Difference between revisions of "Aufgaben:Exercise 2.4: 2D Transfer Function"
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Mobile Kommunikation/Mehrwegeempfang beim Mobilfunk}} Datei:P_ID2161__Mob_A_2_4.png|right|frame|2D–Impulsantwort $|h(\tau,…“) |
m (Text replacement - "Category:Exercises for Mobile Communications" to "Category:Mobile Communications: Exercises") |
||
(16 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Mobile_Communications/Multipath_Reception_in_Mobile_Communications}} |
− | [[File:P_ID2161__Mob_A_2_4.png|right|frame| | + | [[File:P_ID2161__Mob_A_2_4.png|right|frame|2D impulse response |h(τ,t)|]] |
− | + | The graph shows the two-dimensional impulse response h(τ,t) of a mobile radio system in magnitude representation. | |
− | * | + | *It can be seen that the 2D impulse response only has components at delays τ=0 and \tau = 1 \ \rm µ s . |
− | * | + | *At these times: |
:h(\tau = 0\,{\rm µ s},\hspace{0.05cm}t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{ \sqrt{2}} = {\rm const.} | :h(\tau = 0\,{\rm µ s},\hspace{0.05cm}t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{ \sqrt{2}} = {\rm const.} | ||
:h(\tau = 1\,{\rm µ s},\hspace{0.05cm}t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \cos(2\pi \cdot {t}/{ T_0})\hspace{0.05cm}. | :h(\tau = 1\,{\rm µ s},\hspace{0.05cm}t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \cos(2\pi \cdot {t}/{ T_0})\hspace{0.05cm}. | ||
− | + | For all other values of τ, we have h(τ,t)≡0. | |
− | + | We want to obtain the two-dimensional transfer function H(f,t) as the Fourier transform of h(τ,t) with respect to the delay τ: | |
:$$H(f,\hspace{0.05cm} t) | :$$H(f,\hspace{0.05cm} t) | ||
\hspace{0.2cm} \stackrel {f,\hspace{0.05cm}\tau}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} h(\tau,\hspace{0.05cm}t) | \hspace{0.2cm} \stackrel {f,\hspace{0.05cm}\tau}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} h(\tau,\hspace{0.05cm}t) | ||
Line 19: | Line 19: | ||
− | + | ''Notes:'' | |
− | + | * This task belongs to chapter [[Mobile_Communications/Multi-Path_Reception_in_Mobile_Communications| Multi–Path Reception in Mobile Communications]]. | |
− | '' | + | * A similar problem is treated in [[Aufgaben:Exercise_2.5:_Scatter_Function| Exercize 2.5]] but with a different nomenclature. |
− | * | ||
− | * | ||
Line 29: | Line 27: | ||
− | === | + | ===Questionnaire=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {What is the period T0 of the function h(\tau = 1 \ {\rm µ s},\hspace{0.05cm} t)? Note that the graph shows the <u>magnitude</u> |h(τ,t)| . |
|type="{}"} | |type="{}"} | ||
− | T0 = { 20 3% } ms | + | T0 = { 20 3% } $\ \ \rm ms$ |
− | { | + | {At what times t1 (between 0 and 10 ms) and t2 (between $10 \ \ \rm ms$ and $20 \ \ \rm ms)$ is H(f,t) constant in f ? |
|type="{}"} | |type="{}"} | ||
− | t1 = { 5 3% } ms | + | t1 = { 5 3% } $\ \ \rm ms$ |
− | t2 = { 15 3% } ms | + | t2 = { 15 3% } $\ \ \rm ms$ |
− | { | + | {Calculate H0(f)=H(f,t=0). Which statements are true? |
|type="[]"} | |type="[]"} | ||
− | + | + | + We have $H_0(f) = H_0(f + i \cdot 1 \ {\rm MHz}), \ i = ±1, ±2, \ \ \text{...}$ |
− | + | + | + We have approximately 0.293 ≤ |H_0(f)| ≤ 1.707. |
− | + |H0(f)| | + | + |H0(f)| has a maximum at f=0 . |
− | { | + | {Calculate H10(f)=H(f,t=10 ms). Which statements are true? |
|type="[]"} | |type="[]"} | ||
− | + | + | + We have $H_{10}(f) = H_{10}(f + i \cdot 1 \ {\rm MHz}),\ i = ±1, ±2, \ \ \text{...}$ |
− | + | + | + We have approximately 0.293 ≤ H_{10}(f) ≤ 1.707. |
− | - |H10(f)| | + | - |H10(f)| has a maximum at f=0 . |
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' The period can be read from the given graph. If the magnitude representation is taken into account, the result is $T_0 \ \underline {= 20 \ \ \rm ms}$. |
− | '''(2)''' | + | '''(2)''' At time $t_1 \ \underline {= 5 \ \ \rm ms}$ we have h(\tau = 1 \ {\rm µ s}, t_1) = 0. Accordingly, the following applies |
:$$h(\tau = 1\,{\rm µ s},\hspace{0.05cm}t_1) = \frac{1}{ \sqrt{2}} \cdot \delta(\tau)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} | :$$h(\tau = 1\,{\rm µ s},\hspace{0.05cm}t_1) = \frac{1}{ \sqrt{2}} \cdot \delta(\tau)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} | ||
H(f,\hspace{0.05cm}t_1) = \frac{1}{ \sqrt{2}} = {\rm const.}$$ | H(f,\hspace{0.05cm}t_1) = \frac{1}{ \sqrt{2}} = {\rm const.}$$ | ||
− | + | The same applies to $t_2 \ \underline {= 15 \ \ \rm ms}$: | |
:$$h(\tau = 1\,{\rm µ s},\hspace{0.05cm}t_2) = \frac{1}{ \sqrt{2}} \cdot \delta(\tau)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} | :$$h(\tau = 1\,{\rm µ s},\hspace{0.05cm}t_2) = \frac{1}{ \sqrt{2}} \cdot \delta(\tau)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} | ||
H(f,\hspace{0.05cm}t_2) = \frac{1}{ \sqrt{2}} = {\rm const.}$$ | H(f,\hspace{0.05cm}t_2) = \frac{1}{ \sqrt{2}} = {\rm const.}$$ | ||
Line 68: | Line 66: | ||
− | '''(3)''' | + | '''(3)''' At time t=0 the impulse response with $\tau_1 = 1 \ \ \rm µ s$ is |
:h(τ,t=0)=1√2⋅δ(τ)+δ(τ−τ1). | :h(τ,t=0)=1√2⋅δ(τ)+δ(τ−τ1). | ||
− | + | Its Fourier transform is | |
:H0(f)=H(f,t=0) = 1√2+1⋅e−j⋅2πfτ1=1√2+cos(2πfτ1)−j⋅sin(2πfτ1) | :H0(f)=H(f,t=0) = 1√2+1⋅e−j⋅2πfτ1=1√2+cos(2πfτ1)−j⋅sin(2πfτ1) | ||
:$$\Rightarrow \hspace{0.3cm} |H_0(f)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} | :$$\Rightarrow \hspace{0.3cm} |H_0(f)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} | ||
Line 77: | Line 75: | ||
\sqrt { 0.5 + 1 + {2}/{ \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)} = \sqrt { 1.5 + { \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)}\hspace{0.05cm}.$$ | \sqrt { 0.5 + 1 + {2}/{ \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)} = \sqrt { 1.5 + { \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)}\hspace{0.05cm}.$$ | ||
− | + | Therefore, | |
− | * H0(f) | + | * H0(f) is periodic with 1/τ1=1 MHz. |
− | * | + | * For the maximum and minimum values, we have |
:Max[|H0(f)|] = √1.5+√2≈1.707,Min[|H0(f)|] = √1.5−√2≈0.293. | :Max[|H0(f)|] = √1.5+√2≈1.707,Min[|H0(f)|] = √1.5−√2≈0.293. | ||
− | * | + | * At f=0, |H0(f)| has a maximum. |
− | |||
− | |||
+ | Therefore, <u>all three solution suggestions</u> are correct. | ||
− | '''(4)''' | + | '''(4)''' For the time t=10 ms the following equations apply: |
:h(τ,t=10ms) = 1√2⋅δ(τ)−δ(τ−τ1), | :h(τ,t=10ms) = 1√2⋅δ(τ)−δ(τ−τ1), | ||
:$$H_{10}(f) = H(f,\hspace{0.05cm}t = 10\,{\rm ms}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} | :$$H_{10}(f) = H(f,\hspace{0.05cm}t = 10\,{\rm ms}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} | ||
Line 94: | Line 91: | ||
\sqrt { 1.5 - { \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)}\hspace{0.05cm}.$$ | \sqrt { 1.5 - { \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)}\hspace{0.05cm}.$$ | ||
− | [[File:P_ID2163__Mob_A_2_4d.png|right|frame| | + | [[File:P_ID2163__Mob_A_2_4d.png|right|frame|2D impulse response |h(τ,t)| and 2D transfer function |H(f,t)|]] |
− | + | <u>Solutions 1 and 2</u> are correct: | |
− | * | + | *The frequency period does not change compaired to t=0. |
− | * | + | *The maximum value is still 1.707 and the minimum value 0.293 does not change compared to the subtask '''(3)'''. |
− | * | + | *For f=0 there is now a minimum and not a maximum. |
− | + | The graph on the right shows the magnitude |H(f,t)| of the 2D transfer function. | |
Line 108: | Line 105: | ||
− | + | [[Category:Mobile Communications: Exercises|^2.2 Multi-Path Reception in Wireless Systems^]] | |
− | [[Category: |
Latest revision as of 14:38, 23 March 2021
The graph shows the two-dimensional impulse response h(τ,t) of a mobile radio system in magnitude representation.
- It can be seen that the 2D impulse response only has components at delays τ=0 and τ=1 µs .
- At these times:
- h(τ=0µs,t) = 1√2=const.
- h(τ=1µs,t) = cos(2π⋅t/T0).
For all other values of τ, we have h(τ,t)≡0.
We want to obtain the two-dimensional transfer function H(f,t) as the Fourier transform of h(τ,t) with respect to the delay τ:
- H(f,t)f,τ∙−−−∘h(τ,t).
Notes:
- This task belongs to chapter Multi–Path Reception in Mobile Communications.
- A similar problem is treated in Exercize 2.5 but with a different nomenclature.
Questionnaire
Solution
(2) At time t1 =5 ms_ we have h(τ=1 µs,t1)=0. Accordingly, the following applies
- h(τ=1µs,t1)=1√2⋅δ(τ)⇒H(f,t1)=1√2=const.
The same applies to t2 =15 ms_:
- h(τ=1µs,t2)=1√2⋅δ(τ)⇒H(f,t2)=1√2=const.
(3) At time t=0 the impulse response with τ1=1 µs is
- h(τ,t=0)=1√2⋅δ(τ)+δ(τ−τ1).
Its Fourier transform is
- H0(f)=H(f,t=0) = 1√2+1⋅e−j⋅2πfτ1=1√2+cos(2πfτ1)−j⋅sin(2πfτ1)
- ⇒|H0(f)| = √[1/√2+cos(2πfτ1)]2+[sin(2πfτ1)]2=√0.5+1+2/√2⋅cos(2πfτ1)=√1.5+√2⋅cos(2πfτ1).
Therefore,
- H_0(f) is periodic with 1/\tau_1 = 1 \ \rm MHz.
- For the maximum and minimum values, we have
- {\rm Max}\, \left [ \, |H_0(f)|\, \right ] \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt { 1.5 + { \sqrt{2}} } \approx 1.707 \hspace{0.05cm},\hspace{0.5cm}{\rm Min}\, \left [ \, |H_0(f)|\, \right ] \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt { 1.5 - { \sqrt{2}} } \approx 0.293 \hspace{0.05cm}.
- At f = 0, |H_0(f)| has a maximum.
Therefore, all three solution suggestions are correct.
(4) For the time t = 10 \ \rm ms the following equations apply:
- h(\tau,\hspace{0.05cm}t = 10\,{\rm ms}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{ \sqrt{2}} \cdot \delta(\tau)- \delta(\tau - \tau_1)\hspace{0.05cm},
- H_{10}(f) = H(f,\hspace{0.05cm}t = 10\,{\rm ms}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{ \sqrt{2}} - \cos( 2 \pi f \tau_1)+ {\rm j}\cdot \sin( 2 \pi f \tau_1)\hspace{0.05cm},
- |H_{10}(f)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt { 1.5 - { \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)}\hspace{0.05cm}.
Solutions 1 and 2 are correct:
- The frequency period does not change compaired to t = 0.
- The maximum value is still 1.707 and the minimum value 0.293 does not change compared to the subtask (3).
- For f = 0 there is now a minimum and not a maximum.
The graph on the right shows the magnitude |H(f, t)| of the 2D transfer function.