Difference between revisions of "Aufgaben:Exercise 2.1Z: 2D-Frequency and 2D-Time Representations"
From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Mobile Kommunikation/Allgemeine Beschreibung zeitvarianter Systeme}} Datei:P_ID2145__Mob_z_2_1.png|right|frame|2D–Übertragun…“) |
m (Text replacement - "Category:Exercises for Mobile Communications" to "Category:Mobile Communications: Exercises") |
||
(19 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Mobile_Communications/General_Description_of_Time_Variant_Systems}} |
− | [[File:P_ID2145__Mob_z_2_1.png|right|frame|2D& | + | [[File:P_ID2145__Mob_z_2_1.png|right|frame|2D transfer function: <br>real and imaginary parts]] |
− | + | To describe a time-variant channel with several paths, the '''two-dimensional impulse response''' is used: | |
:$$h(\tau,\hspace{0.05cm}t) = \sum_{m = 1}^{M} z_m(t) \cdot {\rm \delta} (\tau - \tau_m)\hspace{0.05cm}.$$ | :$$h(\tau,\hspace{0.05cm}t) = \sum_{m = 1}^{M} z_m(t) \cdot {\rm \delta} (\tau - \tau_m)\hspace{0.05cm}.$$ | ||
− | + | The first parameter $(\tau)$ indicates the delay, the second parameter $(t)$ is related to the time variance of the channel. | |
− | + | The Fourier transform of $h(\tau, \ t)$ with respect to $\tau$ is the '''time-variant transfer function''': | |
:$$H(f,\hspace{0.05cm} t) | :$$H(f,\hspace{0.05cm} t) | ||
\hspace{0.2cm} \stackrel {f,\hspace{0.05cm}\tau}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} h(\tau,\hspace{0.05cm}t) | \hspace{0.2cm} \stackrel {f,\hspace{0.05cm}\tau}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} h(\tau,\hspace{0.05cm}t) | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | In | + | *In the graph, $H(f, \ t)$ is displayed as a function of frequency, for different values of absolute time $t$ in the range of $0 \ \text{...} \ 10 \ \rm ms$. |
− | + | *In general, $H(f, \ t)$ is complex. The real part (top) and the imaginary part (bottom) are drawn separately. | |
Line 23: | Line 23: | ||
− | '' | + | ''Notes:'' |
− | * | + | * This task belongs to the chapter [[Mobile_Communications/General_Description_of_Time_Variant_Systems|General description of time–variant systems]]. |
− | * In | + | * In the above equation, an single-path channel is represented with parameter $M = 1$ . |
− | * | + | * Here are some numerical values of the specified time-variant transfer function: |
− | :$$H(f,\hspace{0.05cm} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0\, {\rm ms}) \approx 0.3 - {\rm j} \cdot 0.4 | + | :$$H(f,\hspace{0.05cm} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0\, {\rm ms}) \approx 0.3 - {\rm j} \cdot 0.4 \hspace{0.05cm},\hspace{0.2cm} |
− | H(f,\hspace{0.05cm} t = 2\, {\rm ms}) \approx 0.0 - {\rm j} \cdot 1.3 | + | H(f,\hspace{0.05cm} t = 2\, {\rm ms}) \approx 0.0 - {\rm j} \cdot 1.3 \hspace{0.05cm},$$ |
− | :$$H(f,\hspace{0.05cm} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 4\, {\rm ms}) \approx 0.1 - {\rm j} \cdot 1.5 | + | :$$H(f,\hspace{0.05cm} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 4\, {\rm ms}) \approx 0.1 - {\rm j} \cdot 1.5 \hspace{0.05cm},\hspace{0.2cm} |
− | H(f,\hspace{0.05cm} t = 6\, {\rm ms}) \approx 0.5 - {\rm j} \cdot 0.8 | + | H(f,\hspace{0.05cm} t = 6\, {\rm ms}) \approx 0.5 - {\rm j} \cdot 0.8 \hspace{0.05cm},$$ |
− | :$$H(f,\hspace{0.05cm} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 8\, {\rm ms}) \approx 0.9 - {\rm j} \cdot 0.1 | + | :$$H(f,\hspace{0.05cm} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 8\, {\rm ms}) \approx 0.9 - {\rm j} \cdot 0.1 \hspace{0.05cm},\hspace{0.2cm} |
− | H(f,\hspace{0.05cm} t = 10\, {\rm ms}) \approx 1.4 | + | H(f,\hspace{0.05cm} t = 10\, {\rm ms}) \approx 1.4 \hspace{0.05cm}.$$ |
− | * | + | * As can already be guessed from the above graph, neither the real nor the imaginary part of the 2D transfer function $H(f, \ t)$ are zero-mean. |
− | === | + | ===Questionnaire=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Is the channel time-variant? |
|type="()"} | |type="()"} | ||
− | + | + | + Yes. |
− | - | + | - No. |
− | { | + | {Is it a multi-path channel? |
|type="()"} | |type="()"} | ||
− | - | + | - Yes. |
− | + | + | + No. |
− | { | + | {How can the 2D impulse response be described here? |
|type="[]"} | |type="[]"} | ||
− | - $h(\tau, t) = A \cdot \delta(\tau) + B \cdot \delta(\tau \, –5 \, \rm µ s)$. | + | - $h(\tau, \ t) = A \cdot \delta(\tau) + B \cdot \delta(\tau \, –5 \, \rm µ s)$. |
− | - $h(\tau, t) = A \cdot \delta(\tau)$. | + | - $h(\tau, \ t) = A \cdot \delta(\tau)$. |
− | + $h(\tau, t) = z(t) \cdot \delta(\tau)$. | + | + $h(\tau, \ t) = z(t) \cdot \delta(\tau)$. |
− | { | + | {Estimate for which channel the data was recorded. |
|type="()"} | |type="()"} | ||
− | - AWGN | + | - AWGN channel, |
− | - | + | - Two-way channel, |
− | - Rayleigh | + | - Rayleigh channel, |
− | + Rice | + | + Rice channel. |
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' As can be seen in the graph, the transfer function $H(f, \ t)$ depends on $t$. Thus $h(\tau, \ t)$ is also time-dependent. Correct is therefore <u>YES</u>. |
− | '''(2)''' | + | '''(2)''' If we look at a fixed point in time, for example $t = 2 \ \rm ms$, we obtain the following for the time-variant transfer function: |
− | :$$H(f,\hspace{0.05cm} t = 2\, {\rm ms}) = | + | :$$H(f,\hspace{0.05cm} t = 2\, {\rm ms}) = - {\rm j} \cdot 1.3 \hspace{0.05cm} = {\rm const.}$$ |
− | + | *Thus the corresponding 2D–impulse response is | |
− | :$$h(\tau,\hspace{0.05cm} t = 2\, {\rm ms}) = - {\rm j} \cdot 1.3 | + | :$$h(\tau,\hspace{0.05cm} t = 2\, {\rm ms}) = - {\rm j} \cdot 1.3 \cdot \delta (\tau) \hspace{0.05cm} |
\hspace{0.3cm}\Rightarrow \hspace{0.3cm} M = 1 \hspace{0.05cm}.$$ | \hspace{0.3cm}\Rightarrow \hspace{0.3cm} M = 1 \hspace{0.05cm}.$$ | ||
− | + | *There is only one path $(M=1)$. This means that the correct solution is <u>NO</u>. | |
− | |||
− | |||
− | |||
+ | '''(3)''' The correct solution is <u>solution 3</u>: | ||
+ | *There is time variance but no frequency selectivity. | ||
+ | *Options 1 and 2, on the other hand, describe time-invariant systems. | ||
− | '''(4)''' | + | |
− | * | + | '''(4)''' <u>Solution 4</u> is correct: |
− | * | + | *For the AWGN channel, no transfer function can be specified. |
− | * | + | *For a two-way channel, $H(f, \ t)$ is not a constant in $f$ for any $t$. |
− | * | + | *Since in the $H(f, \ t)$ graph the real and imaginary part have a non-zero mean ⇒ the Rayleigh–channel can also be excluded. |
− | :$$\sigma = | + | *The data for the present task comes from a [[Mobile_Communications/Non-Frequency_Selective_Fading_With_Direct_Component| Rice channel]] with following parameters: |
+ | :$$\sigma = {1}/{\sqrt{2}} \hspace{0.05cm},\hspace{0.2cm} | ||
x_0 = {1}/{\sqrt{2}} \hspace{0.05cm},\hspace{0.2cm}y_0 = -{1}/{\sqrt{2}} \hspace{0.05cm},\hspace{0.2cm} | x_0 = {1}/{\sqrt{2}} \hspace{0.05cm},\hspace{0.2cm}y_0 = -{1}/{\sqrt{2}} \hspace{0.05cm},\hspace{0.2cm} | ||
f_{\rm D,\hspace{0.05cm} max} = 100\,\,{\rm Hz}\hspace{0.05cm}.$$ | f_{\rm D,\hspace{0.05cm} max} = 100\,\,{\rm Hz}\hspace{0.05cm}.$$ | ||
Line 96: | Line 97: | ||
− | [[Category: | + | [[Category:Mobile Communications: Exercises|^2.1 Description of Time-Variant Systems^]] |
Latest revision as of 13:37, 23 March 2021
To describe a time-variant channel with several paths, the two-dimensional impulse response is used:
- $$h(\tau,\hspace{0.05cm}t) = \sum_{m = 1}^{M} z_m(t) \cdot {\rm \delta} (\tau - \tau_m)\hspace{0.05cm}.$$
The first parameter $(\tau)$ indicates the delay, the second parameter $(t)$ is related to the time variance of the channel.
The Fourier transform of $h(\tau, \ t)$ with respect to $\tau$ is the time-variant transfer function:
- $$H(f,\hspace{0.05cm} t) \hspace{0.2cm} \stackrel {f,\hspace{0.05cm}\tau}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} h(\tau,\hspace{0.05cm}t) \hspace{0.05cm}.$$
- In the graph, $H(f, \ t)$ is displayed as a function of frequency, for different values of absolute time $t$ in the range of $0 \ \text{...} \ 10 \ \rm ms$.
- In general, $H(f, \ t)$ is complex. The real part (top) and the imaginary part (bottom) are drawn separately.
Notes:
- This task belongs to the chapter General description of time–variant systems.
- In the above equation, an single-path channel is represented with parameter $M = 1$ .
- Here are some numerical values of the specified time-variant transfer function:
- $$H(f,\hspace{0.05cm} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0\, {\rm ms}) \approx 0.3 - {\rm j} \cdot 0.4 \hspace{0.05cm},\hspace{0.2cm} H(f,\hspace{0.05cm} t = 2\, {\rm ms}) \approx 0.0 - {\rm j} \cdot 1.3 \hspace{0.05cm},$$
- $$H(f,\hspace{0.05cm} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 4\, {\rm ms}) \approx 0.1 - {\rm j} \cdot 1.5 \hspace{0.05cm},\hspace{0.2cm} H(f,\hspace{0.05cm} t = 6\, {\rm ms}) \approx 0.5 - {\rm j} \cdot 0.8 \hspace{0.05cm},$$
- $$H(f,\hspace{0.05cm} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 8\, {\rm ms}) \approx 0.9 - {\rm j} \cdot 0.1 \hspace{0.05cm},\hspace{0.2cm} H(f,\hspace{0.05cm} t = 10\, {\rm ms}) \approx 1.4 \hspace{0.05cm}.$$
- As can already be guessed from the above graph, neither the real nor the imaginary part of the 2D transfer function $H(f, \ t)$ are zero-mean.
Questionnaire
Solution
(1) As can be seen in the graph, the transfer function $H(f, \ t)$ depends on $t$. Thus $h(\tau, \ t)$ is also time-dependent. Correct is therefore YES.
(2) If we look at a fixed point in time, for example $t = 2 \ \rm ms$, we obtain the following for the time-variant transfer function:
- $$H(f,\hspace{0.05cm} t = 2\, {\rm ms}) = - {\rm j} \cdot 1.3 \hspace{0.05cm} = {\rm const.}$$
- Thus the corresponding 2D–impulse response is
- $$h(\tau,\hspace{0.05cm} t = 2\, {\rm ms}) = - {\rm j} \cdot 1.3 \cdot \delta (\tau) \hspace{0.05cm} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} M = 1 \hspace{0.05cm}.$$
- There is only one path $(M=1)$. This means that the correct solution is NO.
(3) The correct solution is solution 3:
- There is time variance but no frequency selectivity.
- Options 1 and 2, on the other hand, describe time-invariant systems.
(4) Solution 4 is correct:
- For the AWGN channel, no transfer function can be specified.
- For a two-way channel, $H(f, \ t)$ is not a constant in $f$ for any $t$.
- Since in the $H(f, \ t)$ graph the real and imaginary part have a non-zero mean ⇒ the Rayleigh–channel can also be excluded.
- The data for the present task comes from a Rice channel with following parameters:
- $$\sigma = {1}/{\sqrt{2}} \hspace{0.05cm},\hspace{0.2cm} x_0 = {1}/{\sqrt{2}} \hspace{0.05cm},\hspace{0.2cm}y_0 = -{1}/{\sqrt{2}} \hspace{0.05cm},\hspace{0.2cm} f_{\rm D,\hspace{0.05cm} max} = 100\,\,{\rm Hz}\hspace{0.05cm}.$$