Difference between revisions of "Signal Representation/The Fourier Transform and its Inverse"

From LNTwww
 
(49 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 
{{Header
 
{{Header
|Untermenü=Aperiodische Signale - Implulse
+
|Untermenü=Aperiodic Signals - Impulses
|Vorherige Seite=Fourierreihe
+
|Vorherige Seite=Fourier Series
|Nächste Seite=Einige Sonderfälle impulsartiger Signale
+
|Nächste Seite=Special Cases of Impulse Signals
 
}}
 
}}
  
== # ÜBERBLICK ZUM DRITTEN HAUPTKAPITEL # ==
+
== # OVERVIEW OF THE THIRD MAIN CHAPTER # ==
 
<br>
 
<br>
Im zweiten Kapitel wurden periodische Signale durch verschiedene harmonische Schwingungen (&bdquo;Fourierreihe&rdquo;) beschrieben. Verringert man &ndash; zumindest gedanklich &ndash; die Wiederholfrequenz eines periodischen Signals immer mehr, das heißt, die Periodendauer wird immer länger, so kommt man vom periodischen Signal&nbsp; (<i>Puls</i>)&nbsp; zum einmaligen&nbsp; '''aperiodischen Signal'''&nbsp; &ndash; häufig auch als&nbsp; '''Impuls'''&nbsp; bezeichnet.
+
In the second chapter periodic signals were described by different harmonic oscillations&nbsp; (&raquo;Fourier series&laquo;).&nbsp;
  
Im Folgenden werden solche aperiodischen, impulsförmigen Signale betrachtet und im Zeit&ndash; und Frequenzbereich mathematisch beschrieben.  
+
If one reduces &ndash; at least mentally &ndash; the repetition frequency of a periodic signal more and more,&nbsp; i.e.,&nbsp; the period duration becomes longer and longer,&nbsp; then one comes from the periodic signal to the unique&nbsp; &raquo;aperiodic signal&laquo;&nbsp; &ndash; often also called&nbsp; &raquo;pulse&laquo;.
  
Das Kapitel beinhaltet im Einzelnen:
+
In the following,&nbsp; such aperiodic and pulse&ndash;shaped signals are considered and mathematically described in the time and frequency domain.  
* die Herleitung der beiden&nbsp; <i>Fourierintegrale</i>&nbsp; aus der Fourierreihe,
 
* die Erweiterung des Fourierintegrals zur&nbsp; <i>Fouriertransformation</i>&nbsp; mittels Distributionen,
 
* einige&nbsp; <i>Sonderfälle</i>&nbsp; impulsartiger Signale wie Rechteck&ndash;, Gauß&ndash; und Diracimpuls,
 
* die&nbsp; <i>Gesetzmäßigkeiten</i>&nbsp; der Fouriertransformation, und schließlich
 
* die Bedeutung der&nbsp; <i>Faltungsoperation</i>&nbsp; und deren vielfältige Anwendungen.
 
  
 +
The chapter contains in detail:
 +
# The derivation of the two&nbsp; &raquo;Fourier integrals&laquo;&nbsp; from the Fourier series,
 +
# the extension of the Fourier integral to the&nbsp; &raquo;Fourier transform&laquo;&nbsp; by means of distributions,
 +
# &raquo;some&nbsp; special cases&laquo;&nbsp; of pulses:&nbsp; &raquo;rectangular pulse&laquo;&nbsp; and&nbsp; &raquo;Gaussian pulse&laquo;,
 +
# the&nbsp; &raquo;laws&nbsp; of Fourier transform&laquo;,&nbsp; and finally
 +
# the meaning of the&nbsp; &raquo;convolution operation&laquo;&nbsp; and its various applications.
  
Die Laplace&ndash; und die Hilberttransformation, die ausschließlich für kausale Signale bzw. Systeme anwendbar sind, werden erst im nächsten Buch &bdquo;Lineare zeitinvariante Systeme&rdquo; behandelt.
 
  
 +
&raquo;Laplace transform&laquo;&nbsp; and&nbsp; &raquo;Hilbert transform&laquo;,&nbsp; which are only applicable to causal signals or systems,&nbsp; will be treated in the second book&nbsp; &raquo;Linear Time-invariant Systems&laquo;.
  
Weitere Informationen zum Thema sowie Aufgaben, Simulationen und Programmierübungen finden Sie im
 
  
*Kapitel 6:  ''Lineare zeitinvariante Systeme'', Programm lzi
 
  
 +
==Properties of aperiodic signals==
 +
<br>
 +
In the last chapter periodic signals were considered.&nbsp; The essential characteristic of these signals is,&nbsp; that you can specify a&nbsp; period duration&nbsp; $T_0$&nbsp; for them.&nbsp; If such a period duration cannot be indicated or &ndash; which is the same in practice &ndash; has an infinitely large value&nbsp; $T_0$,&nbsp; one speaks of an&nbsp; &raquo;aperiodic signal&laquo;.
  
des Praktikums &bdquo;Simulationsmethoden in der Nachrichtentechnik&rdquo;. Diese (ehemalige) LNT-Lehrveranstaltung an der TU München basiert auf
+
For the present chapter&nbsp; &raquo;Aperiodic Signals &ndash; Pulses&raquo;&nbsp; the following conditions should apply:
*dem Lehrsoftwarepaket&nbsp; [http://en.lntwww.de/downloads/Sonstiges/Programme/LNTsim.zip LNTsim] &nbsp; &rArr; &nbsp; Link verweist auf die ZIP-Version des Programms und
+
#The considered signals&nbsp; $x(t)$&nbsp; are&nbsp; aperiodic&nbsp; and&nbsp; "energy-limited": &nbsp; They possess a finite energy&nbsp; $E_x$&nbsp; and a negligible&nbsp; $($medium$)$&nbsp; power&nbsp; $P_x$.
*der zugehörigen&nbsp; [http://en.lntwww.de/downloads/Sonstiges/Texte/Praktikum_LNTsim_Teil_A.pdf Praktikumsanleitung]  &nbsp; &rArr; &nbsp; Link verweist auf die PDF-Version;&nbsp; Kapitel 6:&nbsp; Seite 99-118.
+
#Often the energy of these signals is concentrated on a relatively short time range,&nbsp; so that one also speaks of&nbsp; &raquo;pulse-like signals&laquo;&nbsp; or&nbsp; &raquo;pulses&laquo;.
 
 
  
==Eigenschaften aperiodischer Signale==
 
<br>
 
Im letzten Kapitel wurden&nbsp; ''periodische Signale''&nbsp; betrachtet. Das wesentliche Charakteristikum dieser Signale ist, dass man für sie eine&nbsp; ''Periodendauer''&nbsp; $T_0$&nbsp; angeben kann. Ist eine solche Periodendauer nicht angebbar oder – was in der Praxis das gleiche ist – hat&nbsp; $T_0$&nbsp; einen unendlich großen Wert, so spricht man von einem&nbsp; '''aperiodischen Signal'''.
 
  
Für das vorliegende  Kapitel &bdquo;Aperiodische Signale  &ndash; Impulse&rdquo; sollen folgende Voraussetzungen gelten:
+
{{GraueBox|TEXT=
*Die betrachteten Signale&nbsp; $x(t)$&nbsp; sind&nbsp; ''aperiodisch''&nbsp; und&nbsp; ''energiebegrenzt'': &nbsp; Sie besitzen eine endliche Energie&nbsp; $E_x$&nbsp; und eine vernachlässigbar kleine (mittlere) Leistung&nbsp; $P_x$.
+
[[File:P_ID550__Sig_T_3_1_S1.png|right|frame|Energy-limited signal&nbsp; $x_1(t)$&nbsp; and <br>power-limited signal&nbsp; $x_2(t)$]] 
*Oft konzentriert sich die Energie dieser Signale auf einen relativ kurzen Zeitbereich, so dass man auch von&nbsp; ''impulsförmigen Signalen''&nbsp; spricht.
+
$\text{Example 1:}$&nbsp;
 +
The figure shows a rectangular pulse&nbsp; $x_1(t)$&nbsp; with amplitude&nbsp; $A$&nbsp; and duration&nbsp; $T$&nbsp; as an example of an aperiodic and time-limited signal. This pulse has
 +
#the finite signal energy &nbsp; &rArr; &nbsp; here: &nbsp; $E_1=A^2 \cdot T$,&nbsp; and
 +
#the power&nbsp; $P_1=0$.
  
  
[[File:P_ID550__Sig_T_3_1_S1.png|right|frame|Energiebegrenztes Signal&nbsp; $x_1(t)$&nbsp; und leistungsbegrenztes Signal&nbsp; $x_2(t)$]]
 
{{GraueBox|TEXT= 
 
$\text{Beispiel 1:}$&nbsp;
 
Die Grafik zeigt oben einen Rechteckimpuls&nbsp; $x_1(t)$&nbsp; mit Amplitude&nbsp; $A$&nbsp; und Dauer&nbsp; $T$&nbsp; als Beispiel eines aperiodischen und zeitlich begrenzten Signals. Dieser Impuls besitzt
 
*die endliche Signalenergie &nbsp; &rArr; &nbsp; hier: &nbsp; $E_1=A^2 \cdot T$, und
 
*die Leistung&nbsp; $P_1$ = 0.
 
  
  
Ein leistungsbegrenztes Signal, zum Beispiel das unten dargestellte Cosinussignal&nbsp; $x_2(t)$, besitzt dagegen
+
A power-limited signal,&nbsp; for example the cosine signal&nbsp; $x_2(t)$&nbsp; shown below,&nbsp; has
*stets eine endliche Leistung &nbsp; &rArr; &nbsp; hier: &nbsp; $P_2=A^2/2$, und
+
#always a finite power &nbsp; &rArr; &nbsp; here: &nbsp; $P_2=A^2/2$,&nbsp; and
*damit auch eine unendlich große Signalenergie: &nbsp; $E_2 \to \infty$.}}
+
#thus also an infinitely large signal energy: &nbsp; $E_2 \to \infty$.}}
  
  
==Genauere Betrachtung der Fourierkoeffizienten==
+
==Closer examination of the Fourier coefficients==
 
<br>
 
<br>
Wir gehen von einem periodischen Signal&nbsp; $x_{\rm P}(t)$&nbsp; mit der Periodendauer&nbsp; $T_0$&nbsp; aus, das entprechend den Ausführungen auf der Seite&nbsp; [[Signaldarstellung/Fourierreihe#Komplexe_Fourierreihe|Komplexe Fourierreihe]]&nbsp; wie folgt dargestellt werden kann:
+
We assume a periodic signal&nbsp; $x_{\rm P}(t)$&nbsp; with period duration&nbsp; $T_0$&nbsp; which corresponds to the explanations in section&nbsp; [[Signal_Representation/Fourier_Series#Complex_Fourier_series|&raquo;Complex Fourier series&laquo;]].&nbsp;  
 
+
[[File:P_ID538__Sig_T_3_1_S2b_rah.png|right|frame|Periodic signal&nbsp; $x_{\rm P}(t)$&nbsp; and&nbsp; $x_{\rm P}\hspace{0.01cm}'(t)$&nbsp; and its line spectra]]
[[File:P_ID538__Sig_T_3_1_S2b_rah.png|right|frame|Periodische Signale&nbsp; $x_{\rm P}(t)$&nbsp; und&nbsp; $x_{\rm P}\hspace{0.01cm}'(t)$&nbsp; sowie zugehörige Linienspektren]]
+
*This signal can be described as follows:
 
 
 
:$$x_{\rm P}(t)=\sum^{+\infty}_{n=-\infty}D_{\it n}\cdot \rm e^{j  2 \pi \hspace{0.01cm}{\it n} \hspace{0.01cm}\it t / T_{\rm 0}}.$$
 
:$$x_{\rm P}(t)=\sum^{+\infty}_{n=-\infty}D_{\it n}\cdot \rm e^{j  2 \pi \hspace{0.01cm}{\it n} \hspace{0.01cm}\it t / T_{\rm 0}}.$$
  
*Die Fourierkoeffizienten sind im Allgemeinen komplex <br>$($es gilt&nbsp; $D_{-n}={D_n}^\ast)$:
+
*The Fourier coefficients are generally complex $($with&nbsp; $D_{-n}=D_n^\ast)$:
 
   
 
   
 
:$$D_n=\frac{1}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x_{\rm P}(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{0.01cm}{\it  n} \it t / T_{\rm 0}}\, {\rm d}t.$$
 
:$$D_n=\frac{1}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x_{\rm P}(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{0.01cm}{\it  n} \it t / T_{\rm 0}}\, {\rm d}t.$$
  
*Die dazugehörige Spektralfunktion&nbsp; $X_{\rm P}(f)$&nbsp; ist ein so genanntes&nbsp; ''Linienspektrum''&nbsp; mit Spektrallinien im Abstand&nbsp; $f_0=1/T_0$:
+
*The corresponding spectral function&nbsp; $X_{\rm P}(f)$&nbsp; is a&nbsp; &raquo;line spectrum&laquo;&nbsp; with spectral lines in the distance&nbsp; $f_0=1/T_0$:
 
   
 
   
 
:$$X_{\rm P}(f)=\sum^{+\infty}_{n=-\infty}D_n\cdot\delta(f-n\cdot f_0).$$
 
:$$X_{\rm P}(f)=\sum^{+\infty}_{n=-\infty}D_n\cdot\delta(f-n\cdot f_0).$$
  
Die obere Grafik zeigt links das periodische Zeitsignal&nbsp; $x_{\rm P}(t)$&nbsp; und rechts das zugehörige Betragsspektrum&nbsp; $|X_{\rm P}(f)|$. Es handelt sich hierbei lediglich um eine schematische Skizze:
+
*The upper figure shows on the left the periodic time signal&nbsp; $x_{\rm P}(t)$&nbsp; and on the right the corresponding magnitude spectrum&nbsp; $|X_{\rm P}(f)|$.&nbsp; This is merely a schematic sketch.
 +
 +
*If &nbsp; $x_{\rm P}(t)$&nbsp;is a real and even function, then&nbsp; $X_{\rm P}(f)$&nbsp; is also real and even.&nbsp; The equation&nbsp; $X_{\rm P}(f) = |X_{\rm P}(f)|$&nbsp; is only valid if all spectral lines are positive.
 
<br clear=all>
 
<br clear=all>
''Weitere Anmerkungen:'' &nbsp;
+
In the lower figure on the left side another periodic signal&nbsp; ${x_{\rm P}}\hspace{0.01cm}'(t)$&nbsp; with double period duration&nbsp; ${T_0}\hspace{0.01cm}' = 2 \cdot T_0$&nbsp; is displayed.&nbsp; The following applies to this signal:
*Ist&nbsp; $x_{\rm P}(t)$&nbsp; eine reelle und gerade Funktion, so ist&nbsp; $X_{\rm P}(f)$&nbsp; ebenfalls reell und gerade.
 
*Die Gleichung&nbsp; $X_{\rm P}(f) = |X_{\rm P}(f)|$&nbsp; gilt allerdings nur dann, wenn alle Spektrallinien zudem auch positiv sind.
 
<br clear=all>
 
In der unteren Grafik ist links ein weiteres periodisches Signal&nbsp; ${x_{\rm P}}\hspace{0.01cm}'(t)$&nbsp; mit doppelter Periodendauer&nbsp; ${T_0}\hspace{0.01cm}' = 2 \cdot T_0$&nbsp; dargestellt. Für dieses Signals gilt:
 
 
   
 
   
:$${x_{\rm P}}'(t)=\sum^{+\infty}_{n=-\infty}{\it D_n}'\cdot {\rm e}^{{\rm j}  2 \pi \hspace{-0.05cm}{\it n t / T}_{\rm 0}\hspace{0.01cm}'} \hspace{0.3cm}{\rm mit}\hspace{0.3cm}{\it D_n}'=\frac{1}{{T_0}\hspace{0.01cm}'}\cdot \int^{{+T_0}'/2}_{-{T_0}'/2}{x_{\rm P}}'(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it n t / T}_{\rm 0}\hspace{0.01cm}'}\, {\rm d}\it t.$$
+
:$${x_{\rm P}}'(t)=\sum^{+\infty}_{n=-\infty}{\it D_n}'\cdot {\rm e}^{{\rm j}  2 \pi \hspace{-0.05cm}{\it n t / T}_{\rm 0}\hspace{0.01cm}'} \hspace{0.3cm}{\rm with}\hspace{0.3cm}{\it D_n}'=\frac{1}{{T_0}\hspace{0.01cm}'}\cdot \int^{{+T_0}'/2}_{-{T_0}'/2}{x_{\rm P}}'(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it n t / T}_{\rm 0}\hspace{0.01cm}'}\, {\rm d}\it t.$$
  
Im Bereich von&nbsp; $-T_0/2$&nbsp; bis&nbsp; $+T_0/2$&nbsp; sind die beiden Signale identisch.
+
In the range from&nbsp; $-T_0/2$&nbsp; to&nbsp; $+T_0/2$&nbsp; the two signals&nbsp; $x_{\rm P}(t)$&nbsp; and &nbsp;$x_{\rm P}\hspace{0.01cm}'(t)$&nbsp; are identical.&nbsp;  
Wir betrachten auch hier die Spektralfunktion&nbsp; ${X_{\rm P} }'(f)$&nbsp; entsprechend der rechten Skizze:
 
*Aufgrund der doppelten Periodendauer&nbsp; $({T_0}' = 2 \cdot T_0)$&nbsp; liegen nun die Spektrallinien enger beisammen&nbsp; $({f_0}' = f_0/2)$.
 
*Die beiden Koeffizienten&nbsp; $D_n$&nbsp; und&nbsp; ${D_{2n}}'$ – im Bild rot hervorgehoben – gehören zur gleichen physikalischen Frequenz&nbsp; $f = n \cdot  f_0 = 2n \cdot {f_0}'$.
 
  
 +
We will also consider the spectral function&nbsp; ${X_{\rm P} }'(f)$&nbsp; according to the right sketch:
 +
*Due to the double period duration&nbsp; $({T_0}' = 2 \cdot T_0)$&nbsp; the spectral lines are now closer together&nbsp; $({f_0}' = f_0/2)$.
  
Wir erkennen durch einen Vergleich der beiden Koeffizienten
+
*Both red marked coefficients&nbsp; $D_n$&nbsp; und&nbsp; ${D_{2n}}'$ belong to the same physical frequency &nbsp; $f = n \cdot f_0 = 2n \cdot {f_0}'$.
 
:$$D_n=\frac{1}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x_{\rm P}(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it  n} \it t / T_{\rm 0}}\, {\rm d}t \hspace{0.5cm}\text{und} \hspace{0.5cm} {D_{2n}}'=\frac{1}{{T_0}'}\cdot \int^{+{T_0}'/2}_{-{T_0}'/2}{x_{\rm P}}'(t) \cdot{\rm e}^{-\rm j  4 \pi \hspace{-0.05cm}{\it n} \it t / {T_{\rm 0}}'}\, {\rm d}t  \text{:} $$
 
  
*Zwischen&nbsp; $T_0/2$&nbsp; und&nbsp; ${T_0}'/2$&nbsp; ist&nbsp; ${x_{\rm P}}'(t) \equiv 0$, ebenso im dazu symmetrischen Intervall bei negativen Zeiten.
 
*Deshalb können die Integrationsgrenzen auf&nbsp; $\pm T_0/2$&nbsp; eingeschränkt werden.
 
*Innerhalb der neuen Integrationsgrenzen kann&nbsp; ${x_{\rm P}}'(t)$&nbsp; durch&nbsp; $x_{\rm P}(t)$&nbsp; ersetzt werden.
 
  
 +
We recognize by a comparison of the two coefficients
 +
 +
:$$D_n=\frac{1}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x_{\rm P}(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it  n} \it t / T_{\rm 0}}\, {\rm d}t \hspace{0.5cm}\text{and} \hspace{0.5cm} {D_{2n}}'=\frac{1}{{T_0}'}\cdot \int^{+{T_0}'/2}_{-{T_0}'/2}{x_{\rm P}}'(t) \cdot{\rm e}^{-\rm j  4 \pi \hspace{-0.05cm}{\it n} \it t / {T_{\rm 0}}'}\, {\rm d}t  \text{:} $$
  
Setzen wir nun in obiger Gleichung noch&nbsp; ${T_0}' = 2T_0$, so erhalten wir:
+
#${x_{\rm P}}'(t) \equiv 0$ &nbsp; between&nbsp; $T_0/2$&nbsp; and&nbsp; ${T_0}'/2$&nbsp; and  also in a symmetrical interval for negative times.
 +
#Therefore the integration limits can be restricted to&nbsp; $\pm T_0/2$.&nbsp;
 +
#Inside the new integration limits:&nbsp; ${x_{\rm P}}'(t)$&nbsp; can be replaced by&nbsp; $x_{\rm P}(t)$.
 +
#If we set&nbsp; ${T_0}' = 2T_0$&nbsp; in the above equation,&nbsp; we get:
 
   
 
   
 
:$${D_{2n}}'=\frac{1}{2T_0}\cdot \int^{+T_0/2}_{-T_0/2}x_{\rm P}(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it n} t / T_{\rm 0}}\, {\rm d}t = {D_n}/{2}  .$$
 
:$${D_{2n}}'=\frac{1}{2T_0}\cdot \int^{+T_0/2}_{-T_0/2}x_{\rm P}(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it n} t / T_{\rm 0}}\, {\rm d}t = {D_n}/{2}  .$$
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Wir fassen dieses Ergebnis kurz zusammen:}$&nbsp;
+
$\text{We summarize this result briefly:}$&nbsp;
*Die Spektrallinie des Signals&nbsp; ${x_{\rm P} }'(t)$&nbsp; bei der Frequenz&nbsp; $f = n \cdot {f_0}'$&nbsp; wird mit&nbsp; ${D_{2n} }'$&nbsp; bezeichnet (untere Grafik).  
+
*The spectral line of the signal&nbsp; ${x_{\rm P} }'(t)$&nbsp; at frequency&nbsp; $f = n \cdot {f_0}'$&nbsp; is denoted by&nbsp; ${D_{2n} }'$&nbsp; $($see lower graph on the right$)$.
*Diese Linie ist genau halb so groß wie die Spektrallinie&nbsp; $D_n$&nbsp; des Signals&nbsp; $x_{\rm P}(t)$&nbsp; bei der gleichen physikalischen Frequenz&nbsp; $f$&nbsp; (obere Grafik).
+
*Die Spektralfunktion&nbsp; ${X_{\rm P} }'(f)$&nbsp; weist gegenüber&nbsp; $X_P(f)$&nbsp; zusätzliche Spektrallinien bei&nbsp; $(n + 1/2) \cdot f_0$&nbsp; auf.  
+
*This line has exactly half the size of the spectral line&nbsp; $D_n$&nbsp; of the signal&nbsp; $x_{\rm P}(t)$&nbsp; at the same physical frequency&nbsp; $f$&nbsp; $($see upper graph  on the right$)$.
*Diese führen dazu, dass im Zeitbereich jeder zweite &bdquo;Impuls&rdquo; von&nbsp; $x_{\rm P}(t)$&nbsp; um&nbsp; $n \cdot T_0$&nbsp; gelegen&nbsp; $(n$ ungeradzahlig$)$&nbsp; ausgelöscht wird.}}
+
 
 +
*The spectral function&nbsp; ${X_{\rm P} }'(f)$&nbsp; has opposite&nbsp; $X_{\rm P}(f)$&nbsp; additional spectral lines at&nbsp; $(n + 1/2) \cdot f_0$&nbsp; $($see lower graph on the left$)$.
 +
 
 +
*These additional lines lead to the fact that in the time domain every second&nbsp; pulse&nbsp; of&nbsp; $x_{\rm P}(t)$&nbsp; &ndash; &nbsp; located by&nbsp; $n \cdot T_0$&nbsp; $(n$ odd$)$&nbsp; &ndash; &nbsp; is cancelled.}}
  
  
  
==Vom periodischen zum aperiodischen Signal==
+
==From the periodic to the aperiodic signal==
 
<br>
 
<br>
Wir greifen nun die Überlegungen der vorherigen Seite auf und wählen die Periodendauer&nbsp; ${T_0}'$&nbsp; von&nbsp; ${x_{\rm P}}'(t)$&nbsp; allgemein um einen ganzzahligen Faktor&nbsp; $k$&nbsp; größer als die Periodendauer&nbsp; $T_0$&nbsp; von&nbsp; ${x_{\rm P}}(t)$. Dann können die bisherigen Aussagen verallgemeinert werden:
+
We now take up the considerations in the previous section and select the period duration&nbsp; ${T_0}'$&nbsp; of&nbsp; ${x_{\rm P}}'(t)$&nbsp; generally by an integer factor&nbsp; $k$&nbsp; greater than the period duration&nbsp; $T_0$&nbsp; of&nbsp; ${x_{\rm P}}(t)$.&nbsp; Then the previous statements can be generalized:
  
[[File:P_ID398__Sig_T_3_1_S3_rah.png|right|frame|Vom periodischen zum aperiodischen Signal]]
+
[[File:P_ID398__Sig_T_3_1_S3_rah.png|right|frame|From the periodic to the aperiodic signal]]
*Der Linienabstand ist bei&nbsp; ${X_{\rm P}}'(f)$&nbsp; um den Faktor&nbsp; $k$&nbsp; geringer als beim Spektrum&nbsp; ${X_{\rm P}}(f)$.
+
*The line spacing is smaller for&nbsp; ${X_{\rm P}}'(f)$&nbsp; by the factor&nbsp; $k$&nbsp; than for the spectrum&nbsp; ${X_{\rm P}}(f)$.
*Um diesen Sachverhalt hervorzuheben, bezeichnen wir die Frequenz&ndash;Laufvariable der Funktion&nbsp; ${X_{\rm P}}'(f)$&nbsp; mit&nbsp; $\nu$&nbsp; anstelle von&nbsp; $n$. Es gilt: &nbsp; $\nu=k \cdot n$.
 
*Für die Spektrallinie des Signals&nbsp; ${x_{\rm P}}'(t)$&nbsp; bei der Frequenz&nbsp; $f=n \cdot f_0 =\nu \cdot {f_0}'$&nbsp; gilt:
 
:$${D_\nu}' = {1}/{k} \cdot D_n, \hspace{0.5cm} {\rm wobei} \hspace{0.5cm} \nu = k \cdot n.$$
 
  
 +
*To emphasize this fact,&nbsp; we denote the discrete frequency variable of function&nbsp; ${X_{\rm P}}'(f)$&nbsp; with&nbsp; $\nu$&nbsp; instead of&nbsp; $n$.&nbsp; The following applies: &nbsp;
 +
:$$\nu=k \cdot n.$$
 +
*It applies for the red marked spectral line of signal&nbsp; ${x_{\rm P}}'(t)$&nbsp; at frequency&nbsp; $f=n \cdot f_0 =\nu \cdot {f_0}'$:
 +
:$${D_\nu}' = {1}/{k} \cdot D_n.$$
  
Wählt man nun – wie im Bild schematisch dargestellt – den Faktor&nbsp; $k$&nbsp; und damit die Periodendauer&nbsp; ${T_0}'$&nbsp; immer größer und lässt sie schließlich nach unendlich gehen, so
+
*If one now chooses &nbsp; &ndash; &nbsp; as shown schematically in the graph &nbsp; &ndash; &nbsp; the factor&nbsp; $k$&nbsp; and thus the period duration&nbsp; ${T_0}'$&nbsp; always larger and finally lets it go to infinity,&nbsp; then
*geht das periodische Signal&nbsp; ${x_{\rm P}}(t)$&nbsp; in das aperiodische Signal&nbsp; $x(t)$&nbsp; über,
+
# the periodic signal&nbsp; ${x_{\rm P}}(t)$&nbsp; changes to the aperiodic signal&nbsp; $x(t)$,
*kann man das Linienspektrum&nbsp; ${X_{\rm P}}(f)$&nbsp; durch das kontinuierliche Spektrum&nbsp; $X(f)$&nbsp; ersetzen.
+
#the line spectrum&nbsp; ${X_{\rm P}}(f)$&nbsp; can be replaced by the continuous spectrum&nbsp; $X(f)$.
 
<br clear=all>
 
<br clear=all>
==Das erste Fourierintegral==
+
==The first Fourier integral==
 
<br>
 
<br>
Bezüglich den Spektralfunktion $X_{\rm P}(f)$ und $X(f)$ lassen sich somit folgende Aussagen machen:
+
Concerning the spectral functions&nbsp; $X_{\rm P}(f)$&nbsp; and&nbsp; $X(f)$&nbsp; the following statements can be made:
*Die einzelnen Spektrallinien liegen nun beliebig eng beieinander (${f_0}'=1/{T_0}' \to 0$).
+
*The individual spectral lines now lie as close together as desired&nbsp; $({f_0}'=1/{T_0}' \to 0)$.
*In der Spektralfunktion $X(f)$ treten nun innerhalb bestimmter Intervalle alle möglichen (nicht nur diskrete) Frequenzen auf. Damit ist $X(f)$ kein Linienspektrum mehr.
+
 
*Der Beitrag einer jeden einzelnen Frequenz $f$ zum Signal ist nur verschwindend gering ($k \to \infty, {D_{\nu}}' \to 0$). Aufgrund der unendlich vielen Frequenzen ergibt sich jedoch insgesamt ein endliches Resultat.
+
*In the spectral function&nbsp; $X(f)$&nbsp; all possible&nbsp; $($not only discrete$)$&nbsp; frequencies now occur within certain intervals &nbsp; &rArr; &nbsp; $X(f)$&nbsp; is no longer a line spectrum.
*Anstatt die Fourierkoeffizienten ${D_{\nu}}'$ zu berechnen, wird nun eine spektrale Dichte $X(f)$ ermittelt. Bei der Frequenz $f=\nu\cdot {f_0}'$ gilt dann:
+
 
 +
*The contribution of each individual frequency&nbsp; $f$&nbsp; to the signal&nbsp; $x(t)$&nbsp;is negligibly small&nbsp; $(k \to \infty,\ {D_{\nu}}' \to 0)$.
 +
 +
*Because of the infinite number of frequencies there is a finite result in total.
 +
 
 +
*Instead of calculating the Fourier coefficients&nbsp; ${D_{\nu}}'$:&nbsp; Now a spectral density&nbsp; $X(f)$&nbsp; is calculated.&nbsp; For the frequency&nbsp; $f=\nu\cdot {f_0}'$&nbsp; then applies:
 
   
 
   
 
: $$X(f = {\rm \nu} {f_{\rm 0}}') = \lim_{{f_{\rm 0}}' \hspace{0.05cm}\to \hspace{0.05cm} 0} ({{D_{\rm \nu}}'}/{{f_{\rm 0}}'}) = \lim_{{T_{\rm 0}}' \to \infty} ({D_{\rm \nu}}' \cdot {T_{\rm 0}}').$$  
 
: $$X(f = {\rm \nu} {f_{\rm 0}}') = \lim_{{f_{\rm 0}}' \hspace{0.05cm}\to \hspace{0.05cm} 0} ({{D_{\rm \nu}}'}/{{f_{\rm 0}}'}) = \lim_{{T_{\rm 0}}' \to \infty} ({D_{\rm \nu}}' \cdot {T_{\rm 0}}').$$  
*Die Spektralfunktion $X(f)$ des aperiodischen Signals $x(t)$ ist im Spektrum $X_{\rm P}(f)$ des periodischen Signals $x_{\rm P}(t)$ als Einhüllende erkennbar (siehe Grafiken).
+
*The spectral function&nbsp; $X(f)$&nbsp; of the aperiodic signal&nbsp; $x(t)$&nbsp; is visible in the spectrum&nbsp; $X_{\rm P}(f)$&nbsp; of the periodic signal&nbsp; $x_{\rm P}(t)$ as envelope&nbsp; $($see graphics in the last section$)$.
*In der unteren Grafik auf der letzten Seite entspricht ${D_{\nu}}'$ der rot hinterlegten Fläche des Frequenzintervalls um $\nu \cdot {f_0}'$ mit der Breite ${f_0}'$.
 
  
 +
*In the lower graphic&nbsp; ${D_{\nu}}'$&nbsp; corresponds to the red-shaded area of the frequency interval around&nbsp; $\nu \cdot {f_0}'$&nbsp; with width ${f_0}'$.
  
Verwendet man die auf der letzten Seite angegebenen Gleichungen, so erhält man:
+
 
 +
If you use the equations given in the last section, you get
 
   
 
   
 
:$$X(f = {\rm \nu} \cdot {f_{\rm 0}}') = \lim_{{T_{\rm 0}'} \to \infty} \int ^{{T_{\rm 0}}'/2} _{-{T_{\rm 0}}'/2} x_{\rm P}(t) \, \cdot \, { \rm e}^{-\rm j 2\pi\nu \it {f_{\rm 0}}' t} \,{\rm d}t.$$
 
:$$X(f = {\rm \nu} \cdot {f_{\rm 0}}') = \lim_{{T_{\rm 0}'} \to \infty} \int ^{{T_{\rm 0}}'/2} _{-{T_{\rm 0}}'/2} x_{\rm P}(t) \, \cdot \, { \rm e}^{-\rm j 2\pi\nu \it {f_{\rm 0}}' t} \,{\rm d}t.$$
  
Durch den gemeinsamen Grenzübergang (${T_0}' \to \infty, {f_0}' \to 0$) wird nun
+
Through the common limit crossing &nbsp; $({T_0}' \to \infty, \ {f_0}' \to 0)$&nbsp; the following transformations will happen:
*aus dem periodischen Signal $x_{\rm P}(t)$ das aperiodische Signal $x(t)$, und
+
#From the periodic signal&nbsp; $x_{\rm P}(t)$&nbsp; to the aperiodic signal&nbsp; $x(t)$.
*aus der diskreten Frequenz $\nu \cdot {f_0}'$ die kontinuierliche Frequenzvariable $f$.
+
#From the discrete frequency&nbsp; $\nu \cdot {f_0}'$&nbsp; to the continuous frequency variable&nbsp; $f$.
  
  
Damit erhält man eine fundamentale Definition, welche die Berechnung der Spektralfunktion einer aperiodischen Zeitfunktion ermöglicht. Der Name dieser Spektraltransformation geht auf den französischen Physiker [https://de.wikipedia.org/wiki/Joseph_Fourier Jean-Baptiste-Joseph Fourier] zurück.
+
Thus,&nbsp; a fundamental definition is obtained,&nbsp; which allows the calculation of the spectral function of an aperiodic time function.&nbsp; The name of this spectral transformation goes back to the French physicist&nbsp; [https://en.wikipedia.org/wiki/Joseph_Fourier &raquo;$\text{Jean-Baptiste Joseph Fourier}$&laquo;].
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Erstes Fourierintegral:}$&nbsp;
+
$\text{First Fourier Integral:}$&nbsp;
  
Die Spektralfunktion (oder kurz: das Spektrum) eines aperiodischen und gleichzeitig energiebegrenzten Signals $x(t)$ ist wie folgt zu berechnen:
+
The&nbsp; &raquo;'''spectral function'''&laquo;&nbsp; $($or short:&nbsp; the&nbsp;  &raquo;'''spectrum'''&laquo;$)$&nbsp; of an aperiodic and simultaneously energy limited signal&nbsp; $x(t)$&nbsp; is to be calculated as follows
  
 
:$$X(f)= \hspace{0.05cm}\int_{-\infty} ^{ {+}\infty} x(t) \, \cdot \, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$$}}
 
:$$X(f)= \hspace{0.05cm}\int_{-\infty} ^{ {+}\infty} x(t) \, \cdot \, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$$}}
  
  
Das Lernvideo [[Kontinuierliche_und_diskrete_Spektren_(Lernvideo)|Kontinuierliche und diskrete Spektren]] soll die Aussagen der letzten Seiten nochmals verdeutlichen.
+
The following&nbsp; $($German language$)$&nbsp; learning video should clarify the statements of the last sections:<br> &nbsp; &nbsp; &nbsp; &nbsp;[[Kontinuierliche_und_diskrete_Spektren_(Lernvideo)|&raquo;Kontinuierliche und diskrete Spektren&laquo;]] &nbsp; &rArr; &nbsp; "Continuous and discrete spectra".
 
   
 
   
[[File:P_ID330__Sig_T_3_1_S5_neu.png|right|frame|Betrachteter Rechteckimpuls $x(t)$]]
 
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 2:}$&nbsp;
+
$\text{Example 2:}$&nbsp;
Gegeben ist der skizzierte Zeitverlauf $x(t)$. Gesucht ist das zugehörige Spektrum $X(f)$. Wir wenden dazu das erste Fourierintegral an.
+
Given is the sketched time course&nbsp; $x(t)$.&nbsp; The corresponding spectrum&nbsp; $X(f)$&nbsp; is searched for using the first Fourier integral:
*Aus obiger Darstellung ist zu erkennen, dass für $\vert t \vert > T/2$ das Signal $x(t) = 0$  ist.
+
[[File:P_ID330__Sig_T_3_1_S5_neu.png|right|frame|Rectangular pulse&nbsp; $x(t)$]]
*Das bedeutet, dass das Integrationsintervall auf den Bereich $\pm T/2$ begrenzt werden kann.  
+
*From the above representation we can see,&nbsp; that for&nbsp; $\vert t \vert > T/2$&nbsp; the signal is&nbsp; $x(t) = 0$.
*Damit erhält man den Ansatz:
+
   
 +
*This means that the integration interval can be limited to the range&nbsp; $\pm T/2$.
 +
 +
*This results in the approach:
 
   
 
   
 
:$$ \begin{align*} X(f) & =  A \cdot  \int_{- T/2}^{+T/2} {\rm e}^{- {\rm j2\pi} ft}\,{\rm d}t  = \frac{ A}{- \rm j2\pi f}\left[ {\rm e}^{- {\rm j}2\pi ft}\right]_{-T/2}^{+T/2}  \\ & =  \frac{\it A} {- \rm j 2\pi f}\cdot \big[\cos({\rm \pi} f T) - {\rm j} \cdot \sin({\rm \pi} fT) - \cos({\rm \pi} fT) - {\rm j} \cdot \sin({\rm \pi} fT)\big] \end{align*}$$
 
:$$ \begin{align*} X(f) & =  A \cdot  \int_{- T/2}^{+T/2} {\rm e}^{- {\rm j2\pi} ft}\,{\rm d}t  = \frac{ A}{- \rm j2\pi f}\left[ {\rm e}^{- {\rm j}2\pi ft}\right]_{-T/2}^{+T/2}  \\ & =  \frac{\it A} {- \rm j 2\pi f}\cdot \big[\cos({\rm \pi} f T) - {\rm j} \cdot \sin({\rm \pi} fT) - \cos({\rm \pi} fT) - {\rm j} \cdot \sin({\rm \pi} fT)\big] \end{align*}$$
  
:$$\Rightarrow \hspace{0.5cm}X(f)=A\cdot \frac{\sin({\rm \pi} fT)}{ {\rm \pi} f}.$$
+
:$$\Rightarrow \hspace{0.5cm}X(f)=A\cdot \frac{\sin({\rm \pi} fT)}{ {\rm \pi} f},$$
  
*Erweitert man Zähler und Nenner mit $T$, so erhält man:
+
*If you extend numerator and denominator with&nbsp; $T$,&nbsp; you get:
 
   
 
   
:$$X(f)=A\cdot T \cdot\frac{\sin(\pi fT)}{\pi fT} = A\cdot T \cdot{\rm si }(\pi fT) .$$
+
:$$X(f)=A\cdot T \cdot\frac{\sin(\pi fT)}{\pi fT} = A\cdot T \cdot{\rm si }(\pi fT) = A\cdot T \cdot{\rm sinc }(fT).$$}}
  
Die Funktion $\text{si}(x) = \sin(x)/x$ wird auf der Seite [[Signaldarstellung/Einige_Sonderf%C3%A4lle_impulsartiger_Signale#Rechteckimpuls|Rechteckimpuls]] eingehend analysiert. Man bezeichnet diese &bdquo;si–Funktion&rdquo; manchmal  auch als &bdquo;Spaltfunktion&rdquo;.}}
+
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Definitions:}$&nbsp; For abbreviation we define the following functions:
 +
*&raquo;'''sinc&ndash;function&laquo;'''&nbsp; $($predominantly used in Anglo-American literature$)$
 +
:$${\rm sinc}( x ) = {\sin (\pi  x) }/(\pi  x ),$$
 +
 
 +
*&raquo;'''si&ndash;function'''&laquo;&nbsp; or&nbsp; &raquo;$\text{splitting function}$&laquo; &nbsp;$($predominantly used in German literature$)$
 +
:$${\rm si}\left( x \right) = \sin \left( x \right)/x = {\rm sinc}(x/\pi ).$$}}
  
  
Betrachten wir noch die Einheiten der beiden Funktionen im Zeit- und Frequenzbereich:
+
<u>Note:</u> &nbsp; In our&nbsp; $\rm LNTwww$&nbsp; we mostly use the function&nbsp; ${\rm si}(x)$,&nbsp; but important results are also given in the&nbsp; ${\rm sinc}(x)$ form.
*Ist $x(t)$ beispielsweise eine Spannung, so hat die Impulsamplitude $A$ die Einheit „Volt”.
 
*Die Dimension der Größe $T$ ist häufig die Zeit, zum Beispiel mit der Einheit „Sekunde”.
 
*Der Kehrwert der Zeit entspricht der Frequenz mit der Einheit „Hertz”.
 
*Das Argument $f \cdot T$ ist dimensionslos.
 
*Die Spektralfunktion $X(f)$ hat somit beispielsweise die Einheit „V/Hz”.
 
  
  
==Fouriertransformation==
+
==Fourier transform==
 
<br>
 
<br>
Das Spektrum $X(f)$ eines Signals $x(t)$ lautet gemäß dem „Ersten Fourierintegral”:
+
The spectrum&nbsp; $X(f)$&nbsp; of a signal&nbsp; $x(t)$&nbsp; is according to the&nbsp; &raquo;first Fourier integral&laquo;:
 
   
 
   
 
:$$X(f)= \hspace{0.05cm}\int _{-\infty} ^{{+}\infty} x(t) \, \cdot \, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$$
 
:$$X(f)= \hspace{0.05cm}\int _{-\infty} ^{{+}\infty} x(t) \, \cdot \, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$$
  
Wie auf der letzten Seite an einem einfachen Beispiel gezeigt wurde, ist dieses Integral bei einem energiebegrenzten Signal $x(t)$ problemlos lösbar. Bei nicht energiebegrenzten Signalen, zum Beispiel
+
As shown in the last section with a simple example,&nbsp; this integral can be solved easily for an energy-limited signal&nbsp; $x(t)$.&nbsp; For non-energy limited signals,&nbsp; for example
*einem [[Signaldarstellung/Gleichsignal_-_Grenzfall_eines_periodischen_Signals|Gleichsignal]] ,
+
*a&nbsp; [[Signal_Representation/Direct_Current_Signal_-_Limit_Case_of_a_Periodic_Signal|&raquo;DC signal&laquo;]], or
*einer [[Signaldarstellung/Harmonische_Schwingung|harmonischen Schwingung]], oder
+
 
*einem anklingenden Signal,
+
*a&nbsp; [[ Signal_Representation/Harmonic_Oscillation|&raquo;harmonic oscillation&laquo;]],  
  
  
divergiert aber das Fourierintegral. Unter Einbeziehung einer beidseitig abfallenden Hilfsfunkion $\varepsilon (t)$ kann allerdings die Konvergenz erzwungen werden:
+
we observe a divergence of the Fourier integral.&nbsp; Including a bilateral declining auxiliary function&nbsp; $\varepsilon (t)$,&nbsp; however,&nbsp; convergence can be forced:
 
   
 
   
 
:$$X(f) = \lim_{\varepsilon \to 0} \int _{-\infty} ^{{+}\infty} x(t) \cdot {\rm e}^{\it -\varepsilon  | \hspace{0.01cm} t \hspace{0.01cm} |} \cdot {\rm e}^{{-\rm j 2  \pi}\it  ft} \,{\rm d}t.$$
 
:$$X(f) = \lim_{\varepsilon \to 0} \int _{-\infty} ^{{+}\infty} x(t) \cdot {\rm e}^{\it -\varepsilon  | \hspace{0.01cm} t \hspace{0.01cm} |} \cdot {\rm e}^{{-\rm j 2  \pi}\it  ft} \,{\rm d}t.$$
  
Solche nicht energiebegrenzten Signale führen im Spektrum zu so genannten &bdquo;Diracfunktionen&rdquo;, manchmal auch „Distributionen” genannt.  
+
Such non-energy limited signals lead  to so-called&nbsp; &raquo;Dirac delta functions&laquo;&nbsp; in the spectral domain,&nbsp; sometimes also called&nbsp; &raquo;distributions&laquo;.  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;
 
$\text{Definition:}$&nbsp;
Man bezeichnet den allgemein gültigen Funktionalzusammenhang $X(f) = F\big [x(t) \big ]$ als '''Fouriertransformation'''. Für die Kurzschreibweise verwenden wir (mit dem &bdquo;weißen&rdquo; Punkt für den Zeitbereich und dem ausgefüllten Punkt für den Spektralbereich):
+
The generally valid functional relation&nbsp; $X(f) = F\big [x(t) \big ]$&nbsp; is called&nbsp; &raquo;'''Fourier Transform'''&laquo;.&nbsp; For the short notation we use&nbsp; $($with the&nbsp; "white dot"&nbsp; for the time domain and the&nbsp; "filled dot"&nbsp; for the spectral domain$)$:
 
   
 
   
 
:$$X(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ x(t).$$
 
:$$X(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ x(t).$$
  
Bei einem anklingenden Signal wird die Konvergenz allerdings nur dann erreicht, solange die Zeitfunktion weniger als exponentiell ansteigt.}}
+
With a increasing signal,&nbsp; however,&nbsp; convergence is only achieved as long as the time function increases less than exponentially. }}
  
  
[[File:P_ID655__Sig_T_3_1_S6.png|right|frame| Sprungfunktion und zugehöriges Spektrum]]
+
{{GraueBox|TEXT=
{{GraueBox|TEXT= 
+
[[File:P_ID655__Sig_T_3_1_S6.png|right|frame| Jump function and associated spectrum]]
$\text{Beispiel 3:}$&nbsp;
+
 
Wir betrachten eine akausale Sprungfunktion
+
$\text{Example 3:}$&nbsp;
:$$x_\varepsilon (t) = \left\{ {\begin{array}{*{20}c}  { +1 } & { {\rm{f\ddot{u}r} }\quad t > 0,}  \\  {-1 } & { {\rm{f\ddot{u}r} }\quad t < 0.}  \\\end{array} } \right.$$  
+
We consider an acausal jump function
Dieses Signal ist in der linken Skizze in blauer Farbe dargestellt.
+
:$$x (t) = \left\{ {\begin{array}{*{20}c}  { +1 } & { {\rm{for} }\quad t > 0,}  \\  {-1 } & { {\rm{for} }\quad t < 0.}  \\\end{array} } \right.$$  
 +
This signal is shown in blue color in the left sketch.
 
   
 
   
Da das Signal $x(t)$ nach beiden Seiten bis ins Unendliche reicht, muss zur Berechnung der Fouriertransformierten für beide Abschnitte zunächst ein geeigneter Konvergenzfaktor $\text{e}^{-\varepsilon \hspace{0.05cm} \cdot \hspace{0.05cm}\vert t \vert}$ hinzugefügt werden (es gelte $\varepsilon > 0$). Die resultierende Zeitfunktion lautet dann:
+
Since the signal&nbsp; $x(t)$&nbsp; extends to infinity on both sides, we must add a suitable convergence factor&nbsp; $\text{e}^{-\varepsilon \hspace{0.05cm} \cdot \hspace{0.05cm}\vert \hspace{0.05cm} t \hspace{0.05cm} \vert}$&nbsp; with&nbsp; $($&nbsp; $\varepsilon > 0)$&nbsp;  in order to calculate the Fourier transform for both sections.&nbsp; The resulting time function is then
 
   
 
   
:$$x_\varepsilon  (t) = \left\{ {\begin{array}{*{20}c}  { {\rm{e} }^{ - \varepsilon t} } & { {\rm{f\ddot{u}r} }\quad t > 0,}  \\  { {\rm{ - e} }^{\varepsilon t} } & { {\rm{f\ddot{u}r} }\quad t < 0.}  \\\end{array} } \right.$$
+
:$$x_\varepsilon  (t) = \left\{ {\begin{array}{*{20}c}  { {\rm{e} }^{ - \varepsilon \hspace{0.05cm} \cdot \hspace{0.05cm}t} } & { {\rm{for} }\quad t > 0,}  \\  { {\rm{ - e} }^{\hspace{0.05cm}\varepsilon\hspace{0.05cm} \cdot \hspace{0.05cm}  t} } & { {\rm{for} }\quad t < 0.}  \\\end{array} } \right.$$
  
Nach ähnlicher Vorgehensweise wie auf der Seite [[Signaldarstellung/Gleichsignal_-_Grenzfall_eines_periodischen_Signals#Diracfunktion_im_Frequenzbereich|Diracfunktion im Frequenzbereich]] ergibt sich für die zugehörige Spektralfunktion:
+
Following a similar procedure as in section&nbsp; [[Signal_Representation/Direct_Current_Signal_-_Limit_Case_of_a_Periodic_Signal#Dirac_.28delta.29_function_in_frequency_domain|&raquo;Dirac  delta function in the frequency domain&laquo;]]&nbsp; results for the corresponding spectral function:
 
   
 
   
 
:$$X_\varepsilon  (f) = \frac{1}{ {\varepsilon  + {\rm{j} }2{\rm{\pi } }f} } - \frac{1}{ {\varepsilon  - {\rm{j} }2{\rm{\pi } }f} } = \frac{ { - {\rm{j4\pi } }f} }{ {\varepsilon ^2  + \left( {2{\rm{\pi } }f} \right)^2 } }.$$
 
:$$X_\varepsilon  (f) = \frac{1}{ {\varepsilon  + {\rm{j} }2{\rm{\pi } }f} } - \frac{1}{ {\varepsilon  - {\rm{j} }2{\rm{\pi } }f} } = \frac{ { - {\rm{j4\pi } }f} }{ {\varepsilon ^2  + \left( {2{\rm{\pi } }f} \right)^2 } }.$$
  
Eigentlich interessieren wir uns aber für das Spektrum der tatsächlichen Sprungfunktion. Für dieses gilt:
+
But actually we are interested in the spectrum of the&nbsp; &raquo;jump function&laquo;
 
   
 
   
 
:$$x(t) = \mathop {\lim }\limits_{\varepsilon  \hspace{0.05cm}\to \hspace{0.05cm}0 } x_\varepsilon  (t).$$
 
:$$x(t) = \mathop {\lim }\limits_{\varepsilon  \hspace{0.05cm}\to \hspace{0.05cm}0 } x_\varepsilon  (t).$$
  
Deshalb ist auch die Spektralfunktion $X(f) =\text{F}\big[x(t)\big]$ als Grenzwert von $X_\varepsilon(f)$ für $\varepsilon \to 0$ zu bestimmen:
+
Therefore,&nbsp; the spectral function&nbsp; $X(f) =\text{F}\big[x(t)\big]$&nbsp; has to be determined as limit value of&nbsp; $X_\varepsilon(f)$&nbsp; for&nbsp; $\varepsilon \to 0$:
 
   
 
   
 
:$$X(f) = \mathop {\lim }\limits_{\varepsilon \hspace{0.05cm} \to \hspace{0.05cm}0 } X_\varepsilon  (f) = \frac{ { - {\rm{j} } } }{ { {\rm{\pi } }f} } = \frac{1}{ { {\rm{j\pi } }f} }.$$
 
:$$X(f) = \mathop {\lim }\limits_{\varepsilon \hspace{0.05cm} \to \hspace{0.05cm}0 } X_\varepsilon  (f) = \frac{ { - {\rm{j} } } }{ { {\rm{\pi } }f} } = \frac{1}{ { {\rm{j\pi } }f} }.$$
  
In der rechten Grafik ist die imaginäre Spektralfunktion $X(f)$ als blaue Kurve dargestellt. Man erkennt, dass $\vert X(f) \vert$ mit steigender Frequenz kontinuierlich abnimmt.
+
In the right graph the imaginary spectral function&nbsp; $X(f)$&nbsp; is shown as a blue curve.&nbsp; You can see that&nbsp; $\vert X(f) \vert$&nbsp; decreases continuously with increasing frequency.
  
Der grüne Kurvenzug in der linken Grafik zeigt das Signal $y(t)$, das sich von $x(t)$ nur bei den negativen Zeiten unterscheidet.  
+
&rArr; &nbsp; The green curve in the left graph shows the signal&nbsp; $y(t)$,&nbsp; which differs from&nbsp; $x(t)$&nbsp; only in the negative time section.  
  
*In diesem Bereich gilt $y(t) = 0$. Die zugehörige Spektralfunktion $Y(f)$ ist im gesamten Bereich nur halb so groß wie $X(f)$. Dies zeigt die nachfolgende Rechnung:
+
*In this area&nbsp; $y(t) = 0$.&nbsp; The corresponding spectral function&nbsp; $Y(f)$&nbsp; is only half as large as&nbsp; $X(f)$&nbsp; in the entire range.&nbsp; This is shown in the following calculation:
  
 
:$$Y(f) = \mathop {\lim }\limits_{\varepsilon  \to 0 } Y_\varepsilon  (f) = \mathop {\lim }\limits_{\varepsilon \hspace{0.05cm} \to \hspace{0.05cm}0 }\frac{1}{ {\varepsilon  + {\rm{j} }2{\rm{\pi } }f} } = \frac{1}{ { {\rm{j2\pi } }f} }.$$
 
:$$Y(f) = \mathop {\lim }\limits_{\varepsilon  \to 0 } Y_\varepsilon  (f) = \mathop {\lim }\limits_{\varepsilon \hspace{0.05cm} \to \hspace{0.05cm}0 }\frac{1}{ {\varepsilon  + {\rm{j} }2{\rm{\pi } }f} } = \frac{1}{ { {\rm{j2\pi } }f} }.$$
 
   
 
   
*Zudem ergibt sich auf Grund des Gleichanteils nun noch eine Diracfunktion bei $f = 0$ mit dem Gewicht $1/2$. Hierauf wird im Beispiel zum Abschnitt [[Signaldarstellung/Gesetzm%C3%A4%C3%9Figkeiten_der_Fouriertransformation#Zuordnungssatz|Zuordnungssatz]] noch im Detail eingegangen.}}
+
*In addition there is a Dirac delta function at&nbsp; $f = 0$&nbsp; with weight&nbsp; $1/2$, due to the equal part.&nbsp; This is explained in the example in section&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Assignment_Theorem|&raquo;Assignment Theorem&laquo;]].&nbsp; }}
  
  
==Das zweite Fourierintegral==
+
==The second Fourier integral==
 
<br>
 
<br>
Bisher wurde lediglich gezeigt, wie man für ein aperiodisches, impulsförmiges Signal $x(t)$ die zugehörige Spektralfunktion $X(f)$ berechnet. Nun wenden wir uns der umgekehrten Aufgabenstellung zu, nämlich: &nbsp; Wie ermittelt man die Zeitfunktion $x(t)$ aus der Spektralfunktion $X(f)$?
+
Up to now,&nbsp; it has only been shown how to calculate the corresponding spectral function&nbsp; $X(f)$&nbsp; for an aperiodic,&nbsp; pulse-like signal&nbsp; $x(t)$.&nbsp;
 
+
[[File:EN_Sig_T_3_1_S7.png|right|frame|On the second Fourier integral]]
[[File:P_ID399__Sig_T_3_1_S7_rah.png|center|frame|Zum zweiten Fourierintegral]]
+
Now we turn to the reverse task,&nbsp; namely: &nbsp; How to determine the time function&nbsp; $x(t)$&nbsp; from the spectral function&nbsp; $X(f)$?
  
Mit den gleichen Bezeichnungen wie auf den ersten Seiten dieses Kapitels kann man das Signal $x(t)$ als Fourierreihe schreiben, wobei nun der Grenzübergang ${f_0}' \to 0$ zu berücksichtigen ist:
+
With the same designations as in the first sections of this chapter,&nbsp; you can write the signal&nbsp; $x(t)$&nbsp; as Fourier series,&nbsp; where now the limit&nbsp; ${f_0}' \to 0$&nbsp; is to be considered:
 
   
 
   
 
:$$x(t)=\lim_{{f_{\rm 0}}'  \hspace{0.05cm}\to  \hspace{0.05cm}0} \sum^{+\infty}_{\nu = -\infty}{D_{\it \nu}}' \cdot \rm e^{j\hspace{0.03cm} 2  \hspace{0.03cm}\pi  \hspace{0.03cm}\it\nu \hspace{0.03cm} {f_{\rm 0}}' t}.$$
 
:$$x(t)=\lim_{{f_{\rm 0}}'  \hspace{0.05cm}\to  \hspace{0.05cm}0} \sum^{+\infty}_{\nu = -\infty}{D_{\it \nu}}' \cdot \rm e^{j\hspace{0.03cm} 2  \hspace{0.03cm}\pi  \hspace{0.03cm}\it\nu \hspace{0.03cm} {f_{\rm 0}}' t}.$$
  
Erweitert man nun sowohl den Zähler als auch den Nenner um ${f_0}'$, so erhält man:
+
If you extend both the numerator and the denominator by&nbsp; ${f_0}'$,&nbsp; you get
 
   
 
   
 
:$$x(t)=\lim_{{f_{\rm 0}}'  \hspace{0.05cm}\to  \hspace{0.05cm}0} \sum^{+\infty}_{\nu = -\infty}  ({{D_{\it \nu}}'}/{{f_{\rm 0}}'}) \cdot \rm e^{j \hspace{0.03cm}2\hspace{0.03cm} \pi  \hspace{0.03cm} \it \nu  \hspace{0.03cm}{f_{\rm 0}}' t} \cdot {\it f_{\rm 0}}'.$$
 
:$$x(t)=\lim_{{f_{\rm 0}}'  \hspace{0.05cm}\to  \hspace{0.05cm}0} \sum^{+\infty}_{\nu = -\infty}  ({{D_{\it \nu}}'}/{{f_{\rm 0}}'}) \cdot \rm e^{j \hspace{0.03cm}2\hspace{0.03cm} \pi  \hspace{0.03cm} \it \nu  \hspace{0.03cm}{f_{\rm 0}}' t} \cdot {\it f_{\rm 0}}'.$$
  
Der Grenzübergang  ${f_0}' \to 0$ hat nun folgende Auswirkungen:
+
The limit crossing&nbsp; ${f_0}' \to 0$&nbsp; has the following effects:
*Die (unendliche) Summe wird zu einem Integral, wobei ${f_0}'$ formal durch die differenzielle Größe $\text{d}f$ (Integrationsvariable) zu ersetzen ist.
+
#The&nbsp; $($infinite$)$&nbsp; sum becomes an integral,&nbsp; where&nbsp; ${f_0}'$&nbsp; has to be formally replaced by the differential quantity&nbsp; $\text{d}f$&nbsp; $($integration variable$)$.
*Die Größe $\nu \cdot{f_0}'$ im Exponenten beschreibt die physikalische Frequenz $f$.
+
#The quantity &nbsp; $\nu \cdot{f_0}'$&nbsp; in the exponent describes the physical frequency&nbsp; $f$.
*Der Quotient ${D_{\nu}}'/{f_0}'$ ergibt die Spektralfunktion $X(f)$ bei der Frequenz $f$.
+
#The quotient&nbsp; ${D_{\nu}}'/{f_0}'$&nbsp; yields the spectral function&nbsp; $X(f)$&nbsp; at the frequency&nbsp; $f$.
  
  
Unter Berücksichtigung dieser Eigenschaften kommt man zum ''zweiten Fourierintegral''.
+
Taking these properties into account, the&nbsp; &raquo;second Fourier integral&laquo;&nbsp; is obtained.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Zweites Fourierintegral:}$&nbsp;
+
$\text{Second Fourier Integral:}$&nbsp; If the spectral function&nbsp; $X(f)$&nbsp; of an aperiodic and energy-limited signal is given,&nbsp; then the corresponding&nbsp; &raquo;'''time signal'''&laquo;&nbsp; is:
Ist die Spektralfunktion $X(f)$ eines aperiodischen und energiebegrenzten Signals gegeben, so lautet die dazugehörige '''Zeitfunktion:
 
  
 
:$$x(t) = \hspace{0.01cm}\int_{-\infty} ^{ {+}\infty} X(f) \, \cdot \, { \rm e}^{\rm j 2\pi \it ft} \,{\rm d}f.$$}}
 
:$$x(t) = \hspace{0.01cm}\int_{-\infty} ^{ {+}\infty} X(f) \, \cdot \, { \rm e}^{\rm j 2\pi \it ft} \,{\rm d}f.$$}}
Line 275: Line 281:
  
  
==Aufgaben zum Kapitel==
+
==Exercises for the Chapter==
 
<br>
 
<br>
[[Aufgaben:3.1 Spektrum des Exponentialimpulses|Aufgabe 3.1: Spektrum des Exponentialimpulses]]
+
[[Aufgaben:Exercise_3.1:_Spectrum_of_the_Exponential_Pulse|Exercise 3.1: Spectrum of the Exponential Pulse]]
  
[[Aufgaben: 3.1Z Spektrum des Dreieckimpulses|Aufgabe 3.1Z: Spektrum des Dreieckimpulses]]
+
[[Aufgaben:Exercise_3.1Z:_Spectrum_of_the_Triangular_Pulse| Exercise 3.1Z: Spectrum of the Triangular Pulse]]
  
[[Aufgaben:3.2 Vom Spektrum zum Signal|Aufgabe 3.2: Vom Spektrum zum Signal]]
+
[[Aufgaben:Exercise_3.2:_From_the_Spectrum_to_the_Signal|Exercise 3.2: From the Spectrum to the Signal]]
  
[[Aufgaben:Aufgabe_3.2Z:_si-Quadrat-Spektrum_mit_Diracs|Aufgabe 3.2Z: si&ndash;Quadrat&ndash;Spektrum mit Diracs]]
+
[[Aufgaben:Exercise_3.2Z:_Sinc-Squared-Spectrum_with_Diracs| Exercise 3.2Z: Sinc&ndash;Squared Spectrum with Diracs]]
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 12:38, 14 June 2023

# OVERVIEW OF THE THIRD MAIN CHAPTER #


In the second chapter periodic signals were described by different harmonic oscillations  (»Fourier series«). 

If one reduces – at least mentally – the repetition frequency of a periodic signal more and more,  i.e.,  the period duration becomes longer and longer,  then one comes from the periodic signal to the unique  »aperiodic signal«  – often also called  »pulse«.

In the following,  such aperiodic and pulse–shaped signals are considered and mathematically described in the time and frequency domain.

The chapter contains in detail:

  1. The derivation of the two  »Fourier integrals«  from the Fourier series,
  2. the extension of the Fourier integral to the  »Fourier transform«  by means of distributions,
  3. »some  special cases«  of pulses:  »rectangular pulse«  and  »Gaussian pulse«,
  4. the  »laws  of Fourier transform«,  and finally
  5. the meaning of the  »convolution operation«  and its various applications.


»Laplace transform«  and  »Hilbert transform«,  which are only applicable to causal signals or systems,  will be treated in the second book  »Linear Time-invariant Systems«.


Properties of aperiodic signals


In the last chapter periodic signals were considered.  The essential characteristic of these signals is,  that you can specify a  period duration  $T_0$  for them.  If such a period duration cannot be indicated or – which is the same in practice – has an infinitely large value  $T_0$,  one speaks of an  »aperiodic signal«.

For the present chapter  »Aperiodic Signals – Pulses»  the following conditions should apply:

  1. The considered signals  $x(t)$  are  aperiodic  and  "energy-limited":   They possess a finite energy  $E_x$  and a negligible  $($medium$)$  power  $P_x$.
  2. Often the energy of these signals is concentrated on a relatively short time range,  so that one also speaks of  »pulse-like signals«  or  »pulses«.


Energy-limited signal  $x_1(t)$  and
power-limited signal  $x_2(t)$

$\text{Example 1:}$  The figure shows a rectangular pulse  $x_1(t)$  with amplitude  $A$  and duration  $T$  as an example of an aperiodic and time-limited signal. This pulse has

  1. the finite signal energy   ⇒   here:   $E_1=A^2 \cdot T$,  and
  2. the power  $P_1=0$.



A power-limited signal,  for example the cosine signal  $x_2(t)$  shown below,  has

  1. always a finite power   ⇒   here:   $P_2=A^2/2$,  and
  2. thus also an infinitely large signal energy:   $E_2 \to \infty$.


Closer examination of the Fourier coefficients


We assume a periodic signal  $x_{\rm P}(t)$  with period duration  $T_0$  which corresponds to the explanations in section  »Complex Fourier series«

Periodic signal  $x_{\rm P}(t)$  and  $x_{\rm P}\hspace{0.01cm}'(t)$  and its line spectra
  • This signal can be described as follows:
$$x_{\rm P}(t)=\sum^{+\infty}_{n=-\infty}D_{\it n}\cdot \rm e^{j 2 \pi \hspace{0.01cm}{\it n} \hspace{0.01cm}\it t / T_{\rm 0}}.$$
  • The Fourier coefficients are generally complex $($with  $D_{-n}=D_n^\ast)$:
$$D_n=\frac{1}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x_{\rm P}(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{0.01cm}{\it n} \it t / T_{\rm 0}}\, {\rm d}t.$$
  • The corresponding spectral function  $X_{\rm P}(f)$  is a  »line spectrum«  with spectral lines in the distance  $f_0=1/T_0$:
$$X_{\rm P}(f)=\sum^{+\infty}_{n=-\infty}D_n\cdot\delta(f-n\cdot f_0).$$
  • The upper figure shows on the left the periodic time signal  $x_{\rm P}(t)$  and on the right the corresponding magnitude spectrum  $|X_{\rm P}(f)|$.  This is merely a schematic sketch.
  • If   $x_{\rm P}(t)$ is a real and even function, then  $X_{\rm P}(f)$  is also real and even.  The equation  $X_{\rm P}(f) = |X_{\rm P}(f)|$  is only valid if all spectral lines are positive.


In the lower figure on the left side another periodic signal  ${x_{\rm P}}\hspace{0.01cm}'(t)$  with double period duration  ${T_0}\hspace{0.01cm}' = 2 \cdot T_0$  is displayed.  The following applies to this signal:

$${x_{\rm P}}'(t)=\sum^{+\infty}_{n=-\infty}{\it D_n}'\cdot {\rm e}^{{\rm j} 2 \pi \hspace{-0.05cm}{\it n t / T}_{\rm 0}\hspace{0.01cm}'} \hspace{0.3cm}{\rm with}\hspace{0.3cm}{\it D_n}'=\frac{1}{{T_0}\hspace{0.01cm}'}\cdot \int^{{+T_0}'/2}_{-{T_0}'/2}{x_{\rm P}}'(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it n t / T}_{\rm 0}\hspace{0.01cm}'}\, {\rm d}\it t.$$

In the range from  $-T_0/2$  to  $+T_0/2$  the two signals  $x_{\rm P}(t)$  and  $x_{\rm P}\hspace{0.01cm}'(t)$  are identical. 

We will also consider the spectral function  ${X_{\rm P} }'(f)$  according to the right sketch:

  • Due to the double period duration  $({T_0}' = 2 \cdot T_0)$  the spectral lines are now closer together  $({f_0}' = f_0/2)$.
  • Both red marked coefficients  $D_n$  und  ${D_{2n}}'$ belong to the same physical frequency   $f = n \cdot f_0 = 2n \cdot {f_0}'$.


We recognize by a comparison of the two coefficients

$$D_n=\frac{1}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x_{\rm P}(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it n} \it t / T_{\rm 0}}\, {\rm d}t \hspace{0.5cm}\text{and} \hspace{0.5cm} {D_{2n}}'=\frac{1}{{T_0}'}\cdot \int^{+{T_0}'/2}_{-{T_0}'/2}{x_{\rm P}}'(t) \cdot{\rm e}^{-\rm j 4 \pi \hspace{-0.05cm}{\it n} \it t / {T_{\rm 0}}'}\, {\rm d}t \text{:} $$
  1. ${x_{\rm P}}'(t) \equiv 0$   between  $T_0/2$  and  ${T_0}'/2$  and also in a symmetrical interval for negative times.
  2. Therefore the integration limits can be restricted to  $\pm T_0/2$. 
  3. Inside the new integration limits:  ${x_{\rm P}}'(t)$  can be replaced by  $x_{\rm P}(t)$.
  4. If we set  ${T_0}' = 2T_0$  in the above equation,  we get:
$${D_{2n}}'=\frac{1}{2T_0}\cdot \int^{+T_0/2}_{-T_0/2}x_{\rm P}(t) \cdot{\rm e}^{-\rm j 2 \pi \hspace{-0.05cm}{\it n} t / T_{\rm 0}}\, {\rm d}t = {D_n}/{2} .$$

$\text{We summarize this result briefly:}$ 

  • The spectral line of the signal  ${x_{\rm P} }'(t)$  at frequency  $f = n \cdot {f_0}'$  is denoted by  ${D_{2n} }'$  $($see lower graph on the right$)$.
  • This line has exactly half the size of the spectral line  $D_n$  of the signal  $x_{\rm P}(t)$  at the same physical frequency  $f$  $($see upper graph on the right$)$.
  • The spectral function  ${X_{\rm P} }'(f)$  has opposite  $X_{\rm P}(f)$  additional spectral lines at  $(n + 1/2) \cdot f_0$  $($see lower graph on the left$)$.
  • These additional lines lead to the fact that in the time domain every second  pulse  of  $x_{\rm P}(t)$  –   located by  $n \cdot T_0$  $(n$ odd$)$  –   is cancelled.


From the periodic to the aperiodic signal


We now take up the considerations in the previous section and select the period duration  ${T_0}'$  of  ${x_{\rm P}}'(t)$  generally by an integer factor  $k$  greater than the period duration  $T_0$  of  ${x_{\rm P}}(t)$.  Then the previous statements can be generalized:

From the periodic to the aperiodic signal
  • The line spacing is smaller for  ${X_{\rm P}}'(f)$  by the factor  $k$  than for the spectrum  ${X_{\rm P}}(f)$.
  • To emphasize this fact,  we denote the discrete frequency variable of function  ${X_{\rm P}}'(f)$  with  $\nu$  instead of  $n$.  The following applies:  
$$\nu=k \cdot n.$$
  • It applies for the red marked spectral line of signal  ${x_{\rm P}}'(t)$  at frequency  $f=n \cdot f_0 =\nu \cdot {f_0}'$:
$${D_\nu}' = {1}/{k} \cdot D_n.$$
  • If one now chooses   –   as shown schematically in the graph   –   the factor  $k$  and thus the period duration  ${T_0}'$  always larger and finally lets it go to infinity,  then
  1. the periodic signal  ${x_{\rm P}}(t)$  changes to the aperiodic signal  $x(t)$,
  2. the line spectrum  ${X_{\rm P}}(f)$  can be replaced by the continuous spectrum  $X(f)$.


The first Fourier integral


Concerning the spectral functions  $X_{\rm P}(f)$  and  $X(f)$  the following statements can be made:

  • The individual spectral lines now lie as close together as desired  $({f_0}'=1/{T_0}' \to 0)$.
  • In the spectral function  $X(f)$  all possible  $($not only discrete$)$  frequencies now occur within certain intervals   ⇒   $X(f)$  is no longer a line spectrum.
  • The contribution of each individual frequency  $f$  to the signal  $x(t)$ is negligibly small  $(k \to \infty,\ {D_{\nu}}' \to 0)$.
  • Because of the infinite number of frequencies there is a finite result in total.
  • Instead of calculating the Fourier coefficients  ${D_{\nu}}'$:  Now a spectral density  $X(f)$  is calculated.  For the frequency  $f=\nu\cdot {f_0}'$  then applies:
$$X(f = {\rm \nu} {f_{\rm 0}}') = \lim_{{f_{\rm 0}}' \hspace{0.05cm}\to \hspace{0.05cm} 0} ({{D_{\rm \nu}}'}/{{f_{\rm 0}}'}) = \lim_{{T_{\rm 0}}' \to \infty} ({D_{\rm \nu}}' \cdot {T_{\rm 0}}').$$
  • The spectral function  $X(f)$  of the aperiodic signal  $x(t)$  is visible in the spectrum  $X_{\rm P}(f)$  of the periodic signal  $x_{\rm P}(t)$ as envelope  $($see graphics in the last section$)$.
  • In the lower graphic  ${D_{\nu}}'$  corresponds to the red-shaded area of the frequency interval around  $\nu \cdot {f_0}'$  with width ${f_0}'$.


If you use the equations given in the last section, you get

$$X(f = {\rm \nu} \cdot {f_{\rm 0}}') = \lim_{{T_{\rm 0}'} \to \infty} \int ^{{T_{\rm 0}}'/2} _{-{T_{\rm 0}}'/2} x_{\rm P}(t) \, \cdot \, { \rm e}^{-\rm j 2\pi\nu \it {f_{\rm 0}}' t} \,{\rm d}t.$$

Through the common limit crossing   $({T_0}' \to \infty, \ {f_0}' \to 0)$  the following transformations will happen:

  1. From the periodic signal  $x_{\rm P}(t)$  to the aperiodic signal  $x(t)$.
  2. From the discrete frequency  $\nu \cdot {f_0}'$  to the continuous frequency variable  $f$.


Thus,  a fundamental definition is obtained,  which allows the calculation of the spectral function of an aperiodic time function.  The name of this spectral transformation goes back to the French physicist  »$\text{Jean-Baptiste Joseph Fourier}$«.

$\text{First Fourier Integral:}$ 

The  »spectral function«  $($or short:  the  »spectrum«$)$  of an aperiodic and simultaneously energy limited signal  $x(t)$  is to be calculated as follows

$$X(f)= \hspace{0.05cm}\int_{-\infty} ^{ {+}\infty} x(t) \, \cdot \, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$$


The following  $($German language$)$  learning video should clarify the statements of the last sections:
       »Kontinuierliche und diskrete Spektren«   ⇒   "Continuous and discrete spectra".

$\text{Example 2:}$  Given is the sketched time course  $x(t)$.  The corresponding spectrum  $X(f)$  is searched for using the first Fourier integral:

Rectangular pulse  $x(t)$
  • From the above representation we can see,  that for  $\vert t \vert > T/2$  the signal is  $x(t) = 0$.
  • This means that the integration interval can be limited to the range  $\pm T/2$.
  • This results in the approach:
$$ \begin{align*} X(f) & = A \cdot \int_{- T/2}^{+T/2} {\rm e}^{- {\rm j2\pi} ft}\,{\rm d}t = \frac{ A}{- \rm j2\pi f}\left[ {\rm e}^{- {\rm j}2\pi ft}\right]_{-T/2}^{+T/2} \\ & = \frac{\it A} {- \rm j 2\pi f}\cdot \big[\cos({\rm \pi} f T) - {\rm j} \cdot \sin({\rm \pi} fT) - \cos({\rm \pi} fT) - {\rm j} \cdot \sin({\rm \pi} fT)\big] \end{align*}$$
$$\Rightarrow \hspace{0.5cm}X(f)=A\cdot \frac{\sin({\rm \pi} fT)}{ {\rm \pi} f},$$
  • If you extend numerator and denominator with  $T$,  you get:
$$X(f)=A\cdot T \cdot\frac{\sin(\pi fT)}{\pi fT} = A\cdot T \cdot{\rm si }(\pi fT) = A\cdot T \cdot{\rm sinc }(fT).$$


$\text{Definitions:}$  For abbreviation we define the following functions:

  • »sinc–function«  $($predominantly used in Anglo-American literature$)$
$${\rm sinc}( x ) = {\sin (\pi x) }/(\pi x ),$$
  • »si–function«  or  »$\text{splitting function}$«  $($predominantly used in German literature$)$
$${\rm si}\left( x \right) = \sin \left( x \right)/x = {\rm sinc}(x/\pi ).$$


Note:   In our  $\rm LNTwww$  we mostly use the function  ${\rm si}(x)$,  but important results are also given in the  ${\rm sinc}(x)$ form.


Fourier transform


The spectrum  $X(f)$  of a signal  $x(t)$  is according to the  »first Fourier integral«:

$$X(f)= \hspace{0.05cm}\int _{-\infty} ^{{+}\infty} x(t) \, \cdot \, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$$

As shown in the last section with a simple example,  this integral can be solved easily for an energy-limited signal  $x(t)$.  For non-energy limited signals,  for example


we observe a divergence of the Fourier integral.  Including a bilateral declining auxiliary function  $\varepsilon (t)$,  however,  convergence can be forced:

$$X(f) = \lim_{\varepsilon \to 0} \int _{-\infty} ^{{+}\infty} x(t) \cdot {\rm e}^{\it -\varepsilon | \hspace{0.01cm} t \hspace{0.01cm} |} \cdot {\rm e}^{{-\rm j 2 \pi}\it ft} \,{\rm d}t.$$

Such non-energy limited signals lead to so-called  »Dirac delta functions«  in the spectral domain,  sometimes also called  »distributions«.

$\text{Definition:}$  The generally valid functional relation  $X(f) = F\big [x(t) \big ]$  is called  »Fourier Transform«.  For the short notation we use  $($with the  "white dot"  for the time domain and the  "filled dot"  for the spectral domain$)$:

$$X(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ x(t).$$

With a increasing signal,  however,  convergence is only achieved as long as the time function increases less than exponentially.


Jump function and associated spectrum

$\text{Example 3:}$  We consider an acausal jump function

$$x (t) = \left\{ {\begin{array}{*{20}c} { +1 } & { {\rm{for} }\quad t > 0,} \\ {-1 } & { {\rm{for} }\quad t < 0.} \\\end{array} } \right.$$

This signal is shown in blue color in the left sketch.

Since the signal  $x(t)$  extends to infinity on both sides, we must add a suitable convergence factor  $\text{e}^{-\varepsilon \hspace{0.05cm} \cdot \hspace{0.05cm}\vert \hspace{0.05cm} t \hspace{0.05cm} \vert}$  with  $($  $\varepsilon > 0)$  in order to calculate the Fourier transform for both sections.  The resulting time function is then

$$x_\varepsilon (t) = \left\{ {\begin{array}{*{20}c} { {\rm{e} }^{ - \varepsilon \hspace{0.05cm} \cdot \hspace{0.05cm}t} } & { {\rm{for} }\quad t > 0,} \\ { {\rm{ - e} }^{\hspace{0.05cm}\varepsilon\hspace{0.05cm} \cdot \hspace{0.05cm} t} } & { {\rm{for} }\quad t < 0.} \\\end{array} } \right.$$

Following a similar procedure as in section  »Dirac delta function in the frequency domain«  results for the corresponding spectral function:

$$X_\varepsilon (f) = \frac{1}{ {\varepsilon + {\rm{j} }2{\rm{\pi } }f} } - \frac{1}{ {\varepsilon - {\rm{j} }2{\rm{\pi } }f} } = \frac{ { - {\rm{j4\pi } }f} }{ {\varepsilon ^2 + \left( {2{\rm{\pi } }f} \right)^2 } }.$$

But actually we are interested in the spectrum of the  »jump function«

$$x(t) = \mathop {\lim }\limits_{\varepsilon \hspace{0.05cm}\to \hspace{0.05cm}0 } x_\varepsilon (t).$$

Therefore,  the spectral function  $X(f) =\text{F}\big[x(t)\big]$  has to be determined as limit value of  $X_\varepsilon(f)$  for  $\varepsilon \to 0$:

$$X(f) = \mathop {\lim }\limits_{\varepsilon \hspace{0.05cm} \to \hspace{0.05cm}0 } X_\varepsilon (f) = \frac{ { - {\rm{j} } } }{ { {\rm{\pi } }f} } = \frac{1}{ { {\rm{j\pi } }f} }.$$

In the right graph the imaginary spectral function  $X(f)$  is shown as a blue curve.  You can see that  $\vert X(f) \vert$  decreases continuously with increasing frequency.

⇒   The green curve in the left graph shows the signal  $y(t)$,  which differs from  $x(t)$  only in the negative time section.

  • In this area  $y(t) = 0$.  The corresponding spectral function  $Y(f)$  is only half as large as  $X(f)$  in the entire range.  This is shown in the following calculation:
$$Y(f) = \mathop {\lim }\limits_{\varepsilon \to 0 } Y_\varepsilon (f) = \mathop {\lim }\limits_{\varepsilon \hspace{0.05cm} \to \hspace{0.05cm}0 }\frac{1}{ {\varepsilon + {\rm{j} }2{\rm{\pi } }f} } = \frac{1}{ { {\rm{j2\pi } }f} }.$$
  • In addition there is a Dirac delta function at  $f = 0$  with weight  $1/2$, due to the equal part.  This is explained in the example in section  »Assignment Theorem«


The second Fourier integral


Up to now,  it has only been shown how to calculate the corresponding spectral function  $X(f)$  for an aperiodic,  pulse-like signal  $x(t)$. 

On the second Fourier integral

Now we turn to the reverse task,  namely:   How to determine the time function  $x(t)$  from the spectral function  $X(f)$?

With the same designations as in the first sections of this chapter,  you can write the signal  $x(t)$  as Fourier series,  where now the limit  ${f_0}' \to 0$  is to be considered:

$$x(t)=\lim_{{f_{\rm 0}}' \hspace{0.05cm}\to \hspace{0.05cm}0} \sum^{+\infty}_{\nu = -\infty}{D_{\it \nu}}' \cdot \rm e^{j\hspace{0.03cm} 2 \hspace{0.03cm}\pi \hspace{0.03cm}\it\nu \hspace{0.03cm} {f_{\rm 0}}' t}.$$

If you extend both the numerator and the denominator by  ${f_0}'$,  you get

$$x(t)=\lim_{{f_{\rm 0}}' \hspace{0.05cm}\to \hspace{0.05cm}0} \sum^{+\infty}_{\nu = -\infty} ({{D_{\it \nu}}'}/{{f_{\rm 0}}'}) \cdot \rm e^{j \hspace{0.03cm}2\hspace{0.03cm} \pi \hspace{0.03cm} \it \nu \hspace{0.03cm}{f_{\rm 0}}' t} \cdot {\it f_{\rm 0}}'.$$

The limit crossing  ${f_0}' \to 0$  has the following effects:

  1. The  $($infinite$)$  sum becomes an integral,  where  ${f_0}'$  has to be formally replaced by the differential quantity  $\text{d}f$  $($integration variable$)$.
  2. The quantity   $\nu \cdot{f_0}'$  in the exponent describes the physical frequency  $f$.
  3. The quotient  ${D_{\nu}}'/{f_0}'$  yields the spectral function  $X(f)$  at the frequency  $f$.


Taking these properties into account, the  »second Fourier integral«  is obtained.

$\text{Second Fourier Integral:}$  If the spectral function  $X(f)$  of an aperiodic and energy-limited signal is given,  then the corresponding  »time signal«  is:

$$x(t) = \hspace{0.01cm}\int_{-\infty} ^{ {+}\infty} X(f) \, \cdot \, { \rm e}^{\rm j 2\pi \it ft} \,{\rm d}f.$$


Exercises for the Chapter


Exercise 3.1: Spectrum of the Exponential Pulse

Exercise 3.1Z: Spectrum of the Triangular Pulse

Exercise 3.2: From the Spectrum to the Signal

Exercise 3.2Z: Sinc–Squared Spectrum with Diracs