Difference between revisions of "Aufgaben:Exercise 1.3: Entropy Approximations"

From LNTwww
 
(17 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Informationstheorie/Nachrichtenquellen mit Gedächtnis
+
{{quiz-Header|Buchseite=Information_Theory/Discrete_Sources_with_Memory
 
}}
 
}}
  
[[File:Inf_A_1_3_vers2.png|right|frame|Verschiedene Binärfolgen]]
+
[[File:EN_Inf_A_1_3_v2.png|right|frame|Different binary sequences]]
Die Grafik zeigt vier Symbolfolgen  $\langle q_\nu \rangle $  mit jeweiliger Länge  $N = 60$.  Die Quellensymbole sind jeweils  $\rm A$  und  $\rm B$.  
+
The graphic on the right shows four symbol sequences  $\langle q_\nu \rangle $,  each with length  $N = 60$.  The source symbols are  $\rm A$  and  $\rm B$.  
*Daraus folgt direkt, dass für den Entscheidungsgehalt aller betrachteten Quellen $H_0 = 1 \; \rm bit/Symbol$ gilt.  
+
*It follows directly that  $H_0 = 1 \; \rm bit/symbol$  applies to the decision content of all sources considered.
*Die Symbole $\rm A$ und $\rm B$ treten  jedoch nicht gleichwahrscheinlich auf, sondern mit den Wahrscheinlichkeiten $p_{\rm A}$ und $p_{\rm B}$.
+
*However, the symbols  $\rm A$  and  $\rm B$  do not occur with equal probability, but with the probabilities  $p_{\rm A}$  and  $p_{\rm B}$.
  
  
Die untere Tabelle zeigt neben $H_0$ noch die Entropienäherungen
+
In addition to  $H_0$ , the table below shows the entropy approximations
* $H_1$, basierend auf $p_{\rm A}$ und $p_{\rm B}$ (Spalte 2),
+
* $H_1$,  based on  $p_{\rm A}$  und  $p_{\rm B}$  (column 2),
* $H_2$, basierend auf Zweiertupel (Spalte 3),
+
* $H_2$,  based on two-tuples (column 3),
* $H_3$, basierend auf Dreiertupel (Spalte 4),
+
* $H_3$,  based on three-tuples (column 4),
* $H_4$, basierend auf Vierertupel (Spalte 5),
+
* $H_4$,  based on four-tuples (column 5),
* die tatsächliche Entropie $H$, die sich aus $H_k$ durch den Grenzübergang für $k \to \infty$ ergibt (letzte Spalte).
+
* the actual entropy  $H$, which is obtained from  $H_k$  by the boundary transition for  $k \to \infty$  (last column).
  
  
Zwischen diesen Entropien bestehen folgende Größenrelationen:   $H \le$ ... $\le H_3 \le H_2 \le H_1 \le H_0 \hspace{0.05cm}.$
+
The following size relations exist between these entropies:   $H \le$ ... $\le H_3 \le H_2 \le H_1 \le H_0 \hspace{0.05cm}.$
  
*Nicht bekannt ist die Zuordnung zwischen den Quellen $\rm Q1$, $\rm Q2$, $\rm Q3$, $\rm Q4$ und den in der Grafik gezeigten gezeigten Symbolfolgen (Schwarz, Blau, Rot, Grün).  
+
*What is not known is the correlation between the sources&nbsp; $\rm Q1$,&nbsp; $\rm Q2$,&nbsp; $\rm Q3$,&nbsp; $\rm Q4$&nbsp; and the symbol sequences shown in the graph&nbsp; <br>(black, blue, red, green).  
*Es ist lediglich bekannt, dass die Quelle $\rm Q4$ einen Wiederholungscode beinhaltet. Aufgrund der Tatsache, dass bei der entsprechenden Symbolfolge jedes zweite Symbol keinerlei Information lierfert, ist $H_0 = 0.5 \; \rm bit/Symbol$.  
+
*It is only known that source&nbsp; $\rm Q4$&nbsp; contains a repetition code.&nbsp; Due to the fact that in the corresponding symbol sequence every second symbol does not lier any information,&nbsp; the final entrpy value is&nbsp; $H = 0.5 \; \rm bit/symbol$.  
*Zudem sind die Entropienäherungen $H_1 = 1 \; \rm bit/Symbol$ (gleichwahrscheinliche Symbole) und $H_4 \approx 0.789 \; \rm bit/Symbol$ gegeben.
+
*In addition, the entropy approximations&nbsp; $H_1 = 1 \; \rm bit/symbol$&nbsp; and&nbsp; $H_4 \approx 0.789 \; \rm bit/symbol$&nbsp; are given.
  
  
Zu bestimmen sind für diese Nachrichtenquelle $\rm Q4$ schließlich noch die Entropienäherungen $H_2$ und $H_3$.
+
Finally, the entropy approximations&nbsp; $H_2$&nbsp; and&nbsp; $H_3$ are to be determined for the source&nbsp; $\rm Q4$&nbsp;.
  
[[File:Inf_A_1_3b_vers2.png|left|frame|Quellenentropie und Näherungen in &bdquo;bit/Symbol&rdquo;]]
+
[[File:EN_Inf_A_1_3b_v2.png|left|frame|Source entropy and approximations in "bit/symbol"]]
 
<br clear=all>
 
<br clear=all>
''Hinweise:''  
+
''Hints:''  
*Die Aufgabe gehört zum  Kapitel [[Informationstheorie/Nachrichtenquellen_mit_Gedächtnis|Nachrichtenquellen mit Gedächtnis]].
+
*This task belongs to the chapter&nbsp; [[Information_Theory/Discrete_Sources_with_Memory|Discrete Sources with Memory]].
+
*For the&nbsp; $k$&ndash;th entropy approximation, the following holds for binary sources&nbsp; $(M = 2)$&nbsp; with the composite probability&nbsp; $ p_i^{(k)}$&nbsp; of a&nbsp; $k$&ndash;tuple:
*Für die $k$&ndash;te Entropienäherung gilt bei Binärquellen $(M = 2)$ mit der Verbundwahrscheinlichkeit $ p_i^{(k)}$ eines $k$&ndash;Tupels:
+
:$$H_k = \frac{1}{k} \cdot \sum_{i=1}^{2^k} p_i^{(k)} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{p_i^{(k)}} \hspace{0.5cm}({\rm unit\hspace{-0.1cm}: \hspace{0.1cm}bit/Symbol})
:$$H_k = \frac{1}{k} \cdot \sum_{i=1}^{2^k} p_i^{(k)} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{p_i^{(k)}} \hspace{0.5cm}({\rm Einheit\hspace{-0.1cm}: \hspace{0.1cm}bit/Symbol})
 
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Von welcher Quelle stammt die <u>schwarze Symbolfolge</u>?
+
{What is the source of the <u>black symbol sequence</u>?
|type="[]"}
+
|type="()"}
 
- $\rm Q1$,
 
- $\rm Q1$,
 
- $\rm Q2$,
 
- $\rm Q2$,
Line 47: Line 46:
  
  
{Von welcher Quelle stammt die <u>blaue Symbolfolge</u>?
+
{What is the source of the <u>blue symbol sequence</u>?
|type="[]"}
+
|type="()"}
 
+ $\rm Q1$,
 
+ $\rm Q1$,
 
- $\rm Q2$,
 
- $\rm Q2$,
Line 55: Line 54:
  
  
{Von welcher Quelle stammt die <u>rote Symbolfolge</u>?
+
{What is the source of the <u>red symbol sequence</u>?
|type="[]"}
+
|type="()"}
 
- $\rm Q1$,
 
- $\rm Q1$,
 
+ $\rm Q2$,
 
+ $\rm Q2$,
Line 63: Line 62:
  
  
{Berechnen Sie die Entropienäherung $H_2$ des Wiederholungscodes $\rm Q4$.
+
{Calculate the entropy approximation&nbsp; $H_2$&nbsp; of the repetition code&nbsp; $\rm Q4$.
 
|type="{}"}
 
|type="{}"}
$H_2 \ = \ $ { 0.906 3% } $\ \rm bit/Symbol$
+
$H_2 \ = \ $ { 0.906 3% } $\ \rm bit/symbol$
  
  
{Berechnen Sie die Entropienäherung $H_3$ des Wiederholungscodes $\rm Q4$.
+
{Calculate the entropy approximation&nbsp; $H_3$&nbsp; of the repetition code&nbsp; $\rm Q4$.
 
|type="{}"}
 
|type="{}"}
$H_3 \ =  \ $ { 0.833 3% } $\ \rm bit/Symbol$
+
$H_3 \ =  \ $ { 0.833 3% } $\ \rm bit/symbol$
  
  
Line 76: Line 75:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die schwarze Binärfolge stammt von der Quelle $\underline{\rm Q3}$,  
+
'''(1)'''&nbsp; The black binary sequence comes from the source&nbsp; $\underline{\rm Q3}$,  
*da die Symbole gleichwahrscheinlich sind &nbsp;&nbsp;&#8658;&nbsp;&nbsp; $H_1 = H_0$ und
+
*since the symbols are equally probable &nbsp;&nbsp;&#8658;&nbsp;&nbsp; $H_1 = H_0$,&nbsp; and
*keine statistischen Bindungen zwischen den Symbolen bestehen &nbsp;&nbsp;&#8658;&nbsp;&nbsp; $H=$ ...  $= H_2 = H_1$.
+
*there are no statistical bindings between the symbols &nbsp;&nbsp;&#8658;&nbsp;&nbsp; $H=$ ...  $= H_2 = H_1$.
  
  
'''(2)'''&nbsp; Man erkennt bei der blauen Binärfolge, dass $\rm A$ sehr viel häufiger auftritt als $\rm B$, so dass $H_1 < H_0$ gelten muss.
 
*Entsprechend der Tabelle erfüllt nur die Quelle $\underline{\rm Q1}$ diese Bedingung.
 
*Aus $H_1 = 0.5 \; \rm bit/Symbol$ kann man die Symbolwahrscheinlichkeiten $p_{\rm A} = 0.89$ und $p_{\rm B} = 0.11$ ermitteln.
 
  
 +
'''(2)'''&nbsp; It can be seen in the blue binary sequence that&nbsp; $\rm A$&nbsp; occurs much more frequently than&nbsp; $\rm B$, so that&nbsp; $H_1 < H_0$&nbsp; must hold.
 +
*According to the table, only source&nbsp; $\underline{\rm Q1}$&nbsp; fulfils this condition.
 +
*From&nbsp; $H_1 = 0.5 \; \rm bit/symbol$&nbsp; one can determine the symbol probabilities&nbsp; $p_{\rm A} = 0.89$&nbsp; and&nbsp; $p_{\rm B} = 0.11$&nbsp;.
  
'''(3)'''&nbsp; Durch Ausschlussverfahren kommt man für die rote Binärfolge zum Ergebnis $\underline{\rm Q2}$:
 
*Die Quelle $\rm Q1$ gehört nämlich zur blauen Folge, $\rm Q3$ zur schwarzen und $\rm Q4$ zum Wiederholungscode und damit offensichtlich zur grünen Symbolfolge.
 
*Die rote Symbolfolge weist folgende Eigenschaften auf:
 
:** Wegen $H_1 = H_0$ sind die Symbole gleichwahrscheinlich: &nbsp; $p_{\rm A} = p_{\rm B} = 0.5$.
 
:** Wegen $H < H_1$ bestehen statistische Bindungen innerhalb der Folge.
 
*Diese erkennt man daran, dass es zwischen $\rm A$ und $\rm B$ mehr Übergänge als bei statistischer Unabhängigkeit gibt.
 
  
  
'''(4)'''&nbsp; Bei der grünen Symbolfolge (Quelle $\rm Q4$) sind die Symbole $\rm A$ und $\rm B$ gleichwahrscheinlich:
+
'''(3)'''&nbsp; By exclusion procedure one arrives at the result&nbsp; $\underline{\rm Q2}$ for the red binary sequence:
[[File:P_ID2247__Inf_A_1_3d.png|right|frame|Symbolfolgen eines binären Wiederholungscodes]]
+
*The source&nbsp; $\rm Q1$&nbsp;belongs to the blue sequence,&nbsp; $\rm Q3$&nbsp; to the black and&nbsp; $\rm Q4$&nbsp; to the repetition code and thus obviously to the green symbol sequence.
 +
*The red symbol sequence has the following properties:
 +
:* Because of&nbsp; $H_1 = H_0$&nbsp;, the symbols are equally probable:  &nbsp; $p_{\rm A} = p_{\rm B} = 0.5$.
 +
:* Because of&nbsp; $H < H_1$,&nbsp; there are statistical bindings within the sequence.
 +
*This can be recognised by the fact that there are more transitions between&nbsp; $\rm A$&nbsp; and&nbsp; $\rm B$&nbsp; than with statistical independence.
 +
 
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; In the green symbol sequence&nbsp; $($source&nbsp; $\rm Q4)$&nbsp;, the symbols&nbsp; $\rm A$&nbsp; and&nbsp; $\rm B$&nbsp; are equally likely:
 +
[[File:P_ID2247__Inf_A_1_3d.png|right|frame|Symbol sequences of a binary repetition code]]
 
:$$p_{\rm A} = p_{\rm B} = 0.5 \hspace{0.3cm}\Rightarrow\hspace{0.3cm}H_1 = 1\,{\rm bit/Symbol}
 
:$$p_{\rm A} = p_{\rm B} = 0.5 \hspace{0.3cm}\Rightarrow\hspace{0.3cm}H_1 = 1\,{\rm bit/Symbol}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Zur $H_2$-Ermittlung  betrachtet man Zweiertupel. Die Verbundwahrscheinlichkeiten $p_{\rm AA}$, $p_{\rm AB}$, $p_{\rm BA}$ und $p_{\rm BB}$ können daraus berechnet werden. Aus der Skizze erkennt man:
+
To determine&nbsp; $H_2$, one considers two-tuples.&nbsp; The composite probabilities&nbsp; $p_{\rm AA}$,&nbsp; $p_{\rm AB}$,&nbsp; $p_{\rm BA}$&nbsp; and&nbsp; $p_{\rm BB}$&nbsp; can be calculated from this.&nbsp; You can see from the sketch:
* Die Kombinationen $\rm AB$ und $\rm BA$ sind nur dann möglich, wenn ein Tupel bei geradzahligem $\nu$ beginnt. Für die Verbundwahrscheinlichkeiten $p_{\rm AB}$ und $p_{\rm BA}$ gilt dann:
+
* The combinations&nbsp; $\rm AB$&nbsp; and&nbsp; $\rm BA$&nbsp; are only possible if a tuple starts at even&nbsp; $\nu$&nbsp;.&nbsp; For the composite probabilities&nbsp; $p_{\rm AB}$&nbsp; and&nbsp; $p_{\rm BA}$&nbsp; then holds:
:$$p_{\rm AB} \hspace{0.1cm} =  \hspace{0.1cm} {\rm Pr}(\nu {\rm \hspace{0.15cm}ist\hspace{0.15cm}gerade})  \cdot {\rm Pr}( q_{\nu} = \mathbf{A}) \cdot {\rm Pr}(q_{\nu+1} = \mathbf{B}\hspace{0.05cm} | q_{\nu} = \mathbf{A}) =  {1}/{2} \cdot {1}/{2} \cdot {1}/{2} = {1}/{8} = p_{\rm BA}
+
:$$p_{\rm AB} \hspace{0.1cm} =  \hspace{0.1cm} {\rm Pr}(\nu {\rm \hspace{0.15cm}is\hspace{0.15cm}even})  \cdot {\rm Pr}( q_{\nu} = \mathbf{A}) \cdot {\rm Pr}(q_{\nu+1} = \mathbf{B}\hspace{0.05cm} | q_{\nu} = \mathbf{A}) =  {1}/{2} \cdot {1}/{2} \cdot {1}/{2} = {1}/{8} = p_{\rm BA}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
*Dagegen gelten für die beiden weiteren Kombinationen $\rm AA$ und $\rm BB$:
+
*In contrast, for the two other combinations&nbsp; $\rm AA$&nbsp; and&nbsp; $\rm BB$:
 
:$$p_{\rm AA} ={\rm Pr}(\nu = 1)  \cdot {\rm Pr}( q_1 = \mathbf{A}) \cdot {\rm Pr}(q_{2} = \mathbf{A}\hspace{0.05cm} | q_{1} = \mathbf{A}) +  {\rm Pr}(\nu=2)  \cdot {\rm Pr}( q_{2} = \mathbf{A}) \cdot {\rm Pr}(q_{3} = \mathbf{A}\hspace{0.05cm} | q_{2} = \mathbf{A})  
 
:$$p_{\rm AA} ={\rm Pr}(\nu = 1)  \cdot {\rm Pr}( q_1 = \mathbf{A}) \cdot {\rm Pr}(q_{2} = \mathbf{A}\hspace{0.05cm} | q_{1} = \mathbf{A}) +  {\rm Pr}(\nu=2)  \cdot {\rm Pr}( q_{2} = \mathbf{A}) \cdot {\rm Pr}(q_{3} = \mathbf{A}\hspace{0.05cm} | q_{2} = \mathbf{A})  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
 
:$$\Rightarrow \hspace{0.3cm}p_{\rm AA}  = \frac{1}{2} \cdot \frac{1}{2} \cdot 1+ \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{3}{8} = p_{\rm BB}
 
:$$\Rightarrow \hspace{0.3cm}p_{\rm AA}  = \frac{1}{2} \cdot \frac{1}{2} \cdot 1+ \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{3}{8} = p_{\rm BB}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
:Hierbei steht $\nu = 1$ für alle ungeradzahligen $\nu$ und $\nu = 2$ für alle geradzahligen.
+
:Here&nbsp; $\nu = 1$&nbsp; stands for all odd indices and&nbsp; $\nu = 2$&nbsp; for all even indices.
  
*Damit ergibt sich für die Entropienäherung:
+
*This gives for the entropy approximation:
 
:$$H_2 = \frac{1}{2} \cdot \left [ 2 \cdot \frac{3}{8} \cdot {\rm log}_2\hspace{0.1cm}\frac {8}{3} +  
 
:$$H_2 = \frac{1}{2} \cdot \left [ 2 \cdot \frac{3}{8} \cdot {\rm log}_2\hspace{0.1cm}\frac {8}{3} +  
 
  2 \cdot \frac{1}{8} \cdot {\rm log}_2\hspace{0.1cm}(8)\right ] =
 
  2 \cdot \frac{1}{8} \cdot {\rm log}_2\hspace{0.1cm}(8)\right ] =
 
  \frac{3}{8} \cdot  
 
  \frac{3}{8} \cdot  
{\rm log}_2\hspace{0.1cm}(8) - \frac{3}{8} \cdot {\rm log}_2\hspace{0.1cm}(3) +  \frac{1}{8} \cdot {\rm log}_2\hspace{0.1cm}(8)  \hspace{0.15cm} \underline {= 0.906 \,{\rm bit/Symbol}}  
+
{\rm log}_2\hspace{0.1cm}(8) - \frac{3}{8} \cdot {\rm log}_2\hspace{0.1cm}(3) +  \frac{1}{8} \cdot {\rm log}_2\hspace{0.1cm}(8)  \hspace{0.15cm} \underline {= 0.906 \,{\rm bit/symbol}}  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
  
'''(5)'''&nbsp; Nach ähnlichem Vorgehen kommt man bei Dreiertupeln zu den Verbundwahrscheinlichkeiten
+
'''(5)'''&nbsp; Following a similar procedure, we arrive at the composite probabilities for three-tuples
 +
 
 
:$$p_{\rm AAA} \hspace{0.1cm} =  \hspace{0.1cm} p_{\rm BBB} = 1/4 \hspace{0.05cm},\hspace{0.2cm} p_{\rm ABA} = p_{\rm BAB} = 0 \hspace{0.05cm},\hspace{0.2cm} p_{\rm AAB} \hspace{0.1cm} =  \hspace{0.1cm} p_{\rm ABB} = p_{\rm BBA} = p_{\rm BAA} = 1/8$$
 
:$$p_{\rm AAA} \hspace{0.1cm} =  \hspace{0.1cm} p_{\rm BBB} = 1/4 \hspace{0.05cm},\hspace{0.2cm} p_{\rm ABA} = p_{\rm BAB} = 0 \hspace{0.05cm},\hspace{0.2cm} p_{\rm AAB} \hspace{0.1cm} =  \hspace{0.1cm} p_{\rm ABB} = p_{\rm BBA} = p_{\rm BAA} = 1/8$$
und daraus zur Entropienäherung
+
and from this to the entropy approximation
 
:$$H_3 = \frac{1}{3} \cdot \left [ 2 \cdot \frac{1}{4} \cdot {\rm log}_2\hspace{0.1cm}(4) +  
 
:$$H_3 = \frac{1}{3} \cdot \left [ 2 \cdot \frac{1}{4} \cdot {\rm log}_2\hspace{0.1cm}(4) +  
 
  4 \cdot \frac{1}{8} \cdot {\rm log}_2\hspace{0.1cm}(8)\right ] = \frac{2.5}{3} \hspace{0.15cm} \underline {= 0.833 \,{\rm bit/Symbol}}  
 
  4 \cdot \frac{1}{8} \cdot {\rm log}_2\hspace{0.1cm}(8)\right ] = \frac{2.5}{3} \hspace{0.15cm} \underline {= 0.833 \,{\rm bit/Symbol}}  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Zur Berechnung von$H_4$ ergeben sich folgende $16$ Wahrscheinlichkeiten:
+
To calculate&nbsp; $H_4$&nbsp;, the&nbsp; $16$&nbsp; probabilities are as follows:
 
:$$p_{\rm AAAA} \hspace{0.1cm} =  \hspace{0.1cm} p_{\rm BBBB} = 3/16 \hspace{0.05cm},\hspace{0.2cm} p_{\rm AABB} = p_{\rm BBAA} = 2/16 \hspace{0.05cm},$$
 
:$$p_{\rm AAAA} \hspace{0.1cm} =  \hspace{0.1cm} p_{\rm BBBB} = 3/16 \hspace{0.05cm},\hspace{0.2cm} p_{\rm AABB} = p_{\rm BBAA} = 2/16 \hspace{0.05cm},$$
 
:$$ p_{\rm AAAB} \hspace{0.1cm} =  \hspace{0.1cm} p_{\rm ABBA} = p_{\rm ABBB} = p_{\rm BBBA} = p_{\rm BAAB} = p_{\rm BAAA}= 1/16
 
:$$ p_{\rm AAAB} \hspace{0.1cm} =  \hspace{0.1cm} p_{\rm ABBA} = p_{\rm ABBB} = p_{\rm BBBA} = p_{\rm BAAB} = p_{\rm BAAA}= 1/16
 
  \hspace{0.05cm}$$
 
  \hspace{0.05cm}$$
 
:$$ p_{\rm AABA} \hspace{0.1cm} =  \hspace{0.1cm} p_{\rm ABAA} = p_{\rm ABAB} = p_{\rm BBAB} = p_{\rm BABB} = p_{\rm BABA}= 0\hspace{0.05cm}.$$
 
:$$ p_{\rm AABA} \hspace{0.1cm} =  \hspace{0.1cm} p_{\rm ABAA} = p_{\rm ABAB} = p_{\rm BBAB} = p_{\rm BABB} = p_{\rm BABA}= 0\hspace{0.05cm}.$$
Daraus folgt:
+
It follows that:
 
:$$H_4= \frac{1}{4} \hspace{-0.05cm}\cdot \hspace{-0.05cm}\left [ 2 \hspace{-0.05cm}\cdot \hspace{-0.05cm} \frac{3}{16} \hspace{-0.05cm}\cdot \hspace{-0.05cm} {\rm log}_2\hspace{0.1cm}\frac{16}{3} +  
 
:$$H_4= \frac{1}{4} \hspace{-0.05cm}\cdot \hspace{-0.05cm}\left [ 2 \hspace{-0.05cm}\cdot \hspace{-0.05cm} \frac{3}{16} \hspace{-0.05cm}\cdot \hspace{-0.05cm} {\rm log}_2\hspace{0.1cm}\frac{16}{3} +  
 
  2 \hspace{-0.05cm}\cdot \hspace{-0.05cm} \frac{1}{8} \hspace{-0.05cm}\cdot \hspace{-0.05cm}{\rm log}_2\hspace{0.1cm}(8) +  
 
  2 \hspace{-0.05cm}\cdot \hspace{-0.05cm} \frac{1}{8} \hspace{-0.05cm}\cdot \hspace{-0.05cm}{\rm log}_2\hspace{0.1cm}(8) +  
Line 136: Line 140:
 
{\rm log}_2\hspace{0.01cm}(16) - 6 \hspace{-0.05cm}\cdot \hspace{-0.05cm} {\rm log}_2\hspace{0.01cm}(3) + 4 \hspace{-0.05cm}\cdot \hspace{-0.05cm}  
 
{\rm log}_2\hspace{0.01cm}(16) - 6 \hspace{-0.05cm}\cdot \hspace{-0.05cm} {\rm log}_2\hspace{0.01cm}(3) + 4 \hspace{-0.05cm}\cdot \hspace{-0.05cm}  
 
{\rm log}_2\hspace{0.01cm}(8) + 6\hspace{-0.05cm}\cdot \hspace{-0.05cm} {\rm log}_2\hspace{0.01cm}(16)\right ]}{32} .$$
 
{\rm log}_2\hspace{0.01cm}(8) + 6\hspace{-0.05cm}\cdot \hspace{-0.05cm} {\rm log}_2\hspace{0.01cm}(16)\right ]}{32} .$$
Man erkennt:  
+
One can see:
*Auch die Näherung $H_4 = 0.789\,{\rm bit/Symbol}$ weicht noch deutlich vom Entropie-Endwert $H = 0.5\,{\rm bit/Symbol}$ ab.
+
*Even the approximation&nbsp; $H_4 = 0.789\,{\rm bit/Symbol}$&nbsp; still deviates significantly from the final entropy value&nbsp; $H = 0.5\,{\rm bit/symbol}$&nbsp;.
*Der Wiederholungscode kann offensichtlich nicht durch eine Markovquelle modelliert werden. Wäre $\rm Q4$ eine Markovquelle, so müsste nämlich gelten:
+
*The repetition code obviously cannot be modelled by a Markov source.&nbsp; If&nbsp; $\rm Q4$&nbsp; were a Markov source, then the following would have to apply:
 
:$$H = 2 \cdot H_2 - H_1
 
:$$H = 2 \cdot H_2 - H_1
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm}H_2 = 1/2 \cdot (H+H_1) =  
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm}H_2 = 1/2 \cdot (H+H_1) =  
Line 148: Line 152:
  
  
[[Category:Aufgaben zu Informationstheorie|^1.2 Nachrichtenquellen mit Gedächtnis^]]
+
[[Category:Information Theory: Exercises|^1.2 Sources with Memory^]]

Latest revision as of 13:02, 10 August 2021

Different binary sequences

The graphic on the right shows four symbol sequences  $\langle q_\nu \rangle $,  each with length  $N = 60$.  The source symbols are  $\rm A$  and  $\rm B$.

  • It follows directly that  $H_0 = 1 \; \rm bit/symbol$  applies to the decision content of all sources considered.
  • However, the symbols  $\rm A$  and  $\rm B$  do not occur with equal probability, but with the probabilities  $p_{\rm A}$  and  $p_{\rm B}$.


In addition to  $H_0$ , the table below shows the entropy approximations

  • $H_1$,  based on  $p_{\rm A}$  und  $p_{\rm B}$  (column 2),
  • $H_2$,  based on two-tuples (column 3),
  • $H_3$,  based on three-tuples (column 4),
  • $H_4$,  based on four-tuples (column 5),
  • the actual entropy  $H$, which is obtained from  $H_k$  by the boundary transition for  $k \to \infty$  (last column).


The following size relations exist between these entropies:   $H \le$ ... $\le H_3 \le H_2 \le H_1 \le H_0 \hspace{0.05cm}.$

  • What is not known is the correlation between the sources  $\rm Q1$,  $\rm Q2$,  $\rm Q3$,  $\rm Q4$  and the symbol sequences shown in the graph 
    (black, blue, red, green).
  • It is only known that source  $\rm Q4$  contains a repetition code.  Due to the fact that in the corresponding symbol sequence every second symbol does not lier any information,  the final entrpy value is  $H = 0.5 \; \rm bit/symbol$.
  • In addition, the entropy approximations  $H_1 = 1 \; \rm bit/symbol$  and  $H_4 \approx 0.789 \; \rm bit/symbol$  are given.


Finally, the entropy approximations  $H_2$  and  $H_3$ are to be determined for the source  $\rm Q4$ .

Source entropy and approximations in "bit/symbol"


Hints:

  • This task belongs to the chapter  Discrete Sources with Memory.
  • For the  $k$–th entropy approximation, the following holds for binary sources  $(M = 2)$  with the composite probability  $ p_i^{(k)}$  of a  $k$–tuple:
$$H_k = \frac{1}{k} \cdot \sum_{i=1}^{2^k} p_i^{(k)} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{p_i^{(k)}} \hspace{0.5cm}({\rm unit\hspace{-0.1cm}: \hspace{0.1cm}bit/Symbol}) \hspace{0.05cm}.$$


Questions

1

What is the source of the black symbol sequence?

$\rm Q1$,
$\rm Q2$,
$\rm Q3$,
$\rm Q4$.

2

What is the source of the blue symbol sequence?

$\rm Q1$,
$\rm Q2$,
$\rm Q3$,
$\rm Q4$.

3

What is the source of the red symbol sequence?

$\rm Q1$,
$\rm Q2$,
$\rm Q3$,
$\rm Q4$.

4

Calculate the entropy approximation  $H_2$  of the repetition code  $\rm Q4$.

$H_2 \ = \ $

$\ \rm bit/symbol$

5

Calculate the entropy approximation  $H_3$  of the repetition code  $\rm Q4$.

$H_3 \ = \ $

$\ \rm bit/symbol$


Solution

(1)  The black binary sequence comes from the source  $\underline{\rm Q3}$,

  • since the symbols are equally probable   ⇒   $H_1 = H_0$,  and
  • there are no statistical bindings between the symbols   ⇒   $H=$ ... $= H_2 = H_1$.


(2)  It can be seen in the blue binary sequence that  $\rm A$  occurs much more frequently than  $\rm B$, so that  $H_1 < H_0$  must hold.

  • According to the table, only source  $\underline{\rm Q1}$  fulfils this condition.
  • From  $H_1 = 0.5 \; \rm bit/symbol$  one can determine the symbol probabilities  $p_{\rm A} = 0.89$  and  $p_{\rm B} = 0.11$ .


(3)  By exclusion procedure one arrives at the result  $\underline{\rm Q2}$ for the red binary sequence:

  • The source  $\rm Q1$ belongs to the blue sequence,  $\rm Q3$  to the black and  $\rm Q4$  to the repetition code and thus obviously to the green symbol sequence.
  • The red symbol sequence has the following properties:
  • Because of  $H_1 = H_0$ , the symbols are equally probable:   $p_{\rm A} = p_{\rm B} = 0.5$.
  • Because of  $H < H_1$,  there are statistical bindings within the sequence.
  • This can be recognised by the fact that there are more transitions between  $\rm A$  and  $\rm B$  than with statistical independence.



(4)  In the green symbol sequence  $($source  $\rm Q4)$ , the symbols  $\rm A$  and  $\rm B$  are equally likely:

Symbol sequences of a binary repetition code
$$p_{\rm A} = p_{\rm B} = 0.5 \hspace{0.3cm}\Rightarrow\hspace{0.3cm}H_1 = 1\,{\rm bit/Symbol} \hspace{0.05cm}.$$

To determine  $H_2$, one considers two-tuples.  The composite probabilities  $p_{\rm AA}$,  $p_{\rm AB}$,  $p_{\rm BA}$  and  $p_{\rm BB}$  can be calculated from this.  You can see from the sketch:

  • The combinations  $\rm AB$  and  $\rm BA$  are only possible if a tuple starts at even  $\nu$ .  For the composite probabilities  $p_{\rm AB}$  and  $p_{\rm BA}$  then holds:
$$p_{\rm AB} \hspace{0.1cm} = \hspace{0.1cm} {\rm Pr}(\nu {\rm \hspace{0.15cm}is\hspace{0.15cm}even}) \cdot {\rm Pr}( q_{\nu} = \mathbf{A}) \cdot {\rm Pr}(q_{\nu+1} = \mathbf{B}\hspace{0.05cm} | q_{\nu} = \mathbf{A}) = {1}/{2} \cdot {1}/{2} \cdot {1}/{2} = {1}/{8} = p_{\rm BA} \hspace{0.05cm}.$$
  • In contrast, for the two other combinations  $\rm AA$  and  $\rm BB$:
$$p_{\rm AA} ={\rm Pr}(\nu = 1) \cdot {\rm Pr}( q_1 = \mathbf{A}) \cdot {\rm Pr}(q_{2} = \mathbf{A}\hspace{0.05cm} | q_{1} = \mathbf{A}) + {\rm Pr}(\nu=2) \cdot {\rm Pr}( q_{2} = \mathbf{A}) \cdot {\rm Pr}(q_{3} = \mathbf{A}\hspace{0.05cm} | q_{2} = \mathbf{A}) \hspace{0.05cm}.$$
$$\Rightarrow \hspace{0.3cm}p_{\rm AA} = \frac{1}{2} \cdot \frac{1}{2} \cdot 1+ \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{3}{8} = p_{\rm BB} \hspace{0.05cm}.$$
Here  $\nu = 1$  stands for all odd indices and  $\nu = 2$  for all even indices.
  • This gives for the entropy approximation:
$$H_2 = \frac{1}{2} \cdot \left [ 2 \cdot \frac{3}{8} \cdot {\rm log}_2\hspace{0.1cm}\frac {8}{3} + 2 \cdot \frac{1}{8} \cdot {\rm log}_2\hspace{0.1cm}(8)\right ] = \frac{3}{8} \cdot {\rm log}_2\hspace{0.1cm}(8) - \frac{3}{8} \cdot {\rm log}_2\hspace{0.1cm}(3) + \frac{1}{8} \cdot {\rm log}_2\hspace{0.1cm}(8) \hspace{0.15cm} \underline {= 0.906 \,{\rm bit/symbol}} \hspace{0.05cm}.$$


(5)  Following a similar procedure, we arrive at the composite probabilities for three-tuples

$$p_{\rm AAA} \hspace{0.1cm} = \hspace{0.1cm} p_{\rm BBB} = 1/4 \hspace{0.05cm},\hspace{0.2cm} p_{\rm ABA} = p_{\rm BAB} = 0 \hspace{0.05cm},\hspace{0.2cm} p_{\rm AAB} \hspace{0.1cm} = \hspace{0.1cm} p_{\rm ABB} = p_{\rm BBA} = p_{\rm BAA} = 1/8$$

and from this to the entropy approximation

$$H_3 = \frac{1}{3} \cdot \left [ 2 \cdot \frac{1}{4} \cdot {\rm log}_2\hspace{0.1cm}(4) + 4 \cdot \frac{1}{8} \cdot {\rm log}_2\hspace{0.1cm}(8)\right ] = \frac{2.5}{3} \hspace{0.15cm} \underline {= 0.833 \,{\rm bit/Symbol}} \hspace{0.05cm}.$$

To calculate  $H_4$ , the  $16$  probabilities are as follows:

$$p_{\rm AAAA} \hspace{0.1cm} = \hspace{0.1cm} p_{\rm BBBB} = 3/16 \hspace{0.05cm},\hspace{0.2cm} p_{\rm AABB} = p_{\rm BBAA} = 2/16 \hspace{0.05cm},$$
$$ p_{\rm AAAB} \hspace{0.1cm} = \hspace{0.1cm} p_{\rm ABBA} = p_{\rm ABBB} = p_{\rm BBBA} = p_{\rm BAAB} = p_{\rm BAAA}= 1/16 \hspace{0.05cm}$$
$$ p_{\rm AABA} \hspace{0.1cm} = \hspace{0.1cm} p_{\rm ABAA} = p_{\rm ABAB} = p_{\rm BBAB} = p_{\rm BABB} = p_{\rm BABA}= 0\hspace{0.05cm}.$$

It follows that:

$$H_4= \frac{1}{4} \hspace{-0.05cm}\cdot \hspace{-0.05cm}\left [ 2 \hspace{-0.05cm}\cdot \hspace{-0.05cm} \frac{3}{16} \hspace{-0.05cm}\cdot \hspace{-0.05cm} {\rm log}_2\hspace{0.1cm}\frac{16}{3} + 2 \hspace{-0.05cm}\cdot \hspace{-0.05cm} \frac{1}{8} \hspace{-0.05cm}\cdot \hspace{-0.05cm}{\rm log}_2\hspace{0.1cm}(8) + 6 \hspace{-0.05cm}\cdot \hspace{-0.05cm} \frac{1}{16} \hspace{-0.05cm}\cdot \hspace{-0.05cm} {\rm log}_2\hspace{0.1cm}(16)\right ] =\frac{\left [ 6 \hspace{-0.05cm}\cdot \hspace{-0.05cm} {\rm log}_2\hspace{0.01cm}(16) - 6 \hspace{-0.05cm}\cdot \hspace{-0.05cm} {\rm log}_2\hspace{0.01cm}(3) + 4 \hspace{-0.05cm}\cdot \hspace{-0.05cm} {\rm log}_2\hspace{0.01cm}(8) + 6\hspace{-0.05cm}\cdot \hspace{-0.05cm} {\rm log}_2\hspace{0.01cm}(16)\right ]}{32} .$$

One can see:

  • Even the approximation  $H_4 = 0.789\,{\rm bit/Symbol}$  still deviates significantly from the final entropy value  $H = 0.5\,{\rm bit/symbol}$ .
  • The repetition code obviously cannot be modelled by a Markov source.  If  $\rm Q4$  were a Markov source, then the following would have to apply:
$$H = 2 \cdot H_2 - H_1 \hspace{0.3cm}\Rightarrow\hspace{0.3cm}H_2 = 1/2 \cdot (H+H_1) = 1/2 \cdot (0.5+1) = 0.75 \,{\rm bit/Symbol}\hspace{0.05cm}.$$