Difference between revisions of "Aufgaben:Exercise 4.2: UMTS Radio Channel Basics"

From LNTwww
 
(13 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Beispiele von Nachrichtensystemen/Allgemeine Beschreibung von UMTS
+
{{quiz-Header|Buchseite=Examples_of_Communication_Systems/General_Description_of_UMTS
  
 
}}
 
}}
  
[[File:P_ID1931__Bei_A_4_2.png|right|frame|Pfadverlust, frequenz– und zeitselektives Fading]]
+
[[File:EN_Bei_A_4_2_v2.png|right|frame|Path loss,  frequency/time–selective fading ]]
Auch bei UMTS gibt es etliche zu Degradationen führende Effekte, die man bereits bei der Systemplanung berücksichtigen muss:
+
UMTS also has quite a few effects leading to degradation that must be taken into account during system planning:
*${\rm Interferenzen}$:  Da alle Nutzer gleichzeitig im gleichen Frequenzband versorgt werden, wird jeder Nutzer durch andere Nutzer gestört.
+
*${\rm Interference}$:  Since all users are simultaneously served in the same frequency band,  each user is interfered by other users.
*${\rm Pfadverlust}$:  Die Empfangsleistung  $P_{\rm E}$  eines Funksignals nimmt mit der Entfernung  $d$  um den Faktor  $d^{- \gamma}$  ab.
 
*${\rm Mehrwegeempfang}$:  Das Signal erreicht den mobilen Empfänger nicht nur über den direkten Pfad, sondern auf mehreren Wegen – unterschiedlich gedämpft und verschieden verzögert.
 
*${\rm Dopplereffekt}$:  Bewegen sich Sender und/oder Empfänger, so kann es abhängig von Richtung (Welcher Winkel? Aufeinander zu? Voneinander weg?) und Geschwindigkeit zu Frequenzverschiebungen kommen.
 
  
 +
*${\rm Path\:loss}$:  The received power  $P_{\rm E}$  of a radio signal decreases with distance   $d$   by a factor  $d^{- \gamma}$.
  
Im Buch  [[Mobile Kommunikation]]  wurden diese Effekte bereits im Detail behandelt. Die Diagramme vermitteln nur einige wenige Informationen bezüglich
+
*${\rm Multipath\:propagation}$:  The signal reaches the mobile receiver not only through the direct path,  but through several paths – differently attenuated and differently delayed.
*<u>Pfadverlust:</u>&nbsp; Der Pfadverlust gibt die Verminderung der Empfangsleistung mit der Entfernung&nbsp; $d$&nbsp; vom Sender an. Oberhalb des so genannten&nbsp; ''Break Points''&nbsp; gilt für die Empfangsleistung näherungsweise:
 
:$$\frac{P(d)}{P(d_0)} = \alpha_0 \cdot \left ( {d}/{d_0}\right )^{-4}.$$
 
:Nach der oberen Grafik gilt&nbsp; $\alpha_{0} = 10^{–5}$&nbsp; $($entsprechend&nbsp; $50 \ \rm dB)$&nbsp; und&nbsp; $d_{0} = 100 \ \rm m$.
 
*<u>Frequenzselektives Fading:</u>&nbsp; Die Leistungsübertragungsfunktion&nbsp; $|H_{\rm K}(f)|^{2}$&nbsp; zu einem gegebenen Zeitpunkt gemäß der mittleren Grafik verdeutlicht frequenzselektives Fading. Die blau–gestrichelt eingezeichnete Horizontale kennzeichnet dagegen nichtfrequenzselektives Fading.
 
::Ein solches frequenzselektives Fading entsteht, wenn die Kohärenzbandbreite&nbsp; $B_{\rm K}$&nbsp; sehr viel kleiner als die Signalbandbreite&nbsp; $B_{\rm S}$&nbsp; ist. Dabei gilt mit der&nbsp; ''Mehrwegeverbreiterung''&nbsp; (englisch:&nbsp; ''Delay Spread''&nbsp;)&nbsp; $T_{\rm V}$ &nbsp; &rArr; &nbsp;  Differenz zwischen der maximalen und der minimalen Verzögerungszeit:
 
:$$B_{\rm K}\approx \frac{1}{T_{\rm V}}= \frac{1}{\tau_{\rm max}- \tau_{\rm min}}.$$
 
*<u>Zeitselektives Fading:</u>&nbsp; Die untere Grafik zeigt  die Leistungsübertragungsfunktion&nbsp; $|H_{\rm K}(t)|^{2}$&nbsp; für eine feste Frequenz&nbsp; $f_{0}$. Die Skizze ist &bdquo;schematisch&rdquo; zu verstehen, weil für das hier betrachtete zeitselektive Fading genau der gleiche Verlauf gewählt wurde wie in der mittleren Grafik für das frequenzselektive Fading (reine Bequemlichkeit des Autors).
 
::Hier entsteht eine so genannte Dopplerverbreiterung&nbsp; $B_{\rm D}$, definiert als Differenz zwischen der maximalen und der minimalen Dopplerfrequenz. Der Kehrwert&nbsp; $T_{\rm D} = 1/B_{\rm D}$&nbsp; wird als&nbsp; ''Kohärenzzeit''&nbsp; oder auch als&nbsp; ''Korrelationsdauer''&nbsp; bezeichnet. Bei UMTS tritt immer dann zeitselektives Fading auf, wenn&nbsp; $T_{\rm D} \ll T_{\rm C}$&nbsp; (Chipdauer) ist.
 
  
 +
*${\rm Doppler\:effect}$:&nbsp; If transmitter and/or receiver move,&nbsp; frequency shifts can occur depending on speed and the direction&nbsp; $($Which angle?&nbsp; Towards each other? Away from each other?$)$. 
  
  
 +
In the book&nbsp; "[[Mobile Communications]]"&nbsp; these effects have already been discussed in detail. The diagrams convey only a few pieces of information regarding
 +
*<u>Path loss:</u>&nbsp; Path loss indicates the decrease in the received power with distance&nbsp; $d$&nbsp; from the transmitter.&nbsp; Above the so-called&nbsp; "break point"&nbsp; applies approximately to the received power:
 +
::$$\frac{P(d)}{P(d_0)} = \alpha_0 \cdot \left ( {d}/{d_0}\right )^{-4}.$$
 +
:According to the upper graph&nbsp; $\alpha_{0} = 10^{-5}$&nbsp; $($correspondingly&nbsp; $50 \ \rm dB)$&nbsp; and&nbsp; $d_{0} = 100 \ \rm m$.
  
 +
*<u>Frequency-selective fading:</u>&nbsp; The power transfer function&nbsp; $|H_{\rm K}(f)|^{2}$&nbsp; at a given time according to the middle graph illustrates frequency-selective fading.&nbsp; The blue-dashed horizontal line,&nbsp; on the other hand,&nbsp; indicates non-frequency-selective fading.
 +
::Such frequency-selective fading occurs when the coherence bandwidth&nbsp; $B_{\rm K}$&nbsp; is much smaller than the signal bandwidth&nbsp; $B_{\rm S}$.&nbsp; Here,&nbsp; with the&nbsp; "delay spread"&nbsp; $T_{\rm V}$ &nbsp; &rArr; &nbsp; difference between the maximum and minimum delay times:
 +
::$$B_{\rm K}\approx \frac{1}{T_{\rm V}}= \frac{1}{\tau_{\rm max}- \tau_{\rm min}}.$$
  
 +
*<u>Time-selective fading:</u>&nbsp; The bottom graph shows the power transfer function&nbsp; $|H_{\rm K}(t)|^{2}$&nbsp; for a fixed frequency&nbsp; $f_{0}$.&nbsp; The sketch is to be understood schematically,&nbsp; because for the time-selective fading considered here exactly the same course was chosen as in the middle diagram for the frequency-selective fading&nbsp; $($pure convenience of the author$)$.
 +
::Here a so-called&nbsp; "Doppler spread"&nbsp; $B_{\rm D}$&nbsp; arises,&nbsp; defined as the difference between the maximum and the minimum Doppler frequency.&nbsp; The inverse&nbsp; $T_{\rm D} = 1/B_{\rm D}$&nbsp; is called&nbsp; "coherence time"&nbsp; or also&nbsp; "correlation duration".&nbsp; In UMTS,&nbsp; time-selective fading occurs whenever&nbsp; $T_{\rm D} \ll T_{\rm C}$&nbsp; $($chip duration$)$.
  
  
  
''Hinweise:''
+
<u>Hints:</u>
  
*Die Aufgabe gehört zum Themengebiet von&nbsp; [[Beispiele_von_Nachrichtensystemen/Allgemeine_Beschreibung_von_UMTS|Allgemeine Beschreibung von UMTS]].
+
*This exercise belongs to the chapter&nbsp; [[Examples_of_Communication_Systems/General_Description_of_UMTS|"General Description of UMTS"]].
*Bezug genommen wird insbesondere auf die Seiten&nbsp; [[Beispiele_von_Nachrichtensystemen/Allgemeine_Beschreibung_von_UMTS#Eigenschaften_des_UMTS-Funkkanals|Eigenschaften des UMTS-Funkkanals]]&nbsp; sowie&nbsp; [[Beispiele_von_Nachrichtensystemen/Allgemeine_Beschreibung_von_UMTS#Frequenz.E2.80.93_und_zeitselektives_Fading|Frequenz&ndash; und zeitselektives Fading]].
 
*Bei UMTS beträgt die Bandbreite&nbsp;  $B_{\rm S} = 5 \ \rm MHz$&nbsp; und die Chipdauer ist&nbsp; $T_{\rm C} \approx 0.26 \  \rm &micro; s$.
 
 
   
 
   
 +
*Reference is made in particular to the sections &nbsp; [[Examples_of_Communication_Systems/General_Description_of_UMTS#Properties_of_the_UMTS_radio_channel|"Properties of the UMTS radio channel"]] &nbsp; and &nbsp; [[Examples_of_Communication_Systems/General_Description_of_UMTS#Frequency.E2.80.93selective_and_time.E2.80.93selective_fading|"Frequency-selective and time-selective fading"]].
  
 +
*For UMTS,&nbsp; the bandwidth:&nbsp; $B_{\rm S} = 5 \ \rm MHz$&nbsp; and the chip duration:&nbsp; $T_{\rm C} \approx 0.26 \ \rm &micro; s$.
 +
  
  
===Fragebogen===
+
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Berechnen Sie – ausgehend von der oberen Grafik auf der Angabenseite – den Pfadverlust&nbsp; $($in&nbsp; $\rm dB)$&nbsp; für&nbsp; $d =   \rm 5 \ km$.
+
{Starting from the top graph on the information page,&nbsp; calculate the path loss&nbsp; $($in&nbsp; $\rm dB)$&nbsp; for&nbsp; $d = \rm 5 \ km$.
 
|type="{}"}
 
|type="{}"}
${\rm Pfadverlust} \ = \ $ { 118 3% } $\ \rm dB $
+
${\rm path\ loss} \ = \ $ { 118 3% } $\ \rm dB $.
  
{Welche Aussagen gelten bezüglich des frequenzselektiven Fadings?
+
{What statements are true regarding frequency-selective fading?
 
|type="[]"}
 
|type="[]"}
+ Dieses entsteht durch Mehrwegeempfang.
+
+ This is caused by multipath reception.
- Es entsteht durch Bewegung von Sender und/oder Empfänger.
+
- It is caused by movement of transmitter and/or receiver.
+ Verschiedene Frequenzen werden unterschiedlich gedämpft.
+
+ Different frequencies are attenuated differently.
+ Ein Echo im Abstand&nbsp; $1\ \rm &micro; s$&nbsp; führt zu frequenzselektivem Fading.
+
+ An echo at a distance&nbsp; $1\ \rm &micro; s$&nbsp; results in frequency-selective fading.
  
{Welche Aussagen gelten bezüglich des zeitselektiven Fadings?
+
{What statements are true regarding time-selective fading?
 
|type="[]"}
 
|type="[]"}
- Dieses entsteht durch Mehrwegeempfang.
+
- This arises due to multipath reception.
+ Es entsteht durch Bewegung von Sender und/oder Empfänger.
+
+ It results from movement of transmitter and/or receiver.
- Verschiedene Frequenzen werden unterschiedlich gedämpft.
+
- Different frequencies are attenuated differently.
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''(1)'''&nbsp; Entsprechend der Skizze liegt der Breakpoint bei $d_{0} = 100 \ \rm m$.  
+
'''(1)'''&nbsp; According to the sketch,&nbsp; the breakpoint is at&nbsp; $d_{0} = 100 \ \rm m$.  
*Für $d ≤ d_{0}$ ist der Pfadverlust gleich $\alpha_{0} \cdot (d/d_{0})^{–2}$. Für $d = d_{0} = 100 \ \rm m$ gilt:
+
*For&nbsp; $d ≤ d_{0}$,&nbsp; the path loss is equal to&nbsp; $\alpha_{0} \cdot (d/d_{0})^{-2}$.&nbsp; For $d = d_{0} = 100 \ \rm m$&nbsp; holds:
:$${\rm Pfadverlust} = \alpha_0 = 10^{-5}\hspace{0.5cm}\Rightarrow\hspace{0.5cm}{50\,{\rm dB}}.$$
+
:$${\rm path\ loss} = \alpha_0 = 10^{-5}\hspace{0.5cm}\Rightarrow\hspace{0.5cm}{50\,{\rm dB}}.$$
*Oberhalb von $d_{0}$ ist der Pfadverlust gleich  $\alpha_{0} \cdot (d/d_{0})^{–4}$. Somit erhält man in $5 \ \rm km$ Entfernung:
+
 
:$${\rm Pfadverlust} = 10^{-5}\cdot 50^{-4} = 1.6 \cdot 10^{-12}\hspace{0.5cm}\Rightarrow\hspace{0.5cm}\underline{118\,{\rm dB}}.$$
+
*Above&nbsp; $d_{0}$,&nbsp; the path loss is equal to&nbsp; $\alpha_{0} \cdot (d/d_{0})^{-4}$. &nbsp; Thus,&nbsp; at&nbsp; $5 \ \rm km$&nbsp; distance,&nbsp; one obtains:
 +
:$${\rm path\ loss} = 10^{-5}\cdot 50^{-4} = 1.6 \cdot 10^{-12}\hspace{0.5cm}\Rightarrow\hspace{0.5cm}\underline{118\,{\rm dB}}.$$
 +
 
  
 +
'''(2)'''&nbsp; Correct are the&nbsp; <u>statements 1, 3, and 4</u>:
 +
*Frequency-selective fading is due to multipath reception.&nbsp; This means:
  
'''(2)'''&nbsp; Richtig sind die <u>Aussagen 1, 3 und 4</u>:
+
*Different frequency components are delayed and attenuated differently by the channel.
*Das frequenzselektive Fading ist auf Mehrwegeempfang zurückzuführen. Das bedeutet:
+
 
*Unterschiedliche Frequenzanteile werden durch den Kanal unterschiedlich verzögert und gedämpft.
+
*This results in attenuation and phase distortion.
*Dadurch entstehen Dämpfungs– und Phasenverzerrungen.
+
   
*Wegen $\tau_{\rm max} = 1 \ \rm &micro; s$ (vereinfachend wird $\tau_{\rm min} = 0$ gesetzt) ergibt sich weiter
+
*Because&nbsp; $\tau_{\rm max} = 1 \ \rm &micro; s$&nbsp; $($simplifying&nbsp; $\tau_{\rm min} = 0$&nbsp; is set$)$&nbsp; further results in
:$$B_{\rm K} = \frac{1}{\tau_{\rm max}- \tau_{\rm min}} = 1\,{\rm MHz}\ \ll \ B_{\rm S} \hspace{0.15cm}\underline {= 5\,{\rm MHz}}.$$
+
:$$B_{\rm K} = \frac{1}{\tau_{\rm max}- \tau_{\rm min}} = 1\,{\rm MHz}\ \ll \ B_{\rm S} \hspace{0.15cm}\underline {= 5\,{\rm MHz}}.$$
  
  
'''(3)'''&nbsp; Richtig ist die <u>Aussage 2</u>.  
+
'''(3)'''&nbsp; Correct is&nbsp; <u>statement 2</u>.  
*Die Aussagen 1 und 3 gelten dagegen für frequenzselektives Fading &ndash; siehe Teilaufgabe '''(2)'''.
+
*Statements 1 and 3,&nbsp; on the other hand,&nbsp; are valid for frequency-selective fading &ndash; see subtask&nbsp; '''(2)'''.
  
  
Line 87: Line 93:
  
  
[[Category:Aufgaben zu Beispiele von Nachrichtensystemen|^4.1 Allgemeine Beschreibung von UMTS
+
[[Category:Examples of Communication Systems: Exercises|^4.1 General Description of UMTS
 
^]]
 
^]]

Latest revision as of 16:26, 13 February 2023

Path loss,  frequency/time–selective fading

UMTS also has quite a few effects leading to degradation that must be taken into account during system planning:

  • ${\rm Interference}$:  Since all users are simultaneously served in the same frequency band,  each user is interfered by other users.
  • ${\rm Path\:loss}$:  The received power  $P_{\rm E}$  of a radio signal decreases with distance   $d$   by a factor  $d^{- \gamma}$.
  • ${\rm Multipath\:propagation}$:  The signal reaches the mobile receiver not only through the direct path,  but through several paths – differently attenuated and differently delayed.
  • ${\rm Doppler\:effect}$:  If transmitter and/or receiver move,  frequency shifts can occur depending on speed and the direction  $($Which angle?  Towards each other? Away from each other?$)$.


In the book  "Mobile Communications"  these effects have already been discussed in detail. The diagrams convey only a few pieces of information regarding

  • Path loss:  Path loss indicates the decrease in the received power with distance  $d$  from the transmitter.  Above the so-called  "break point"  applies approximately to the received power:
$$\frac{P(d)}{P(d_0)} = \alpha_0 \cdot \left ( {d}/{d_0}\right )^{-4}.$$
According to the upper graph  $\alpha_{0} = 10^{-5}$  $($correspondingly  $50 \ \rm dB)$  and  $d_{0} = 100 \ \rm m$.
  • Frequency-selective fading:  The power transfer function  $|H_{\rm K}(f)|^{2}$  at a given time according to the middle graph illustrates frequency-selective fading.  The blue-dashed horizontal line,  on the other hand,  indicates non-frequency-selective fading.
Such frequency-selective fading occurs when the coherence bandwidth  $B_{\rm K}$  is much smaller than the signal bandwidth  $B_{\rm S}$.  Here,  with the  "delay spread"  $T_{\rm V}$   ⇒   difference between the maximum and minimum delay times:
$$B_{\rm K}\approx \frac{1}{T_{\rm V}}= \frac{1}{\tau_{\rm max}- \tau_{\rm min}}.$$
  • Time-selective fading:  The bottom graph shows the power transfer function  $|H_{\rm K}(t)|^{2}$  for a fixed frequency  $f_{0}$.  The sketch is to be understood schematically,  because for the time-selective fading considered here exactly the same course was chosen as in the middle diagram for the frequency-selective fading  $($pure convenience of the author$)$.
Here a so-called  "Doppler spread"  $B_{\rm D}$  arises,  defined as the difference between the maximum and the minimum Doppler frequency.  The inverse  $T_{\rm D} = 1/B_{\rm D}$  is called  "coherence time"  or also  "correlation duration".  In UMTS,  time-selective fading occurs whenever  $T_{\rm D} \ll T_{\rm C}$  $($chip duration$)$.


Hints:

  • For UMTS,  the bandwidth:  $B_{\rm S} = 5 \ \rm MHz$  and the chip duration:  $T_{\rm C} \approx 0.26 \ \rm µ s$.



Questions

1

Starting from the top graph on the information page,  calculate the path loss  $($in  $\rm dB)$  for  $d = \rm 5 \ km$.

${\rm path\ loss} \ = \ $

$\ \rm dB $.

2

What statements are true regarding frequency-selective fading?

This is caused by multipath reception.
It is caused by movement of transmitter and/or receiver.
Different frequencies are attenuated differently.
An echo at a distance  $1\ \rm µ s$  results in frequency-selective fading.

3

What statements are true regarding time-selective fading?

This arises due to multipath reception.
It results from movement of transmitter and/or receiver.
Different frequencies are attenuated differently.


Solution

(1)  According to the sketch,  the breakpoint is at  $d_{0} = 100 \ \rm m$.

  • For  $d ≤ d_{0}$,  the path loss is equal to  $\alpha_{0} \cdot (d/d_{0})^{-2}$.  For $d = d_{0} = 100 \ \rm m$  holds:
$${\rm path\ loss} = \alpha_0 = 10^{-5}\hspace{0.5cm}\Rightarrow\hspace{0.5cm}{50\,{\rm dB}}.$$
  • Above  $d_{0}$,  the path loss is equal to  $\alpha_{0} \cdot (d/d_{0})^{-4}$.   Thus,  at  $5 \ \rm km$  distance,  one obtains:
$${\rm path\ loss} = 10^{-5}\cdot 50^{-4} = 1.6 \cdot 10^{-12}\hspace{0.5cm}\Rightarrow\hspace{0.5cm}\underline{118\,{\rm dB}}.$$


(2)  Correct are the  statements 1, 3, and 4:

  • Frequency-selective fading is due to multipath reception.  This means:
  • Different frequency components are delayed and attenuated differently by the channel.
  • This results in attenuation and phase distortion.
  • Because  $\tau_{\rm max} = 1 \ \rm µ s$  $($simplifying  $\tau_{\rm min} = 0$  is set$)$  further results in
$$B_{\rm K} = \frac{1}{\tau_{\rm max}- \tau_{\rm min}} = 1\,{\rm MHz}\ \ll \ B_{\rm S} \hspace{0.15cm}\underline {= 5\,{\rm MHz}}.$$


(3)  Correct is  statement 2.

  • Statements 1 and 3,  on the other hand,  are valid for frequency-selective fading – see subtask  (2).