitalen Summe” (nach  $l$  Blöcken)
+
This is a 4B3T block code with the four code tables shown in the graphic,  which are used for coding according to the so-called "running digital sum"  $($after  $l$  blocks$)$:
 
:$${\it \Sigma}\hspace{0.05cm}_l = \sum_{\nu = 1}^{3 \hspace{0.05cm}\cdot \hspace{0.05cm} l}\hspace{0.02cm} a_\nu$$
 
:$${\it \Sigma}\hspace{0.05cm}_l = \sum_{\nu = 1}^{3 \hspace{0.05cm}\cdot \hspace{0.05cm} l}\hspace{0.02cm} a_\nu$$
zur Codierung benutzt werden. Zur Initialisierung wird  ${\it \Sigma}_{0} = 0$  verwendet.
+
For initialization:  ${\it \Sigma}_{0} = 0$  is used.
  
  
Die Farbgebungen in der Grafik bedeuten:
+
The colorings in the graph mean:
*Ändert sich die laufende digitale Summe nicht  $({\it \Sigma}\hspace{0.05cm}_{l+1} = {\it \Sigma}\hspace{0.05cm} _{l})$, so ist ein Feld grau hinterlegt.
+
*If the running digital sum does not change   $({\it \Sigma}\hspace{0.05cm}_{l+1} = {\it \Sigma}\hspace{0.05cm} _{l})$,  a field is grayed out.
*Eine Zunahme&nbsp; $({\it \Sigma}\hspace{0.05cm}_{l+1} > {\it \Sigma}\hspace{0.05cm}_{l})$&nbsp; ist rot hinterlegt, eine Abnahme&nbsp; $({\it \Sigma}\hspace{0.05cm}_{l+1} < {\it \Sigma}\hspace{0.05cm} _{l})$&nbsp; blau.
 
*Je intensiver diese Farben sind, um so größer ist die Änderung der laufenden digitalen Summe.
 
  
 +
*An increase &nbsp; $({\it \Sigma}\hspace{0.05cm}_{l+1} > {\it \Sigma}\hspace{0.05cm}_{l})$ &nbsp; is highlighted in red,&nbsp; a decrease &nbsp; $({\it \Sigma}\hspace{0.05cm}_{l+1} < {\it \Sigma}\hspace{0.05cm} _{l})$ &nbsp; in blue.
  
 +
*The more intense these colors are,&nbsp; the greater the change in the running digital sum.
  
  
Line 24: Line 24:
  
  
 +
Notes:
  
 
+
*The exercise belongs to the chapter&nbsp; [[Examples_of_Communication_Systems/ISDN_Basic_Access|"ISDN Basic Access"]].
''Hinweise:''
+
 
+
*Information about the MMS43 code can be found in the chapter&nbsp;  [[Digital_Signal_Transmission/Block_Coding_with_4B3T_Codes|"Block Coding with 4B3T Codes"]]&nbsp; of the book&nbsp; "Digital signal transmission".
*Die Aufgabe gehört zum Kapitel&nbsp; [[Beispiele_von_Nachrichtensystemen/ISDN-Basisanschluss|ISDN-Basisanschluss]].  
 
*Angaben zum MMS43–Code finden Sie im Kapitel&nbsp;  [[Digitalsignalübertragung/Blockweise_Codierung_mit_4B3T-Codes|Blockweise Codierung mit 4B3T-Codes]]&nbsp; des Buches „Digitalsignalübertragung”.
 
 
   
 
   
  
  
 
   
 
   
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Gründe gibt es, dass bei ISDN statt des redundanzfreien Binärcodes ein 4B3T–Code verwendet wird?
+
{What are the reasons for using the 4B3T code instead of the redundancy-free binary code in ISDN?
 
|type="[]"}
 
|type="[]"}
- 4B3T ist prinzipiell besser als der redundanzfreie Binärcode.
+
- 4B3T is in principle better than the redundancy-free binary code.
+ Das Sendesignal sollte gleichsignalfrei sein wenn für den Kanalfrequenzgang &nbsp; $H_{\rm K}(f = 0) = 0$&nbsp; gilt.
+
+ The transmitted signal should be free of DC signals if the channel frequency response&nbsp; $H_{\rm K}(f = 0) = 0$.&nbsp;  
+ Eine kleine Symbolrate&nbsp; $(1/T)$&nbsp; ermöglicht eine größere Kabellänge.
+
+ A small symbol rate&nbsp; $(1/T)$&nbsp; allows a longer cable length.
  
{Codieren Sie die Binärfolge&nbsp; $1100\hspace{0.08cm} 0100 \hspace{0.08cm} 0110 \hspace{0.08cm} 1010$&nbsp; gemäß der Tabelle. <br>Wie lautet der Koeffizient des dritten Ternärsymbols des vierten Blocks?
+
{Encode the binary sequence&nbsp; "$1100\hspace{0.08cm} 0100 \hspace{0.08cm} 0110 \hspace{0.08cm} 1010$"&nbsp; according to the table. <br>What is the coefficient of the third ternary symbol of the fourth block?
 
|type="{}"}
 
|type="{}"}
 
$a_{12} \ = \ $ { -1.03--0.97 }
 
$a_{12} \ = \ $ { -1.03--0.97 }
  
{Ermitteln Sie das Markovdiagramm für den Übergang von ${\it \Sigma}\hspace{0.05cm}_{l}$ auf ${\it \Sigma}\hspace{0.05cm}_{l+1}$. Welche Übergangswahrscheinlichkeiten ergeben sich?
+
{Determine the Markov diagram for the transition from&nbsp; ${\it \Sigma}\hspace{0.05cm}_{l}$&nbsp; to&nbsp; ${\it \Sigma}\hspace{0.05cm}_{l+1}$.&nbsp; What are the transition probabilities?
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l+1} = 0 \ | \ {\it \Sigma}\hspace{0.05cm}_{l}=0) \ = \ $ { 0.375 3% }
 
${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l+1} = 0 \ | \ {\it \Sigma}\hspace{0.05cm}_{l}=0) \ = \ $ { 0.375 3% }
Line 53: Line 52:
 
${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l+1} = 0 \ | \ {\it \Sigma}\hspace{0.05cm}_{l}=2) \ = \ $ { 0 3% }
 
${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l+1} = 0 \ | \ {\it \Sigma}\hspace{0.05cm}_{l}=2) \ = \ $ { 0 3% }
  
{Welche Eigenschaften folgen aus dem Markovdiagramm?
+
{What properties follow from the Markov diagram?
 
|type="[]"}
 
|type="[]"}
- Die Wahrscheinlichkeiten&nbsp; ${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 0), \text{ ...} \  , {\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 3)$&nbsp; sind gleich.
+
- The probabilities &nbsp; ${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 0), \text{ ...} \  , {\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 3)$ &nbsp; are equal.
+ Es gilt&nbsp; ${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 0) = {\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 3)$&nbsp; und&nbsp; ${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 1) = {\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 2)$.
+
+ ${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 0) = {\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 3)$ &nbsp; and &nbsp; ${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 1) = {\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 2)$&nbsp;  are valid.
+ Die Extremwerte&nbsp; $(0$ bzw. $3)$&nbsp; treten seltener auf als&nbsp; $1$&nbsp; oder&nbsp; $2$.
+
+ The extreme values&nbsp; $(0$ or $3)$&nbsp; occur less frequently than&nbsp; $1$&nbsp; or&nbsp; $2$.
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''(1)'''&nbsp; Richtig sind die <u>Aussagen 2 und 3</u>:
+
'''(1)'''&nbsp; <u>Statements 2 and 3</u>&nbsp; are correct:
*Die erste Aussage trifft nicht zu: Beispielsweise ergibt sich beim AWGN–Kanal (additives weißes Gaußsches Rauschen) mit einem 4B3T–Code im Vergleich zum redundanzfreien Binärcode eine deutlich größere Fehlerwahrscheinlichkeit aufgrund der ternären Entscheidung.  
+
*The first statement is not true:&nbsp; For example,&nbsp; the AWGN channel&nbsp; ("additive white Gaussian noise") with a 4B3T code results in a much larger error probability due to the ternary decision compared to the redundancy-free binary code.
*Der wesentliche Grund für die Verwendung eines redundanten Übertragungscodes ist vielmehr, dass über einen „Telefonkanal” kein Gleichsignalanteil übertragen werden kann.
+
 
*Auch die um $25 \%$ kleinere Schrittgeschwindigkeit $(1/T)$ des 4B3T–Codes kommt den Übertragungseigenschaften von Kupferleitungen (starker Dämpfungsanstieg mit der Frequenz) entgegen.  
+
*The essential reason for the use of a redundant transmission code is rather that no DC signal component can be transmitted via a&nbsp; "telephone channel".
*Bei gegebener Leitungsdämpfung lässt sich deshalb mit dem 4B3T–Code eine größere Länge überbrücken als mit einem redundanzfreien Binärsignal.  
+
 
 +
*The&nbsp; $25 \%$&nbsp; smaller symbol rate&nbsp; $(1/T)$&nbsp; of the 4B3T code also accommodates the transmission characteristics of copper lines&nbsp; (strong increase in attenuation with frequency).
 +
 
 +
*For a given line attenuation,&nbsp; therefore,&nbsp; a greater length can be bridged with the 4B3T code than with a redundancy-free binary signal.  
  
  
  
'''(2)'''&nbsp; Die 4B3T–Codierung ergibt mit dem Initialwert ${\it \Sigma}_{0} = 0$:
+
'''(2)'''&nbsp; With the initial value&nbsp; ${\it \Sigma}_{0} = 0$,&nbsp; the 4B3T coding results in:
  
* '''1100''' &nbsp; &rArr; &nbsp; &bdquo;+  +  +&rdquo; &nbsp; &rArr; &nbsp; ${\it \Sigma}_{1} = 3$,
+
* '''1100''' &nbsp; &rArr; &nbsp; "+  +  +" &nbsp; &rArr; &nbsp; ${\it \Sigma}_{1} = 3$,
  
* '''0100''' &nbsp; &rArr; &nbsp; &bdquo; –  +  '''0'''&rdquo; &nbsp; &rArr; &nbsp; ${\it \Sigma}_{2} = 3$,
+
* '''0100''' &nbsp; &rArr; &nbsp; " –  +  '''0'''" &nbsp; &rArr; &nbsp; ${\it \Sigma}_{2} = 3$,
  
* '''0110''' &nbsp; &rArr; &nbsp; &bdquo;–  –  +&rdquo; &nbsp; &rArr; &nbsp; ${\it \Sigma}_{3} = 2$,
+
* '''0110''' &nbsp; &rArr; &nbsp; "–  –  +" &nbsp; &rArr; &nbsp; ${\it \Sigma}_{3} = 2$,
  
* '''1010''' &nbsp; &rArr; &nbsp; &bdquo;+  –  –&rdquo; &nbsp; &rArr; &nbsp; ${\it \Sigma}_{4} = 1$.
+
* '''1010''' &nbsp; &rArr; &nbsp; "+  –  –" &nbsp; &rArr; &nbsp; ${\it \Sigma}_{4} = 1$.
  
  
Der gesuchte Amplitudenkoeffizient ist somit $a_{12}\hspace{0.15cm} \underline{ = \ –1}$.
+
Thus,&nbsp; the amplitude coefficient we are looking for is&nbsp; $a_{12}\hspace{0.15cm} \underline{ = \ –1}$.
  
  
  
[[File:P_ID1341_Dig_A_2_6c.png|right|frame|Markovdiagramm für den MMS43-Code]]
+
[[File:P_ID1341_Dig_A_2_6c.png|right|frame|Markov diagram for the MMS43 code]]
'''(3)'''&nbsp; Aus der Farbgebung der vorgegebenen Codetabelle kann man das folgende Markovdiagramm ermitteln.  
+
'''(3)'''&nbsp; From the coloring of the given code table,&nbsp; one can determine the following Markov diagram.
*Daraus können die gesuchten Übergangswahrscheinlichkeiten abgelesen werden:
+
*From it,&nbsp; the transition probabilities we are looking for can be read:
  
 
:$${\rm Pr}({\it \Sigma}_{l+1} = 0 \ | \ {\it \Sigma}_{l}=0) \ = \ 6/16 \underline{ \ = \ 0.375},$$  
 
:$${\rm Pr}({\it \Sigma}_{l+1} = 0 \ | \ {\it \Sigma}_{l}=0) \ = \ 6/16 \underline{ \ = \ 0.375},$$  
Line 97: Line 99:
  
  
'''(4)'''&nbsp; Richtig sind <u>die Aussagen 2 und 3</u>:
+
'''(4)'''&nbsp; <u>Statements 2 and 3</u>&nbsp; are correct:
*Die erste Aussage ist falsch, was man an den Asymmetrien im Markovdiagramm erkennt.  
+
*The first statement is false,&nbsp; which can be seen from the asymmetries in the Markov diagram.
*Dagegen gibt es Symmetrien bezüglich der Zustände „0” und „3” und zwischen „1” und „2”.
+
 
 +
*On the other hand,&nbsp; there are symmetries with respect to the states&nbsp; "0"&nbsp; and&nbsp; "3"&nbsp; and between&nbsp; "1"&nbsp; and&nbsp; "2".
  
  
In der folgenden Berechnung schreiben wir anstelle von ${\rm Pr}({\it \Sigma}_{l} = 0)$ vereinfachend ${\rm Pr}(0)$. Unter Ausnutzung der Eigenschaft ${\rm Pr}(3) = {\rm Pr}(0)$ und ${\rm Pr}(2) = {\rm Pr}(1)$ ergeben sich folgende Gleichungen aus dem Markovdiagramm:
+
In the following calculation,&nbsp; instead of&nbsp; ${\rm Pr}({\it \Sigma}_{l} = 0)$,&nbsp; we write&nbsp; ${\rm Pr}(0)$&nbsp; in a simplified way.
 +
* Taking advantage of the properties&nbsp; ${\rm Pr}(3) = {\rm Pr}(0)$&nbsp; and&nbsp; ${\rm Pr}(2) = {\rm Pr}(1)$,&nbsp; we get the following equations from the Markov diagram:
 
:$${\rm Pr}(0)= \frac{6}{16} \cdot {\rm Pr}(0) + \frac{4}{16} \cdot {\rm Pr}(1)+ \frac{1}{16} \cdot {\rm Pr}(3)\hspace{0.3cm} \Rightarrow \hspace{0.3cm}\frac{9}{16} \cdot {\rm Pr}(0)= \frac{4}{16} \cdot {\rm Pr}(1).$$
 
:$${\rm Pr}(0)= \frac{6}{16} \cdot {\rm Pr}(0) + \frac{4}{16} \cdot {\rm Pr}(1)+ \frac{1}{16} \cdot {\rm Pr}(3)\hspace{0.3cm} \Rightarrow \hspace{0.3cm}\frac{9}{16} \cdot {\rm Pr}(0)= \frac{4}{16} \cdot {\rm Pr}(1).$$
Aus der weiteren Bedingung ${\rm Pr}(0) + {\rm Pr}(1) = 1/2$ folgt weiter:
+
*From the further condition&nbsp; ${\rm Pr}(0) + {\rm Pr}(1) = 1/2$&nbsp; follows further:
 
:$${\rm Pr}(0)= {\rm Pr}(3)= \frac{9}{26}\hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(1)= {\rm Pr}(2)= \frac{4}{26}\hspace{0.05cm}.$$
 
:$${\rm Pr}(0)= {\rm Pr}(3)= \frac{9}{26}\hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(1)= {\rm Pr}(2)= \frac{4}{26}\hspace{0.05cm}.$$
Diese Berechnung basiert auf der <u>Summe der ankommenden Pfeile im Zustand &bdquo;0”</u>. Man könnte auch Gleichungen für die drei anderen Zustände angeben, die aber alle zum gleichen Ergebnis führen:
+
:This calculation is based on the&nbsp; <u>sum of the incoming arrows in the "0" condition</u>.  
 +
 
 +
*One could also give equations for the other three states,&nbsp; but they all give the same result:
 
:$${\rm Pr}(1) \ = \ \frac{6}{16} \cdot {\rm Pr}(0) + \frac{6}{16} \cdot {\rm Pr}(1)+ \frac{6}{16} \cdot {\rm Pr}(2)+\frac{3}{16} \cdot {\rm Pr}(3)\hspace{0.05cm},$$
 
:$${\rm Pr}(1) \ = \ \frac{6}{16} \cdot {\rm Pr}(0) + \frac{6}{16} \cdot {\rm Pr}(1)+ \frac{6}{16} \cdot {\rm Pr}(2)+\frac{3}{16} \cdot {\rm Pr}(3)\hspace{0.05cm},$$
 
:$$ {\rm Pr}(2) \ = \ \frac{3}{16} \cdot {\rm Pr}(0) + \frac{6}{16} \cdot {\rm Pr}(1)+ \frac{6}{16} \cdot {\rm Pr}(2)+\frac{6}{16} \cdot {\rm Pr}(3)\hspace{0.05cm},$$
 
:$$ {\rm Pr}(2) \ = \ \frac{3}{16} \cdot {\rm Pr}(0) + \frac{6}{16} \cdot {\rm Pr}(1)+ \frac{6}{16} \cdot {\rm Pr}(2)+\frac{6}{16} \cdot {\rm Pr}(3)\hspace{0.05cm},$$
Line 116: Line 122:
  
  
[[Category:Aufgaben zu Beispiele von Nachrichtensystemen|^1.2 ISDN-Basisanschluss^]]
+
[[Category:Examples of Communication Systems: Exercises|^1.2 ISDN Basic Access^]]

Latest revision as of 16:55, 24 October 2022

Code table of the MMS43 code

For ISDN data transmission,  the MMS43 code is used in Germany and Belgium on the so-called  "$\rm U_{\rm K0}$"  interface  $($transmission path between the exchange and the NTBA$)$. 

The abbreviation  "MMS43"  stands for  "Modified Monitored Sum 4B3T".

This is a 4B3T block code with the four code tables shown in the graphic,  which are used for coding according to the so-called "running digital sum"  $($after  $l$  blocks$)$:

$${\it \Sigma}\hspace{0.05cm}_l = \sum_{\nu = 1}^{3 \hspace{0.05cm}\cdot \hspace{0.05cm} l}\hspace{0.02cm} a_\nu$$

For initialization:  ${\it \Sigma}_{0} = 0$  is used.


The colorings in the graph mean:

  • If the running digital sum does not change   $({\it \Sigma}\hspace{0.05cm}_{l+1} = {\it \Sigma}\hspace{0.05cm} _{l})$,  a field is grayed out.
  • An increase   $({\it \Sigma}\hspace{0.05cm}_{l+1} > {\it \Sigma}\hspace{0.05cm}_{l})$   is highlighted in red,  a decrease   $({\it \Sigma}\hspace{0.05cm}_{l+1} < {\it \Sigma}\hspace{0.05cm} _{l})$   in blue.
  • The more intense these colors are,  the greater the change in the running digital sum.



Notes:



Questions

1

What are the reasons for using the 4B3T code instead of the redundancy-free binary code in ISDN?

4B3T is in principle better than the redundancy-free binary code.
The transmitted signal should be free of DC signals if the channel frequency response  $H_{\rm K}(f = 0) = 0$. 
A small symbol rate  $(1/T)$  allows a longer cable length.

2

Encode the binary sequence  "$1100\hspace{0.08cm} 0100 \hspace{0.08cm} 0110 \hspace{0.08cm} 1010$"  according to the table.
What is the coefficient of the third ternary symbol of the fourth block?

$a_{12} \ = \ $

3

Determine the Markov diagram for the transition from  ${\it \Sigma}\hspace{0.05cm}_{l}$  to  ${\it \Sigma}\hspace{0.05cm}_{l+1}$.  What are the transition probabilities?

${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l+1} = 0 \ | \ {\it \Sigma}\hspace{0.05cm}_{l}=0) \ = \ $

${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l+1} = 2 \ | \ {\it \Sigma}\hspace{0.05cm}_{l}=0) \ = \ $

${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l+1} = 0 \ | \ {\it \Sigma}\hspace{0.05cm}_{l}=2) \ = \ $

4

What properties follow from the Markov diagram?

The probabilities   ${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 0), \text{ ...} \ , {\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 3)$   are equal.
${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 0) = {\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 3)$   and   ${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 1) = {\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 2)$  are valid.
The extreme values  $(0$ or $3)$  occur less frequently than  $1$  or  $2$.


Solution

(1)  Statements 2 and 3  are correct:

  • The first statement is not true:  For example,  the AWGN channel  ("additive white Gaussian noise") with a 4B3T code results in a much larger error probability due to the ternary decision compared to the redundancy-free binary code.
  • The essential reason for the use of a redundant transmission code is rather that no DC signal component can be transmitted via a  "telephone channel".
  • The  $25 \%$  smaller symbol rate  $(1/T)$  of the 4B3T code also accommodates the transmission characteristics of copper lines  (strong increase in attenuation with frequency).
  • For a given line attenuation,  therefore,  a greater length can be bridged with the 4B3T code than with a redundancy-free binary signal.


(2)  With the initial value  ${\it \Sigma}_{0} = 0$,  the 4B3T coding results in:

  • 1100   ⇒   "+ + +"   ⇒   ${\it \Sigma}_{1} = 3$,
  • 0100   ⇒   " – + 0"   ⇒   ${\it \Sigma}_{2} = 3$,
  • 0110   ⇒   "– – +"   ⇒   ${\it \Sigma}_{3} = 2$,
  • 1010   ⇒   "+ – –"   ⇒   ${\it \Sigma}_{4} = 1$.


Thus,  the amplitude coefficient we are looking for is  $a_{12}\hspace{0.15cm} \underline{ = \ –1}$.


Markov diagram for the MMS43 code

(3)  From the coloring of the given code table,  one can determine the following Markov diagram.

  • From it,  the transition probabilities we are looking for can be read:
$${\rm Pr}({\it \Sigma}_{l+1} = 0 \ | \ {\it \Sigma}_{l}=0) \ = \ 6/16 \underline{ \ = \ 0.375},$$
$${\rm Pr}({\it \Sigma}_{l+1} = 2 \ | \ {\it \Sigma}_{l}=0) \ = \ 3/16 \underline{ \ = \ 0.1875},$$
$${\rm Pr}({\it \Sigma}_{l+1} = 0 \ | \ {\it \Sigma}_{l}=2) \underline{ \ = \ 0}.$$


(4)  Statements 2 and 3  are correct:

  • The first statement is false,  which can be seen from the asymmetries in the Markov diagram.
  • On the other hand,  there are symmetries with respect to the states  "0"  and  "3"  and between  "1"  and  "2".


In the following calculation,  instead of  ${\rm Pr}({\it \Sigma}_{l} = 0)$,  we write  ${\rm Pr}(0)$  in a simplified way.

  • Taking advantage of the properties  ${\rm Pr}(3) = {\rm Pr}(0)$  and  ${\rm Pr}(2) = {\rm Pr}(1)$,  we get the following equations from the Markov diagram:
$${\rm Pr}(0)= \frac{6}{16} \cdot {\rm Pr}(0) + \frac{4}{16} \cdot {\rm Pr}(1)+ \frac{1}{16} \cdot {\rm Pr}(3)\hspace{0.3cm} \Rightarrow \hspace{0.3cm}\frac{9}{16} \cdot {\rm Pr}(0)= \frac{4}{16} \cdot {\rm Pr}(1).$$
  • From the further condition  ${\rm Pr}(0) + {\rm Pr}(1) = 1/2$  follows further:
$${\rm Pr}(0)= {\rm Pr}(3)= \frac{9}{26}\hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(1)= {\rm Pr}(2)= \frac{4}{26}\hspace{0.05cm}.$$
This calculation is based on the  sum of the incoming arrows in the "0" condition.
  • One could also give equations for the other three states,  but they all give the same result:
$${\rm Pr}(1) \ = \ \frac{6}{16} \cdot {\rm Pr}(0) + \frac{6}{16} \cdot {\rm Pr}(1)+ \frac{6}{16} \cdot {\rm Pr}(2)+\frac{3}{16} \cdot {\rm Pr}(3)\hspace{0.05cm},$$
$$ {\rm Pr}(2) \ = \ \frac{3}{16} \cdot {\rm Pr}(0) + \frac{6}{16} \cdot {\rm Pr}(1)+ \frac{6}{16} \cdot {\rm Pr}(2)+\frac{6}{16} \cdot {\rm Pr}(3)\hspace{0.05cm},$$
$$ {\rm Pr}(3) \ = \ \frac{1}{16} \cdot {\rm Pr}(0) + \frac{4}{16} \cdot {\rm Pr}(2)+\frac{6}{16} \cdot {\rm Pr}(3)\hspace{0.05cm}.$$