Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 2.4: 2D Transfer Function"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Mobile Kommunikation/Mehrwegeempfang beim Mobilfunk}} Datei:P_ID2161__Mob_A_2_4.png|right|frame|2D–Impulsantwort  $|h(\tau,…“)
 
m (Text replacement - "Category:Exercises for Mobile Communications" to "Category:Mobile Communications: Exercises")
 
(16 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Mobile Kommunikation/Mehrwegeempfang beim Mobilfunk}}
+
{{quiz-Header|Buchseite=Mobile_Communications/Multipath_Reception_in_Mobile_Communications}}
  
[[File:P_ID2161__Mob_A_2_4.png|right|frame|2D–Impulsantwort  |h(τ,t)|]]
+
[[File:P_ID2161__Mob_A_2_4.png|right|frame|2D impulse response  |h(τ,t)|]]
Dargestellt ist die zweidimensionale Impulsantwort  h(τ,t)  eines Mobilfunksystems in Betragsdarstellung.  
+
The graph shows the two-dimensional impulse response  h(τ,t)  of a mobile radio system in magnitude representation.  
*Es ist zu erkennen, dass die 2D–Impulsantwort nur für die Verzögerungszeiten  τ=0  und  \tau = 1 \ \rm µ s  Anteile besitzt.  
+
*It can be seen that the 2D impulse response only has components at delays  τ=0  and  \tau = 1 \ \rm µ s .  
*Zu diesen Zeitpunkten gilt:
+
*At these times:
 
:h(\tau = 0\,{\rm µ s},\hspace{0.05cm}t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{ \sqrt{2}} = {\rm const.}
 
:h(\tau = 0\,{\rm µ s},\hspace{0.05cm}t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{ \sqrt{2}} = {\rm const.}
 
:h(\tau = 1\,{\rm µ s},\hspace{0.05cm}t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}   \cos(2\pi \cdot {t}/{ T_0})\hspace{0.05cm}.
 
:h(\tau = 1\,{\rm µ s},\hspace{0.05cm}t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}   \cos(2\pi \cdot {t}/{ T_0})\hspace{0.05cm}.
  
Für alle anderen  τ–Werte ist  h(τ,t)0.
+
For all other values of  τ,  we have  h(τ,t)0.
  
Gesucht ist die zweidimensionale Übertragungsfunktion  H(f,t)  als die Fouriertransformierte von  h(τ,t)  hinsichtlich der Verzögerungszeit  τ:
+
We want to obtain the two-dimensional transfer function  H(f,t)  as the Fourier transform of  h(τ,t)  with respect to the delay   τ:
 
:$$H(f,\hspace{0.05cm} t)
 
:$$H(f,\hspace{0.05cm} t)
 
  \hspace{0.2cm}  \stackrel {f,\hspace{0.05cm}\tau}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} h(\tau,\hspace{0.05cm}t)   
 
  \hspace{0.2cm}  \stackrel {f,\hspace{0.05cm}\tau}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} h(\tau,\hspace{0.05cm}t)   
Line 19: Line 19:
  
  
 
+
''Notes:''  
 
+
* This task belongs to chapter  [[Mobile_Communications/Multi-Path_Reception_in_Mobile_Communications| Multi–Path Reception in Mobile Communications]].
''Hinweise:''  
+
* A similar problem is treated in  [[Aufgaben:Exercise_2.5:_Scatter_Function| Exercize 2.5]]  but with a different nomenclature.
* Die Aufgabe gehört zum Kapitel  [[Mobile_Kommunikation/Mehrwegeempfang_beim_Mobilfunk| Mehrwegeempfang beim Mobilfunk]].
 
* Eine ähnliche Problematik wird in der  [[Aufgaben:2.5_Scatter-Funktion| Aufgabe 2.5]]  behandelt, allerdings mit veränderter Nomenklatur.
 
 
   
 
   
  
Line 29: Line 27:
  
  
===Fragebogen===
+
===Questionnaire===
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß ist die Periodendauer&nbsp; T0&nbsp; der Funktion&nbsp; h(\tau = 1 \ {\rm &micro; s},\hspace{0.05cm} t)? Beachten Sie, dass in der Grafik der <u>Betrag</u>&nbsp; |h(τ,t)|&nbsp; dargestellt ist.
+
{What is the period &nbsp; T0&nbsp; of the function&nbsp; h(\tau = 1 \ {\rm &micro; s},\hspace{0.05cm} t)?&nbsp; Note that the graph shows the <u>magnitude</u>&nbsp; |h(τ,t)|&nbsp;.
 
|type="{}"}
 
|type="{}"}
T0 = { 20 3% }  ms
+
T0 = { 20 3% } $\ \ \rm ms$
  
{Zu welchen Zeiten&nbsp; t1&nbsp; (zwischen&nbsp; 0&nbsp; und&nbsp; 10 ms)&nbsp; und&nbsp; t2&nbsp; (zwischen&nbsp; 10 ms&nbsp; und&nbsp; 20 ms)&nbsp; ist&nbsp; H(f,t)&nbsp; bezüglich&nbsp; f&nbsp; konstant?
+
{At what times&nbsp; t1&nbsp; (between&nbsp; 0&nbsp; and&nbsp; 10 ms)&nbsp; and&nbsp; t2&nbsp; (between&nbsp; $10 \ \ \rm ms$&nbsp; and&nbsp; $20 \ \ \rm ms)$&nbsp; is&nbsp; H(f,t)&nbsp; constant in f&nbsp; ?
 
|type="{}"}
 
|type="{}"}
t1 = { 5 3% }  ms
+
t1 = { 5 3% } $\ \ \rm ms$
t2 = { 15 3% }  ms
+
t2 = { 15 3% } $\ \ \rm ms$
  
{Berechnen Sie&nbsp; H0(f)=H(f,t=0). Welche Aussagen sind zutreffend?
+
{Calculate&nbsp; H0(f)=H(f,t=0).&nbsp; Which statements are true?
 
|type="[]"}
 
|type="[]"}
+ Es gilt&nbsp; H_0(f) = H_0(f + i \cdot 1 \ {\rm MHz}), \ i = &plusmn;1, &plusmn;2, \ \text{...}
+
+ We have&nbsp; $H_0(f) = H_0(f + i \cdot 1 \ {\rm MHz}), \ i = &plusmn;1, &plusmn;2, \ \ \text{...}$
+ Es gilt näherungsweise&nbsp; 0.293 &#8804; |H_0(f)| &#8804; 1.707.
+
+ We have approximately&nbsp; 0.293 &#8804; |H_0(f)| &#8804; 1.707.
+ |H0(f)|&nbsp; hat bei&nbsp; f=0&nbsp; ein Maximum.
+
+ |H0(f)|&nbsp; has a maximum at f=0&nbsp;.
  
{Berechnen Sie&nbsp; H10(f)=H(f,t=10 ms). Welche Aussagen sind zutreffend?
+
{Calculate&nbsp; H10(f)=H(f,t=10 ms).&nbsp; Which statements are true?
 
|type="[]"}
 
|type="[]"}
+ Es gilt&nbsp; $H_{10}(f) = H_{10}(f + i \cdot 1 \ {\rm MHz}),\ i = &plusmn;1, &plusmn;2, \ \text{...}$
+
+ We have&nbsp; $H_{10}(f) = H_{10}(f + i \cdot 1 \ {\rm MHz}),\ i = &plusmn;1, &plusmn;2, \ \ \text{...}$
+ Es gilt näherungsweise&nbsp; 0.293 &#8804; H_{10}(f) &#8804; 1.707.
+
+ We have approximately&nbsp; 0.293 &#8804; H_{10}(f) &#8804; 1.707.
- |H10(f)|&nbsp; hat bei&nbsp; f=0&nbsp; ein Maximum.
+
- |H10(f)|&nbsp; has a maximum at f=0&nbsp;.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die Periodendauer kann man aus der gegebenen Grafik ablesen. Berücksichtigt man die Betragsdarstellung, so ergibt sich T0 =20 ms_.
+
'''(1)'''&nbsp; The period can be read from the given graph.&nbsp; If the magnitude representation is taken into account, the result is&nbsp; $T_0 \ \underline {= 20 \ \ \rm ms}$.
  
  
'''(2)'''&nbsp; Zum Zeitpunkt t1 =5 ms_ ist h(\tau = 1 \ {\rm &micro; s}, t_1) = 0. Dementsprechend gilt
+
'''(2)'''&nbsp; At time&nbsp; $t_1 \ \underline {= 5 \ \ \rm ms}$&nbsp; we have&nbsp; h(\tau = 1 \ {\rm &micro; s}, t_1) = 0.&nbsp; Accordingly, the following applies
 
:$$h(\tau = 1\,{\rm &micro; s},\hspace{0.05cm}t_1) = \frac{1}{ \sqrt{2}} \cdot \delta(\tau)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}   
 
:$$h(\tau = 1\,{\rm &micro; s},\hspace{0.05cm}t_1) = \frac{1}{ \sqrt{2}} \cdot \delta(\tau)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}   
 
  H(f,\hspace{0.05cm}t_1) = \frac{1}{ \sqrt{2}} = {\rm const.}$$
 
  H(f,\hspace{0.05cm}t_1) = \frac{1}{ \sqrt{2}} = {\rm const.}$$
  
Ebenso gilt für t2 =15 ms_:
+
The same applies to&nbsp; $t_2 \ \underline {= 15 \ \ \rm ms}$:
 
:$$h(\tau = 1\,{\rm &micro; s},\hspace{0.05cm}t_2) = \frac{1}{ \sqrt{2}} \cdot \delta(\tau)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}   
 
:$$h(\tau = 1\,{\rm &micro; s},\hspace{0.05cm}t_2) = \frac{1}{ \sqrt{2}} \cdot \delta(\tau)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}   
 
  H(f,\hspace{0.05cm}t_2) = \frac{1}{ \sqrt{2}} = {\rm const.}$$
 
  H(f,\hspace{0.05cm}t_2) = \frac{1}{ \sqrt{2}} = {\rm const.}$$
Line 68: Line 66:
  
  
'''(3)'''&nbsp; Zum Zeitpunkt t=0 lautet die Impulsantwort mit \tau_1 = 1 \ \rm &micro; s:
+
'''(3)'''&nbsp; At time&nbsp; t=0&nbsp; the impulse response with&nbsp; $\tau_1 = 1 \ \ \rm &micro; s$&nbsp; is
 
:h(τ,t=0)=12δ(τ)+δ(ττ1).
 
:h(τ,t=0)=12δ(τ)+δ(ττ1).
  
Die Fouriertransformation führt zum Ergebnis:
+
Its Fourier transform is
 
:H0(f)=H(f,t=0) = 12+1ej2πfτ1=12+cos(2πfτ1)jsin(2πfτ1)
 
:H0(f)=H(f,t=0) = 12+1ej2πfτ1=12+cos(2πfτ1)jsin(2πfτ1)
 
:$$\Rightarrow \hspace{0.3cm} |H_0(f)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm}
 
:$$\Rightarrow \hspace{0.3cm} |H_0(f)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm}
Line 77: Line 75:
 
  \sqrt { 0.5 +  1 + {2}/{ \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)} = \sqrt {  1.5 + { \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)}\hspace{0.05cm}.$$
 
  \sqrt { 0.5 +  1 + {2}/{ \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)} = \sqrt {  1.5 + { \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)}\hspace{0.05cm}.$$
  
Daraus folgt:
+
Therefore,
* H0(f) ist periodisch mit 1/τ1=1 MHz.
+
* H0(f)&nbsp; is periodic with&nbsp; 1/τ1=1 MHz.
* Für den Maximalwert bzw. Minimalwert gilt:
+
* For the maximum and minimum values, we have
 
:Max[|H0(f)|] = 1.5+21.707,Min[|H0(f)|] = 1.520.293.
 
:Max[|H0(f)|] = 1.5+21.707,Min[|H0(f)|] = 1.520.293.
* Bei f=0 hat |H0(f)| ein Maximum.
+
* At f=0,&nbsp; |H0(f)| has a maximum.
 
 
  
Richtig sind demzufolge <u>alle drei Lösungsvorschläge</u>.
 
  
 +
Therefore, <u>all three solution suggestions</u>&nbsp; are correct.
  
'''(4)'''&nbsp; Für den Zeitpunkt t=10 ms gelten folgende Gleichungen:
+
'''(4)'''&nbsp; For the time t=10 ms the following equations apply:
 
:h(τ,t=10ms) = 12δ(τ)δ(ττ1),
 
:h(τ,t=10ms) = 12δ(τ)δ(ττ1),
 
:$$H_{10}(f) = H(f,\hspace{0.05cm}t = 10\,{\rm ms}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}
 
:$$H_{10}(f) = H(f,\hspace{0.05cm}t = 10\,{\rm ms}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}
Line 94: Line 91:
 
  \sqrt { 1.5 -  { \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)}\hspace{0.05cm}.$$
 
  \sqrt { 1.5 -  { \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)}\hspace{0.05cm}.$$
  
[[File:P_ID2163__Mob_A_2_4d.png|right|frame|2D–Impulsantwort |h(τ,t)| und 2D–Übertragungsfunktion |H(f,t)|]]
+
[[File:P_ID2163__Mob_A_2_4d.png|right|frame|2D impulse response |h(τ,t)| and 2D transfer function |H(f,t)|]]
Richtig sind die <u>Lösungsvorschläge 1 und 2</u>:
+
<u>Solutions 1 and 2</u> are correct:
*Die Frequenzperiode ändert sich gegenüber t=0 nicht.  
+
*The frequency period does not change compaired to&nbsp; t=0.  
*Der Maximalwert ist weiterhin 1.707 und auch der Minimalwert 0.293 ändert sich nicht gegenüber der Teilaufgabe '''(3)'''.  
+
*The maximum value is still&nbsp; 1.707&nbsp; and the minimum value&nbsp; 0.293&nbsp; does not change compared to the subtask&nbsp; '''(3)'''.  
*Bei f=0 gibt es nun ein Minimum und kein Maximum.  
+
*For f=0&nbsp; there is now a minimum and not a maximum.  
  
  
Die rechte Grafik zeigt den Betrag |H(f,t)| der 2D&ndash;Übertragungsfunktion.
+
The graph on the right shows the magnitude&nbsp; |H(f,t)|&nbsp; of the 2D transfer function.
  
  
Line 108: Line 105:
  
  
 
+
[[Category:Mobile Communications: Exercises|^2.2 Multi-Path Reception in Wireless Systems^]]
[[Category:Exercises for Mobile Communications|^2.2 Multi-Path Reception in Wireless Systems^]]
 

Latest revision as of 14:38, 23 March 2021

2D impulse response  |h(τ,t)|

The graph shows the two-dimensional impulse response  h(τ,t)  of a mobile radio system in magnitude representation.

  • It can be seen that the 2D impulse response only has components at delays  τ=0  and  τ=1 µs .
  • At these times:
h(τ=0µs,t) = 12=const.
h(τ=1µs,t) = cos(2πt/T0).

For all other values of  τ,  we have  h(τ,t)0.

We want to obtain the two-dimensional transfer function  H(f,t)  as the Fourier transform of  h(τ,t)  with respect to the delay   τ:

H(f,t)f,τh(τ,t).



Notes:



Questionnaire

1

What is the period   T0  of the function  h(τ=1 µs,t)?  Note that the graph shows the magnitude  |h(τ,t)| .

T0 = 

  ms

2

At what times  t1  (between  0  and  10 ms)  and  t2  (between  10  ms  and  20  ms)  is  H(f,t)  constant in f  ?

t1 = 

  ms
t2 = 

  ms

3

Calculate  H0(f)=H(f,t=0).  Which statements are true?

We have  H0(f)=H0(f+i1 MHz), i=±1,±2,  ...
We have approximately  0.293|H0(f)|1.707.
|H0(f)|  has a maximum at f=0 .

4

Calculate  H10(f)=H(f,t=10 ms).  Which statements are true?

We have  H10(f)=H10(f+i1 MHz), i=±1,±2,  ...
We have approximately  0.293H10(f)1.707.
|H10(f)|  has a maximum at f=0 .


Solution

(1)  The period can be read from the given graph.  If the magnitude representation is taken into account, the result is  T0 =20  ms_.


(2)  At time  t1 =5  ms_  we have  h(τ=1 µs,t1)=0.  Accordingly, the following applies

h(τ=1µs,t1)=12δ(τ)H(f,t1)=12=const.

The same applies to  t2 =15  ms_:

h(τ=1µs,t2)=12δ(τ)H(f,t2)=12=const.


(3)  At time  t=0  the impulse response with  τ1=1  µs  is

h(τ,t=0)=12δ(τ)+δ(ττ1).

Its Fourier transform is

H0(f)=H(f,t=0) = 12+1ej2πfτ1=12+cos(2πfτ1)jsin(2πfτ1)
|H0(f)| = [1/2+cos(2πfτ1)]2+[sin(2πfτ1)]2=0.5+1+2/2cos(2πfτ1)=1.5+2cos(2πfτ1).

Therefore,

  • H_0(f)  is periodic with  1/\tau_1 = 1 \ \rm MHz.
  • For the maximum and minimum values, we have
{\rm Max}\, \left [ \, |H_0(f)|\, \right ] \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt { 1.5 + { \sqrt{2}} } \approx 1.707 \hspace{0.05cm},\hspace{0.5cm}{\rm Min}\, \left [ \, |H_0(f)|\, \right ] \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt { 1.5 - { \sqrt{2}} } \approx 0.293 \hspace{0.05cm}.
  • At f = 0|H_0(f)| has a maximum.


Therefore, all three solution suggestions  are correct.

(4)  For the time t = 10 \ \rm ms the following equations apply:

h(\tau,\hspace{0.05cm}t = 10\,{\rm ms}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{ \sqrt{2}} \cdot \delta(\tau)- \delta(\tau - \tau_1)\hspace{0.05cm},
H_{10}(f) = H(f,\hspace{0.05cm}t = 10\,{\rm ms}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{ \sqrt{2}} - \cos( 2 \pi f \tau_1)+ {\rm j}\cdot \sin( 2 \pi f \tau_1)\hspace{0.05cm},
|H_{10}(f)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt { 1.5 - { \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)}\hspace{0.05cm}.
2D impulse response |h(\tau, \hspace{0.05cm}t)| and 2D transfer function |H(f, \hspace{0.05cm}t)|

Solutions 1 and 2 are correct:

  • The frequency period does not change compaired to  t = 0.
  • The maximum value is still  1.707  and the minimum value  0.293  does not change compared to the subtask  (3).
  • For f = 0  there is now a minimum and not a maximum.


The graph on the right shows the magnitude  |H(f, t)|  of the 2D transfer function.