Difference between revisions of "Applets:Abtastung analoger Signale und Signalrekonstruktion"

From LNTwww
m (Text replacement - "„" to """)
 
(28 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{LntAppletLink|augendiagramm}}
+
{{LntAppletLink|sampling}}
 
   
 
   
 
==Programmbeschreibung==
 
==Programmbeschreibung==
 
<br>
 
<br>
Das Applet behandelt die Systemkomponenten&nbsp; &bdquo;Abtastung&rdquo;&nbsp; und&nbsp; &bdquo;Signalrekonstruktion&rdquo;, zwei Komponenten, die zum Beispiel für das Verständnis der&nbsp; [[Modulationsverfahren/Pulscodemodulation|Pulscodemodulation]]&nbsp; $({\rm PCM})$&nbsp; von großer Wichtigkeit sind.&nbsp; Die obere Grafik zeigt das für dieses Applet zugrundeliegende Modell.&nbsp; Darunter gezeichnet sind die Abtastwerte&nbsp; $x(\nu \cdot T_{\rm A})$&nbsp; des zeitkontinuierlichen Signals&nbsp; $x(t)$. Die (unendliche) Summe über alle diese Abtastwerte bezeichnen wir als das abgetastete Signal&nbsp; $x_{\rm A}(t)$.  
+
Das Applet behandelt die Systemkomponenten&nbsp; "Abtastung"&nbsp; und&nbsp; "Signalrekonstruktion", zwei Komponenten, die zum Beispiel für das Verständnis der&nbsp; [[Modulation_Methods/Pulscodemodulation|Pulscodemodulation]]&nbsp; $({\rm PCM})$&nbsp; von großer Wichtigkeit sind.&nbsp; Die obere Grafik zeigt das für dieses Applet zugrundeliegende Modell.&nbsp; Darunter gezeichnet sind die Abtastwerte&nbsp; $x(\nu \cdot T_{\rm A})$&nbsp; des zeitkontinuierlichen Signals&nbsp; $x(t)$. Die (unendliche) Summe über alle diese Abtastwerte bezeichnen wir als das abgetastete Signal&nbsp; $x_{\rm A}(t)$.  
  
[[File:Abtastung_1_version4.png|right|frame|Oben: &nbsp;&nbsp; Zugrundeliegendes Modell für Abtastung und Signalrekonstruktion<br>Unten: &nbsp; Beispiel zur Zeitdiskretisierung des zeitkontinuierlichen Signals&nbsp; $x(t)$]]
+
[[File:Abtastung_1_version4.png|center|frame|Oben: &nbsp;&nbsp; Zugrundeliegendes Modell für Abtastung und Signalrekonstruktion<br>Unten: &nbsp; Beispiel zur Zeitdiskretisierung des zeitkontinuierlichen Signals&nbsp; $x(t)$]]
 
*Beim Sender wird aus dem zeitkontinuierlichen Quellensignal&nbsp; $x(t)$&nbsp; das zeitdiskrete (abgetastete) Signal&nbsp; $x_{\rm A}(t)$&nbsp; gewonnen.&nbsp; Man nennt diesen Vorgang&nbsp; '''Abtastung'''&nbsp; oder&nbsp; '''A/D&ndash;Wandlung'''.   
 
*Beim Sender wird aus dem zeitkontinuierlichen Quellensignal&nbsp; $x(t)$&nbsp; das zeitdiskrete (abgetastete) Signal&nbsp; $x_{\rm A}(t)$&nbsp; gewonnen.&nbsp; Man nennt diesen Vorgang&nbsp; '''Abtastung'''&nbsp; oder&nbsp; '''A/D&ndash;Wandlung'''.   
 
*Der entsprechende Programmparameter für den Sender ist die Abtastrate&nbsp; $f_{\rm A}= 1/T_{\rm A}$. In der unteren Grafik ist der Abtastabstand&nbsp; $T_{\rm A}$&nbsp; eingezeichnet.  
 
*Der entsprechende Programmparameter für den Sender ist die Abtastrate&nbsp; $f_{\rm A}= 1/T_{\rm A}$. In der unteren Grafik ist der Abtastabstand&nbsp; $T_{\rm A}$&nbsp; eingezeichnet.  
Line 11: Line 11:
  
  
Das Applet berücksichtigt nicht die PCM&ndash;Blöcke&nbsp; &bdquo;Quantisierung&rdquo;, &nbsp;&bdquo;Codierung / Decodierung&rdquo; und der Digitale Übertragungskanal ist als ideal angenommen.&nbsp;  
+
Das Applet berücksichtigt nicht die PCM&ndash;Blöcke&nbsp; "Quantisierung", &nbsp;"Codierung / Decodierung" und der Digitale Übertragungskanal ist als ideal angenommen.&nbsp;  
  
 +
[[File:Abtastung_2_neu.png|right|frame|Empfänger&ndash;Frequenzgang&nbsp; $H_{\rm E}(f)$]]
 
Daraus ergeben sich folgende Konsequenzen:
 
Daraus ergeben sich folgende Konsequenzen:
 
*Im Programm ist vereinfachend&nbsp; $y_{\rm A}(t) = x_{\rm A}(t)$&nbsp; gesetzt.
 
*Im Programm ist vereinfachend&nbsp; $y_{\rm A}(t) = x_{\rm A}(t)$&nbsp; gesetzt.
 
* Bei geeigneten Systemparametern ist somit auch das Fehlersignal &nbsp; $\varepsilon(t) = y(t)-x(t)\equiv 0$&nbsp; möglich.  
 
* Bei geeigneten Systemparametern ist somit auch das Fehlersignal &nbsp; $\varepsilon(t) = y(t)-x(t)\equiv 0$&nbsp; möglich.  
  
[[File:Abtastung_2_neu.png|right|frame|Empfänger&ndash;Frequenzgang&nbsp; $H_{\rm E}(f)$]]
+
 
<br>
+
Das Abtasttheorem und die Signalrekonstruktion lassen sich im Frequenzbereich besser erklären.&nbsp; Im Programm werden deshalb auch alle Spektralfunktionen angezeigt:
Das Abtasttheorem und die Signalrekonstruktion lassen sich im Frequenzbereich besser erklären.&nbsp; Im Programm werden deshalb auch alle Spektralfunktionen angezeigt;
 
  
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;$X(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ x(t)$,&nbsp; $X_{\rm A}(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ x_{\rm A}(t)$,&nbsp; $Y(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ y(t)$,&nbsp; $E(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ \varepsilon(t).$&nbsp;
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;$X(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ x(t)$,&nbsp; $X_{\rm A}(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ x_{\rm A}(t)$,&nbsp; $Y(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ y(t)$,&nbsp; $E(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ \varepsilon(t).$&nbsp;
Line 30: Line 30:
 
'''(1)''' &nbsp; Alle Signalwerte sind normiert auf&nbsp; $\pm 1$&nbsp; zu verstehen.&nbsp;  
 
'''(1)''' &nbsp; Alle Signalwerte sind normiert auf&nbsp; $\pm 1$&nbsp; zu verstehen.&nbsp;  
  
'''(2)''' &nbsp; Für die ausgegebenen Leistungen gilt mit der jeweiligen Periodendauer&nbsp; $T_0$:
+
'''(2)''' &nbsp; Die Leistungsberechnung erfolgt durch Integration über die jeweilige Periodendauer&nbsp; $T_0$:
 
:$$P_x = \frac{1}{T_0} \cdot \int_0^{T_0} x^2(t)\ {\rm d}t,\hspace{0.8cm}P_\varepsilon = \frac{1}{T_0} \cdot \int_0^{T_0} \varepsilon^2(t).$$
 
:$$P_x = \frac{1}{T_0} \cdot \int_0^{T_0} x^2(t)\ {\rm d}t,\hspace{0.8cm}P_\varepsilon = \frac{1}{T_0} \cdot \int_0^{T_0} \varepsilon^2(t).$$
  
Line 37: Line 37:
 
'''(4)''' &nbsp; Daraus kann der <u>Signal&ndash;Verzerrungs&ndash;Abstand</u>&nbsp; $10 \cdot \lg \ (P_x/P_\varepsilon)$&nbsp; berechnet werden.
 
'''(4)''' &nbsp; Daraus kann der <u>Signal&ndash;Verzerrungs&ndash;Abstand</u>&nbsp; $10 \cdot \lg \ (P_x/P_\varepsilon)$&nbsp; berechnet werden.
 
   
 
   
'''(5)''' &nbsp; Besteht die Spektralfunktion&nbsp; $X(f)$&nbsp; bei positiven Frequenzen aus&nbsp; $I$&nbsp; Diraclinien mit den Beträgen&nbsp; $C_1$, ... , $C_I$, so gilt für die Sendeleistung unter Berücksichtigung der spiegelbildlichen Linien bei den negativen Frequenzen:
+
'''(5)''' &nbsp; Besteht die Spektralfunktion&nbsp; $X(f)$&nbsp; bei positiven Frequenzen aus&nbsp; $I$&nbsp; Diraclinien mit den (eventuell komplexen) Gewichten&nbsp; $X_1$, ... , $X_I$, <br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;so gilt für die Sendeleistung unter Berücksichtigung der spiegelbildlichen Linien bei den negativen Frequenzen:
  
:$$P_x = 2 \cdot \sum_{i=1}^I C_k^2.$$
+
:$$P_x = 2 \cdot \sum_{i=1}^I |X_k|^2.$$
  
'''(6)''' &nbsp; Entsprechend gilt für die Verzerrungsleistung, wenn sich die Spektralfunktion&nbsp; $E(f)$&nbsp; im Bereich&nbsp; $f>0$&nbsp; aus&nbsp; $J$&nbsp; Diraclinien mit Beträgen&nbsp; $D_1$, ... , $D_J$&nbsp; zusammensetzt:  
+
'''(6)''' &nbsp; Entsprechend gilt für die Verzerrungsleistung, wenn die Spektralfunktion&nbsp; $E(f)$&nbsp; im Bereich&nbsp; $f>0$&nbsp; genau&nbsp; $J$&nbsp; Diraclinien mit Gewichten&nbsp; $E_1$, ... , $E_J$&nbsp; aufweist:  
  
:$$P_\varepsilon = 2 \cdot \sum_{j=1}^J D_j^2.$$   
+
:$$P_\varepsilon = 2 \cdot \sum_{j=1}^J |E_j|^2.$$   
  
  
Line 62: Line 62:
 
*Das in äquidistanten Abständen&nbsp; $T_{\rm A}$&nbsp; abgetastete zeitdiskretisierte Signal sei&nbsp; $x_{\rm A}(t)$.
 
*Das in äquidistanten Abständen&nbsp; $T_{\rm A}$&nbsp; abgetastete zeitdiskretisierte Signal sei&nbsp; $x_{\rm A}(t)$.
 
*Außerhalb der Abtastzeitpunkte&nbsp; $\nu \cdot T_{\rm A}$&nbsp; gilt stets&nbsp; $x_{\rm A}(t) \equiv 0$.
 
*Außerhalb der Abtastzeitpunkte&nbsp; $\nu \cdot T_{\rm A}$&nbsp; gilt stets&nbsp; $x_{\rm A}(t) \equiv 0$.
*Die Laufvariable&nbsp; $\nu$&nbsp; sei&nbsp; [[Signaldarstellung/Zum_Rechnen_mit_komplexen_Zahlen#Reelle_Zahlenmengen|ganzzahlig]]:  &nbsp; &nbsp; $\nu \in \mathbb{Z} =  \{\hspace{0.05cm} \text{...}\hspace{0.05cm} , –3, –2, –1, \hspace{0.2cm}0, +1, +2, +3, \text{...} \hspace{0.05cm}\} $.
+
*Die Laufvariable&nbsp; $\nu$&nbsp; sei&nbsp; [[Signal_Representation/Zum_Rechnen_mit_komplexen_Zahlen#Reelle_Zahlenmengen|ganzzahlig]]:  &nbsp; &nbsp; $\nu \in \mathbb{Z} =  \{\hspace{0.05cm} \text{...}\hspace{0.05cm} , –3, –2, –1, \hspace{0.2cm}0, +1, +2, +3, \text{...} \hspace{0.05cm}\} $.
 
*Dagegen ergibt sich zu den äquidistanten Abtastzeitpunkten mit der Konstanten&nbsp; $K$:
 
*Dagegen ergibt sich zu den äquidistanten Abtastzeitpunkten mit der Konstanten&nbsp; $K$:
 
   
 
   
Line 101: Line 101:
 
===Beschreibung der Abtastung im Frequenzbereich===
 
===Beschreibung der Abtastung im Frequenzbereich===
  
Zum Spektrum des abgetasteten Signals&nbsp; $x_{\rm A}(t)$&nbsp; kommt man durch Anwendung des&nbsp; [[Signaldarstellung/Faltungssatz_und_Faltungsoperation#Faltung_im_Frequenzbereich|Faltungssatzes]]. Dieser besagt, dass der Multiplikation im Zeitbereich die Faltung im Spektralbereich entspricht:
+
Zum Spektrum des abgetasteten Signals&nbsp; $x_{\rm A}(t)$&nbsp; kommt man durch Anwendung des&nbsp; [[Signal_Representation/The_Convolution_Theorem_and_Operation#Faltung_im_Frequenzbereich|Faltungssatzes]]. Dieser besagt, dass der Multiplikation im Zeitbereich die Faltung im Spektralbereich entspricht:
 
   
 
   
 
:$$x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm}
 
:$$x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm}
 
  X_{\rm A}(f) = X(f) \star P_{\delta}(f)\hspace{0.05cm}.$$
 
  X_{\rm A}(f) = X(f) \star P_{\delta}(f)\hspace{0.05cm}.$$
  
Entwickelt man den&nbsp; Diracpuls&nbsp; $p_{\delta}(t)$ &nbsp; (im Zeitbereich) &nbsp; in eine&nbsp; [[Signaldarstellung/Fourierreihe|Fourierreihe]]&nbsp; und transformiert diese unter Anwendung des&nbsp; [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Verschiebungssatz|Verschiebungssatzes]]&nbsp; in den Frequenzbereich, so ergibt sich mit dem Abstand&nbsp; $f_{\rm A} = 1/T_{\rm A}$&nbsp; zweier benachbarter Diraclinien im Frequenzbereich  folgende Korrespondenz &nbsp; &rArr; &nbsp; [[Signaldarstellung/Zeitdiskrete_Signaldarstellung#Diracpuls_im_Zeit-_und_im_Frequenzbereich|Beweis]]:
+
Entwickelt man den&nbsp; Diracpuls&nbsp; $p_{\delta}(t)$ &nbsp; (im Zeitbereich) &nbsp; in eine&nbsp; [[Signal_Representation/Fourierreihe|Fourierreihe]]&nbsp; und transformiert diese unter Anwendung des&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Verschiebungssatz|Verschiebungssatzes]]&nbsp; in den Frequenzbereich, so ergibt sich mit dem Abstand&nbsp; $f_{\rm A} = 1/T_{\rm A}$&nbsp; zweier benachbarter Diraclinien im Frequenzbereich  folgende Korrespondenz &nbsp; &rArr; &nbsp; [[Signal_Representation/Time_Discrete_Signal_Representation#Diracpuls_im_Zeit-_und_im_Frequenzbereich|Beweis]]:
 
   
 
   
 
:$$p_{\delta}(t) =  \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot
 
:$$p_{\delta}(t) =  \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot
Line 118: Line 118:
 
*Die Fouriertransformierte von&nbsp; $p_{\delta}(t)$&nbsp;  ergibt wiederum einen Diracpuls, aber nun im Frequenzbereich  &nbsp; ⇒  &nbsp; $P_{\delta}(f)$.
 
*Die Fouriertransformierte von&nbsp; $p_{\delta}(t)$&nbsp;  ergibt wiederum einen Diracpuls, aber nun im Frequenzbereich  &nbsp; ⇒  &nbsp; $P_{\delta}(f)$.
 
*Auch&nbsp; $P_{\delta}(f)$&nbsp; besteht aus unendlich vielen Diracimpulsen, nun im jeweiligen Abstand&nbsp; $f_{\rm A} = 1/T_{\rm A}$&nbsp; und alle mit dem Impulsgewicht&nbsp; $1$.
 
*Auch&nbsp; $P_{\delta}(f)$&nbsp; besteht aus unendlich vielen Diracimpulsen, nun im jeweiligen Abstand&nbsp; $f_{\rm A} = 1/T_{\rm A}$&nbsp; und alle mit dem Impulsgewicht&nbsp; $1$.
*Die Abstände der Diraclinien in Zeit– und Frequenzbereich folgen demnach dem&nbsp; [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Reziprozit.C3.A4tsgesetz_von_Zeitdauer_und_Bandbreite|Reziprozitätsgesetz]]: &nbsp; $T_{\rm A} \cdot f_{\rm A} = 1 \hspace{0.05cm}.$
+
*Die Abstände der Diraclinien in Zeit– und Frequenzbereich folgen demnach dem&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Reziprozit.C3.A4tsgesetz_von_Zeitdauer_und_Bandbreite|Reziprozitätsgesetz]]: &nbsp; $T_{\rm A} \cdot f_{\rm A} = 1 \hspace{0.05cm}.$
  
  
Line 151: Line 151:
 
===Signalrekonstruktion===
 
===Signalrekonstruktion===
  
[[File:P_ID1123__Sig_T_5_1_S5a_neu.png|right|frame|Gemeinsames Modell von &bdquo;Signalabtastung&rdquo; und &bdquo;Signalrekonstruktion&rdquo;]]
+
[[File:P_ID1123__Sig_T_5_1_S5a_neu.png|right|frame|Gemeinsames Modell von "Signalabtastung" und "Signalrekonstruktion"]]
 
Die Signalabtastung ist bei einem digitalen Übertragungssystem kein Selbstzweck, sondern sie muss irgendwann wieder rückgängig gemacht werden.&nbsp; Betrachten wir zum Beispiel das folgende System:  
 
Die Signalabtastung ist bei einem digitalen Übertragungssystem kein Selbstzweck, sondern sie muss irgendwann wieder rückgängig gemacht werden.&nbsp; Betrachten wir zum Beispiel das folgende System:  
 
*Das Analogsignal&nbsp; $x(t)$&nbsp; mit der  Bandbreite&nbsp; $B_{\rm NF}$&nbsp; wird wie oben beschrieben abgetastet.  
 
*Das Analogsignal&nbsp; $x(t)$&nbsp; mit der  Bandbreite&nbsp; $B_{\rm NF}$&nbsp; wird wie oben beschrieben abgetastet.  
Line 157: Line 157:
 
*Die Frage ist nun, wie der Block &nbsp; '''Signalrekonstruktion''' &nbsp; zu gestalten ist, damit auch&nbsp; $y(t) = x(t)$&nbsp; gilt.
 
*Die Frage ist nun, wie der Block &nbsp; '''Signalrekonstruktion''' &nbsp; zu gestalten ist, damit auch&nbsp; $y(t) = x(t)$&nbsp; gilt.
  
[[File:P_ID1124__Sig_T_5_1_S5b_neu.png|right|frame|Frequenzbereichsdarstellung der &bdquo;Signalrekonstruktion&rdquo;]]
+
[[File:P_ID1124__Sig_T_5_1_S5b_neu.png|right|frame|Frequenzbereichsdarstellung der "Signalrekonstruktion"]]
 
<br>Die Lösung ist einfach, wenn man die Spektralfunktionen betrachtet: &nbsp;  
 
<br>Die Lösung ist einfach, wenn man die Spektralfunktionen betrachtet: &nbsp;  
  
Man erhält aus&nbsp; $Y_{\rm A}(f)$&nbsp; das Spektrum&nbsp; $Y(f) = X(f)$&nbsp; durch ein Tiefpass&nbsp;Filter mit dem&nbsp; [[Lineare_zeitinvariante_Systeme/Systembeschreibung_im_Frequenzbereich#.C3.9Cbertragungsfunktion_-_Frequenzgang|Frequenzgang]]&nbsp; $H_{\rm E}(f)$, der&nbsp;
+
Man erhält aus&nbsp; $Y_{\rm A}(f)$&nbsp; das Spektrum&nbsp; $Y(f) = X(f)$&nbsp; durch ein Tiefpass&nbsp;Filter mit dem&nbsp; [[Linear_and_Time_Invariant_Systems/Systembeschreibung_im_Frequenzbereich#.C3.9Cbertragungsfunktion_-_Frequenzgang|Frequenzgang]]&nbsp; $H_{\rm E}(f)$, der&nbsp;
  
 
*die tiefen Frequenzen unverfälscht durchlässt:
 
*die tiefen Frequenzen unverfälscht durchlässt:
Line 211: Line 211:
 
[[File:Aufgaben_2D-Gauss.png|right]]
 
[[File:Aufgaben_2D-Gauss.png|right]]
  
*Wählen Sie zunächst die Nummer&nbsp; ('''1''', ... , '''?''')&nbsp; der zu bearbeitenden Aufgabe.
+
*Wählen Sie zunächst die Nummer&nbsp; ('''1''', ... , '''10''')&nbsp; der zu bearbeitenden Aufgabe.
 
*Eine Aufgabenbeschreibung wird angezeigt. Die Parameterwerte sind angepasst.
 
*Eine Aufgabenbeschreibung wird angezeigt. Die Parameterwerte sind angepasst.
*Lösung nach Drücken von &bdquo;Musterlösung&rdquo;.
+
*Lösung nach Drücken von "Musterlösung".
*Die Nummer&nbsp; '''0'''&nbsp; entspricht einem &bdquo;Reset&rdquo;:&nbsp; Gleiche Einstellung wie beim Programmstart.
+
*Die Nummer&nbsp; '''0'''&nbsp; entspricht einem "Reset":&nbsp; Gleiche Einstellung wie beim Programmstart.
 
*Alle Signalwerte sind normiert auf&nbsp; $\pm 1$&nbsp; zu verstehen.&nbsp; Auch die ausgegebenen Leistungen sind normierte Größen.   
 
*Alle Signalwerte sind normiert auf&nbsp; $\pm 1$&nbsp; zu verstehen.&nbsp; Auch die ausgegebenen Leistungen sind normierte Größen.   
  
Line 225: Line 225:
 
:*&nbsp;Der Rechteck&ndash;Tiefpass mit der Grenzfrequenz&nbsp;  $f_{\rm G} = \text{5 kHz}$&nbsp; entfernt alle Linien bis auf die beiden bei&nbsp; $\pm \text{4 kHz}$&nbsp; &rArr; &nbsp;$Y(f) =X(f)$&nbsp; &rArr; &nbsp;$y(t) =x(t)$&nbsp; &rArr; &nbsp; $P_\varepsilon = 0$.
 
:*&nbsp;Der Rechteck&ndash;Tiefpass mit der Grenzfrequenz&nbsp;  $f_{\rm G} = \text{5 kHz}$&nbsp; entfernt alle Linien bis auf die beiden bei&nbsp; $\pm \text{4 kHz}$&nbsp; &rArr; &nbsp;$Y(f) =X(f)$&nbsp; &rArr; &nbsp;$y(t) =x(t)$&nbsp; &rArr; &nbsp; $P_\varepsilon = 0$.
 
:*&nbsp;Die Signalrekonstruktion funktioniert hier perfekt&nbsp; $(P_\varepsilon = 0)$&nbsp; und zwar für alle Amplituden&nbsp;$A$&nbsp; und beliebige Phasen&nbsp;$\varphi$.
 
:*&nbsp;Die Signalrekonstruktion funktioniert hier perfekt&nbsp; $(P_\varepsilon = 0)$&nbsp; und zwar für alle Amplituden&nbsp;$A$&nbsp; und beliebige Phasen&nbsp;$\varphi$.
 
'''Carolin: Bitte Kreise im Imaginärteil von $X_A$ bei der Höhe 0 einzeichnen, wenn der Imaginärteil zwar 0 ist, der Betrag aber größer als 0 (gültig für das  Cosinussignal.
 
Das gleiche beim Realteil  von $X_A$. Das betrifft das Sinussignal.'''   
 
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
 
'''(2)'''&nbsp; Es gelte weiter&nbsp; $A=1$,&nbsp; $f_0 = \text{4 kHz}$,&nbsp; $\varphi=0$,&nbsp; $f_{\rm A} = \text{10 kHz}$,&nbsp; $f_{\rm G} = \text{5 kHz}$.&nbsp; Welchen Einfluss haben hier die Rolloff&ndash;Faktoren&nbsp; $r=0.2$,&nbsp; $r=0.5$&nbsp; und &nbsp; $r=1$?  <br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Geben Sie die jeweiligen Leistungen&nbsp; $P_x$&nbsp; und&nbsp; $P_\varepsilon$&nbsp; an.&nbsp; für welche&nbsp; $r$&ndash;Werte ist&nbsp; $P_\varepsilon= 0$?&nbsp; Gelten diese Ergebnisse auch für andere&nbsp; $A$&nbsp; und&nbsp; $\varphi$?  }}
 
'''(2)'''&nbsp; Es gelte weiter&nbsp; $A=1$,&nbsp; $f_0 = \text{4 kHz}$,&nbsp; $\varphi=0$,&nbsp; $f_{\rm A} = \text{10 kHz}$,&nbsp; $f_{\rm G} = \text{5 kHz}$.&nbsp; Welchen Einfluss haben hier die Rolloff&ndash;Faktoren&nbsp; $r=0.2$,&nbsp; $r=0.5$&nbsp; und &nbsp; $r=1$?  <br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Geben Sie die jeweiligen Leistungen&nbsp; $P_x$&nbsp; und&nbsp; $P_\varepsilon$&nbsp; an.&nbsp; für welche&nbsp; $r$&ndash;Werte ist&nbsp; $P_\varepsilon= 0$?&nbsp; Gelten diese Ergebnisse auch für andere&nbsp; $A$&nbsp; und&nbsp; $\varphi$?  }}
  
:*&nbsp;Bei der Voreinstellung ist die Signalleistung mit&nbsp; $C_1=0.5$&nbsp; gleich&nbsp; $P_x = 2\cdot 0.5^2 = 0.5$.&nbsp; Die Verzerrungsleistung&nbsp; $P_\varepsilon$&nbsp; hängt signifikant vom Rolloff&ndash;Faktor&nbsp; $r$&nbsp; ab.
+
:*&nbsp;Die Signalleistung ist mit&nbsp; $|X_1|=0.5$&nbsp; gleich&nbsp; $P_x = 2\cdot 0.5^2 = 0.5$.&nbsp; Die Verzerrungsleistung&nbsp; $P_\varepsilon$&nbsp; hängt signifikant vom Rolloff&ndash;Faktor&nbsp; $r$&nbsp; ab.
 
:*&nbsp;Für&nbsp; $r \le 0.2$&nbsp; ist&nbsp; $P_\varepsilon=0$.&nbsp; Die&nbsp; $X_{\rm A}(f)$&ndash;Linie bei&nbsp; $f_0 = \text{4 kHz}$&nbsp; wird durch den Tiefpass nicht verändert und die unerwünschte&nbsp; Linie bei&nbsp; $\text{6 kHz}$&nbsp; voll unterdrückt.
 
:*&nbsp;Für&nbsp; $r \le 0.2$&nbsp; ist&nbsp; $P_\varepsilon=0$.&nbsp; Die&nbsp; $X_{\rm A}(f)$&ndash;Linie bei&nbsp; $f_0 = \text{4 kHz}$&nbsp; wird durch den Tiefpass nicht verändert und die unerwünschte&nbsp; Linie bei&nbsp; $\text{6 kHz}$&nbsp; voll unterdrückt.
:*$r = 0.5$&nbsp;:&nbsp; $Y(f = \text{4 kHz}) = 0.35$,&nbsp; $Y(f = \text{6 kHz}) = 0.15$&nbsp; &rArr; &nbsp; $|E(f = \text{4 kHz})| = |E(f = \text{6 kHz})|= 0.15$&nbsp; &rArr; &nbsp;$P_\varepsilon = 0.09$&nbsp; &rArr; &nbsp;$10 \cdot \lg \ (P_x/P_\varepsilon)=7.45\ \rm dB$.
+
:*&nbsp;$r = 0.5$&nbsp;:&nbsp; $Y(f = \text{4 kHz}) = 0.35$,&nbsp; $Y(f = \text{6 kHz}) = 0.15$&nbsp; &rArr; &nbsp; $|E(f = \text{4 kHz})| = |E(f = \text{6 kHz})|= 0.15$&nbsp; &rArr; &nbsp;$P_\varepsilon = 0.09$&nbsp; &rArr; &nbsp;$10 \cdot \lg \ (P_x/P_\varepsilon)=7.45\ \rm dB$.
 
:*$r = 1.0$&nbsp;:&nbsp; $Y(f = \text{4 kHz}) = 0.3$,&nbsp; $Y(f = \text{6 kHz}) = 0.2$&nbsp; &rArr; &nbsp; $|E(f = \text{4 kHz})| = |E(f = \text{6 kHz})|= 0.2$&nbsp; &rArr; &nbsp;$P_\varepsilon = 0.16$&nbsp; &rArr; &nbsp;$10 \cdot \lg \ (P_x/P_\varepsilon)=4.95\ \rm dB$.
 
:*$r = 1.0$&nbsp;:&nbsp; $Y(f = \text{4 kHz}) = 0.3$,&nbsp; $Y(f = \text{6 kHz}) = 0.2$&nbsp; &rArr; &nbsp; $|E(f = \text{4 kHz})| = |E(f = \text{6 kHz})|= 0.2$&nbsp; &rArr; &nbsp;$P_\varepsilon = 0.16$&nbsp; &rArr; &nbsp;$10 \cdot \lg \ (P_x/P_\varepsilon)=4.95\ \rm dB$.
:*&nbsp; Für alle&nbsp; $r$&nbsp; ist&nbsp; $P_\varepsilon$&nbsp; unabhängig von&nbsp; $\varphi$.&nbsp; Die Amplitude&nbsp; $A$&nbsp; beeinflusst&nbsp; $P_x$&nbsp; und&nbsp; $P_\varepsilon$&nbsp; in gleicher Weise &nbsp; &rArr; &nbsp; der Quotient ist jeweils unabhängig von&nbsp; $A$.   
+
:*&nbsp;Für alle&nbsp; $r$&nbsp; ist&nbsp; $P_\varepsilon$&nbsp; unabhängig von&nbsp; $\varphi$.&nbsp; Die Amplitude&nbsp; $A$&nbsp; beeinflusst&nbsp; $P_x$&nbsp; und&nbsp; $P_\varepsilon$&nbsp; in gleicher Weise &nbsp; &rArr; &nbsp; der Quotient ist jeweils unabhängig von&nbsp; $A$.   
 
      
 
      
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(3)'''&nbsp; &nbsp; Nun gelte&nbsp; $A=1$,&nbsp; $f_0 = \text{5 kHz}$,&nbsp; $\varphi=0$,&nbsp; $f_{\rm A} = \text{10 kHz}$,&nbsp; $f_{\rm G} = \text{5 kHz}$,&nbsp; $r=0$&nbsp; $($Rechteck&ndash;Tiefpass$)$.&nbsp; Interpretieren Sie das Ergebnis der Signalrekonstruktion.}}
+
'''(3)'''&nbsp; Nun gelte&nbsp; $A=1$,&nbsp; $f_0 = \text{5 kHz}$,&nbsp; $\varphi=0$,&nbsp; $f_{\rm A} = \text{10 kHz}$,&nbsp; $f_{\rm G} = \text{5 kHz}$,&nbsp; $r=0$&nbsp; $($Rechteck&ndash;Tiefpass$)$.&nbsp; Interpretieren Sie das Ergebnis der Signalrekonstruktion.}}
  
 
:*&nbsp;$X(f)$&nbsp; besteht aus zwei Diraclinien bei&nbsp; $\pm \text{5 kHz}$&nbsp; $($Gewicht &nbsp;$0.5)$. &nbsp;Durch die periodische Fortsetzung hat&nbsp; $X_{\rm A}(f)$&nbsp; Linien bei&nbsp; $\pm \text{5 kHz}$,&nbsp; $\pm \text{15 kHz}$,&nbsp; $\pm \text{25 kHz}$,&nbsp; usw.
 
:*&nbsp;$X(f)$&nbsp; besteht aus zwei Diraclinien bei&nbsp; $\pm \text{5 kHz}$&nbsp; $($Gewicht &nbsp;$0.5)$. &nbsp;Durch die periodische Fortsetzung hat&nbsp; $X_{\rm A}(f)$&nbsp; Linien bei&nbsp; $\pm \text{5 kHz}$,&nbsp; $\pm \text{15 kHz}$,&nbsp; $\pm \text{25 kHz}$,&nbsp; usw.
:*&nbsp; Der Rechteck&ndash;Tiefpass entfernt die Linien bei&nbsp; $\pm \text{15 kHz}$,&nbsp; $\pm \text{25 kHz}$,&nbsp;  Die Linien bei&nbsp; $\pm \text{5 kHz}$&nbsp; werden wegen&nbsp; $H_{\rm E}(\pm f_{\rm G}) = H_{\rm E}(\pm \text{5 kHz}) = 0.5$ halbiert.&nbsp; Also
+
:*&nbsp; Der Rechteck&ndash;Tiefpass entfernt die Linien bei&nbsp; $\pm \text{15 kHz}$,&nbsp; $\pm \text{25 kHz}$,&nbsp;  Die Linien bei&nbsp; $\pm \text{5 kHz}$&nbsp; werden wegen&nbsp; $H_{\rm E}(\pm f_{\rm G}) = H_{\rm E}(\pm \text{5 kHz}) = 0.5$ halbiert  
:*&nbsp; $\text{Gewichte von }X(f = \pm \text{5 kHz})$:&nbsp; $0.5$ &nbsp; | &nbsp; $\text{Gewichte von }X(f_{\rm A} = \pm \text{5 kHz})$:&nbsp; $1.0$; &nbsp; &nbsp; | &nbsp; $\text{Gewichte von }Y(f = \pm \text{5 kHz})$:&nbsp; $0.5$ &nbsp; &rArr; &nbsp; $Y(f)=X(f)$.
+
:*&nbsp;&nbsp; &rArr; &nbsp;  $\text{Gewichte von }X(f = \pm \text{5 kHz})$:&nbsp; $0.5$ &nbsp; | &nbsp; $\text{Gewichte von }X(f_{\rm A} = \pm \text{5 kHz})$:&nbsp; $1.0$; &nbsp; &nbsp; | &nbsp; $\text{Gewichte von }Y(f = \pm \text{5 kHz})$:&nbsp; $0.5$ &nbsp; &rArr; &nbsp; $Y(f)=X(f)$.
 
:*&nbsp;Die Signalrekonstruktion funktioniert also auch hier perfekt&nbsp; $(P_\varepsilon = 0)$.&nbsp; Das gilt auch für die Phase&nbsp; $\varphi=180^\circ$ &nbsp; &rArr; &nbsp; $x(t) = -A \cdot \cos (2\pi \cdot f_0 \cdot t)$.
 
:*&nbsp;Die Signalrekonstruktion funktioniert also auch hier perfekt&nbsp; $(P_\varepsilon = 0)$.&nbsp; Das gilt auch für die Phase&nbsp; $\varphi=180^\circ$ &nbsp; &rArr; &nbsp; $x(t) = -A \cdot \cos (2\pi \cdot f_0 \cdot t)$.
 
'''Carolin: (1) Bei dieser Einstellung müsste eigentlich epsilon(t) identisch 0 sein. Diese schwingt aber leicht.<br> (2) Zumindest für A=1 reicht hier der Darstellungsbereich für X_A(f) nicht. Müsste bis 1 gehen.<br> (3) Bitte die Werteausgabe für Y_(f) überprüfen. Werteausgabe für Betrag, Realteil und Imaginärteil''' 
 
 
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(4)'''&nbsp; Die&nbsp; $M=4$&nbsp; Signale der Einstellung&nbsp; $\rm D$&nbsp; lassen sich durch nur&nbsp; $N=2$&nbsp; Basisfunktionen ausdrücken?&nbsp; Begründen Sie dieses Ergebnis.}}  
+
'''(4)'''&nbsp; Es gelten weiter die Einstellungen von&nbsp; '''(3)'''&nbsp; mit Ausnahme von&nbsp; $\varphi=30^\circ$.&nbsp; Interpretieren Sie die Unterschiede gegenüber der Einstellung&nbsp; '''(3)''' &nbsp; &rArr; &nbsp; $\varphi=0^\circ$.}}
  
::*&nbsp;Es gilt&nbsp; $s_3(t) = s_1(t)/4 - s_2(t)/2$&nbsp; und&nbsp; $s_4(t) = -s_1(t) - s_2(t)$.&nbsp; Das heißt:&nbsp; $s_3(t)$&nbsp; und&nbsp; $s_4(t)$&nbsp; liefern keine neuen Basisfunktionen.  
+
:*&nbsp;Die Phasenbeziehung geht verloren.&nbsp; Das Sinkensignal&nbsp; $y(t)$&nbsp; verläuft cosinusförmig&nbsp; $(\varphi_y=0^\circ)$&nbsp; mit um&nbsp; $\cos(\varphi_x)$&nbsp; kleinerer Amplitude als das Quellensignal&nbsp; $x(t)$.
 +
:*&nbsp;Begründung im Frequenzbereich:&nbsp; Bei der periodische Fortsetzung von&nbsp; $X(f)$&nbsp; &rArr;&nbsp; $X_{\rm A}(f)$&nbsp; sind nur die Realteile zu addieren.&nbsp; Die Imaginärteile löschen sich aus.
 +
:*&nbsp;Die&nbsp; $f_0$&ndash;Diraclinie von&nbsp; $Y(f)$&nbsp; ist reell, die von&nbsp; $X(f)$&nbsp; komplex und die von&nbsp; $E(f)$&nbsp; imaginär &nbsp; &rArr; &nbsp; $\varepsilon(t)$&nbsp; verläuft minus&ndash;sinusförmig &nbsp; &rArr; &nbsp;  $P_\varepsilon = 0.125$.  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(5)'''&nbsp; Interpretieren Sie die ausgegebenen Grafiken für die Einstellung&nbsp; $\rm E$&nbsp; im Vergleich zur Einstellung&nbsp; $\rm D$.}}
+
'''(5)'''&nbsp; Verdeutlichen Sie sich nochmals das Ergebnis von&nbsp; '''(4)'''&nbsp; im Vergleich zu den Einstellungen&nbsp; $f_0 = \text{5 kHz}$,&nbsp; $\varphi=30^\circ$,&nbsp; $f_{\rm A} = \text{11 kHz}$,&nbsp; $f_{\rm G} = \text{5.5 kHz}$.}}
 
+
:*&nbsp;Bei dieser Einstellung hat das&nbsp; $X_{\rm A}(f)$&ndash;Spektrum auch einen positiven Imaginärteil bei&nbsp; $\text{5 kHz}$&nbsp; und einen negativen Imaginärteil gleicher Höhe bei&nbsp; $\text{6 kHz}$.
::*&nbsp;Bei der Einstellung&nbsp; $\rm E$&nbsp; ist die Reihenfolge der Signale gegenüber der Einstellung&nbsp;&nbsp; $\rm D$&nbsp; vertauscht. Ähnlich wie zwischen&nbsp; $\rm B$&nbsp; und&nbsp; $\rm C$.
+
:*&nbsp;Der Rechteck&ndash;Tiefpass mit der Grenzfrequenz&nbsp; $\text{5.5 kHz}$&nbsp; entfernt diesen zweiten Anteil.&nbsp; Somit ist bei dieser Einstellung&nbsp; $Y(f) =X(f)$ &nbsp; &rArr; &nbsp; $P_\varepsilon = 0$.
::*&nbsp;Auch diese&nbsp; $M=4$&nbsp; Signale lassen sich somit durch nur&nbsp;  $N=2$&nbsp; Basisfunktionen ausdrücken, aber durch andere als in der Aufgabe&nbsp; '''(4)'''.  
+
:*&nbsp;Jede&nbsp; $f_0$&ndash;Schwingung beliebiger Phase ist fehlerfrei aus seinen Abtastwerten rekonstruierbar, falls&nbsp; $f_{\rm A} = 2 \cdot f_{\rm 0} + \mu, \ f_{\rm G}= f_{\rm A}/2$&nbsp; $($beliebig kleines $\mu>0)$.
 +
:*&nbsp;Bei <u>wertkontinuierlichem</u> Spektrum mit &nbsp; $X(|f|> f_0) \equiv 0$&nbsp; &rArr; &nbsp; $\big[$keine Diraclinien bei $\pm f_0 \big ]$  genügt grundsätzlich die Abtastrate&nbsp; $f_{\rm A} =  2 \cdot f_{\rm 0}$.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(6)'''&nbsp; Welches Ergebnis liefern die vier Signale gemäß der Einstellung&nbsp; $\rm F$?}}
+
'''(6)'''&nbsp; Es gelten weiter die Einstellungen von&nbsp; '''(3)'''&nbsp; und&nbsp; '''(4)'''&nbsp; mit Ausnahme von&nbsp; $\varphi=90^\circ$.&nbsp; Interpretieren Sie die Darstellungen im Zeit&ndash; und Frequenzbereich.}}    
 
+
:*&nbsp;Das Quellensignal wird genau bei seinen Nulldurchgängen abgetastet &nbsp; &rArr; &nbsp; $x_{\rm A}(t) \equiv 0$&nbsp; &rArr; &nbsp; &nbsp;$y(t) \equiv 0$&nbsp; &rArr; &nbsp;$\varepsilon(t)=-x(t)$&nbsp; &rArr; &nbsp;$P_\varepsilon = P_x$&nbsp; &rArr; &nbsp;$10 \cdot \lg \ (P_x/P_\varepsilon)=0\ \rm dB$.
::*&nbsp;Die die Signale&nbsp; $s_1(t)$, ... , $s_4(t)$&nbsp; basieren alle auf einer einzigen Basisfunktion &nbsp; $\varphi_1(t)$, die formgleich mit&nbsp; $s_1(t)$&nbsp; ist.&nbsp; Es gilt&nbsp; $N=1$.
+
:*&nbsp;Beschreibung im Frequenzbereich:&nbsp; Wie in&nbsp; '''(4)'''&nbsp; löschen sich die Imaginärteile von&nbsp; $X_{\rm A}(f)$&nbsp; aus.&nbsp; Auch die Realteile von&nbsp; $X_{\rm A}(f)$&nbsp; sind wegen des Sinusverlaufs Null.
::*&nbsp;Die vektoriellen Repräsentanten der Signale&nbsp; $s_1(t)$,&nbsp; ... , $s_4(t)$&nbsp; sind&nbsp; $\pm 0.866$&nbsp; und&nbsp; $\pm 1.732$.&nbsp; Sie liegen alle auf einer Linie.  
 
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(7)'''&nbsp; Es gilt nun die &bdquo;''M''&ndash;ASK / BPSK&rdquo;&ndash;Einstellung&nbsp; $\rm G$.&nbsp; Interpretieren Sie das Ergebnis und versuchen Sie, einen Zusammenhang zu einer früheren Aufgabe herzustellen. }}
+
'''(7)'''&nbsp; Nun betrachten wir das&nbsp; $\text {Quellensignal 2}$.&nbsp; Die weiteren Parameter seien&nbsp; $f_{\rm A} = \text{5 kHz}$,&nbsp; $f_{\rm G} = \text{2.5 kHz}$,&nbsp; $r=0$.&nbsp; Interpretieren Sie die Ergebnisse.}}    
 
+
:*&nbsp;Das Quellensignal besitzt Spektralanteile bis&nbsp; $\pm \text{2 kHz}$.&nbsp; Die Signalleistung ist $P_x = 2 \cdot \big[0.1^2 + 0.25^2+0.15^2\big]= 0.19 $.&nbsp;  
::*&nbsp;Vergleicht man die angegebenen Zahlenwerte, so erkennt man, dass eine ähnliche Konstellation betrachtet wird wie bei der &bdquo;Basisband&rdquo;&ndash;Einstellung&nbsp; $\rm A$.  
+
:*&nbsp;Mit der Abtastrate&nbsp; $f_{\rm A} = \text{5 kHz}$&nbsp; sowie den Empfängerparametern&nbsp; $f_{\rm G} = \text{2.5 kHz}$&nbsp; und&nbsp; $r=0$ funktioniert die Signalrekonstruktion perfekt:&nbsp; $P_\varepsilon = 0$.
::*&nbsp;Der einzige Unterschied ist, dass nun alle Energien nur halb so groß sind wie vorher.&nbsp; Bezüglich der Amplituden wirkt sich das um den Faktor&nbsp; $\sqrt{2}$&nbsp; aus.
+
:*&nbsp;Ebenso mit dem Trapez&ndash;Tiefpass mit&nbsp; $f_{\rm G} = \text{2.5 kHz}$, wenn für den Rolloff&ndash;Faktor gilt:&nbsp;  $r \le 0.2$.
::*&nbsp;Somit ist nun der vektorielle Repräsentant des unteren Signals&nbsp; &nbsp; $\mathbf{s}_4 = (-1.021, \hspace{0.15cm} -0.289, \hspace{0.15cm} +0.500)$&nbsp; anstelle von&nbsp; $\mathbf{s}_4 = (-1.444, \hspace{0.15cm} -0.408, \hspace{0.15cm} +0.707)$
 
::*&nbsp;Bei der Einstellung&nbsp; $\rm H$&nbsp; sind gegenüber&nbsp; $\rm G$&nbsp; alle Amplituden verdoppelt. Somit ergibt sich hier wieder&nbsp; $\mathbf{s}_4 = (-1.444, \hspace{0.15cm} -0.408, \hspace{0.15cm} +0.707)$.  
 
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(8)'''&nbsp; Es gelte die &bdquo;''M''&ndash;ASK / BPSK&rdquo;&ndash;Einstellung&nbsp; $\rm I$.&nbsp; Interpretieren Sie das Ergebnis.&nbsp; Versuchen Sie wieder, einen Zusammenhang zu einer früheren Aufgabe herzustellen.}}
+
'''(8)'''&nbsp; Was passiert, wenn die Grenzfrequenz&nbsp; $f_{\rm G} = \text{1.5 kHz}$&nbsp; des Rechteck&ndash;Tiefpasses zu klein ist?&nbsp; Interpretieren Sie insbesondere das Fehlersignal&nbsp; $\varepsilon(t)=y(t)-x(t)$.}}
::*&nbsp;Hier wird eine ähnliche Konstellation betrachtet wird wie bei der &bdquo;Basisband&rdquo;&ndash;Einstellung&nbsp; $\rm C$, aber nun mit nur halb so großen Energien.
+
:*&nbsp;Das Fehlersignal&nbsp; $\varepsilon(t)=-0.3 \cdot \cos(2\pi \cdot \text{2 kHz} \cdot t -60^\circ)=0.3 \cdot \cos(2\pi \cdot \text{2 kHz} \cdot t +120^\circ)$&nbsp; ist gleich dem (negierten) Signalanteil bei&nbsp; $\text{2 kHz}$.&nbsp; '''Stimmt das?'''
::*&nbsp;Somit ist nun der vektorielle Repräsentant des unteren Signals&nbsp; &nbsp; $\mathbf{s}_4 = (+0.707, \hspace{0.15cm} -0.707, \hspace{0.15cm} 0.000)$&nbsp; anstelle von&nbsp; $\mathbf{s}_4 = (+1.000, \hspace{0.15cm} -1.000, \hspace{0.15cm} 0.000)$.
+
:*&nbsp;Die Verzerrungsleistung ist&nbsp; $P_\varepsilon(t)=2 \cdot 0.15^2= 0.045$&nbsp; und der Signal&ndash;zu&ndash;Verzerrungsabstand&nbsp; $10 \cdot \lg \ (P_x/P_\varepsilon)=10 \cdot \lg \ (0.19/0.045)= 6.26\ \rm dB$.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(9)'''&nbsp; Wählen Sie die Einstellungen&nbsp; $M=4 \text{, nach Spalt&ndash;TP, }T_{\rm E}/T = 1$, &nbsp;$10 \cdot \lg \ E_{\rm B}/N_0 = 10 \ {\rm dB}$&nbsp; und&nbsp; $12 \ {\rm dB}$.&nbsp; Interpretieren Sie die Ergebnisse. }}
+
'''(9)'''&nbsp; Was passiert, wenn die Grenzfrequenz&nbsp; $f_{\rm G} = \text{3.5 kHz}$&nbsp; des Rechteck&ndash;Tiefpasses zu groß ist?&nbsp; Interpretieren Sie insbesondere das Fehlersignal&nbsp; $\varepsilon(t)=y(t)-x(t)$.}}
 
+
:*&nbsp;Das Fehlersignal&nbsp; $\varepsilon(t)=0.3 \cdot \cos(2\pi \cdot \text{3 kHz} \cdot t +60^\circ)$&nbsp; ist nun gleich dem vom Tiefpass nicht entfernten $\text{3 kHz}$&ndash;Anteil des Sinkensignals&nbsp; $y(t)$.&nbsp; '''Stimmt das?'''
::*&nbsp;Es gibt nun drei Augenöffnungen. Gegenüber &nbsp;'''(5)'''&nbsp; ist also &nbsp;$ö_{\rm norm}$&nbsp; um den Faktor&nbsp; $3$&nbsp; kleiner, &nbsp;$\sigma_{\rm norm}$&nbsp; dagegen nur um etwa den Faktor&nbsp; $\sqrt{5/9)} \approx 0.75$.
+
:*&nbsp;Gegenüber der Teilaufgabe&nbsp; '''(8)'''&nbsp; verändert sich die Frequenz von&nbsp; $\text{2 kHz}$&nbsp; auf&nbsp; $\text{3 kHz}$&nbsp; und auch die Phasenbeziehung.
::*&nbsp;Für &nbsp;$10 \cdot \lg \ E_{\rm B}/N_0 = 10 \ {\rm dB}$&nbsp; ergibt sich nun die Fehlerwahrscheinlichkeit &nbsp;$p_{\rm U}  \approx 2.27\%$&nbsp; und für &nbsp;$10 \cdot \lg \ E_{\rm B}/N_0 = 12 \ {\rm dB}$&nbsp; nur mehr &nbsp;$0.59\%$.
+
:*&nbsp;Die Amplitude dieses&nbsp; $\text{3 kHz}$&ndash;Fehlersignals ist gleich der Amplitude des&nbsp; $\text{2 kHz}$&ndash;Anteils von$x(t)$.&nbsp; Auch hier gilt&nbsp; $P_\varepsilon(t)= 0.045$,&nbsp; $10 \cdot \lg \ (P_x/P_\varepsilon)= 6.26\ \rm dB$.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(10)'''&nbsp; Für die restlichen Aufgaben gelte stets &nbsp;$10 \cdot \lg \ E_{\rm B}/N_0 = 12 \ {\rm dB}$. Betrachten Sie das Augendiagramm für &nbsp;$M=4 \text{, CRO&ndash;Nyquist, }r_f = 0.5$. }}
+
'''(10)'''&nbsp; Abschließend betrachten wir das&nbsp; $\text {Quellensignal 4}$&nbsp; $($Anteile bis&nbsp; $\pm \text{4 kHz})$, sowie&nbsp; $f_{\rm A} = \text{5 kHz}$,&nbsp; $f_{\rm G} = \text{2.5 kHz}$,&nbsp; $0 \le r\le 1$.&nbsp; Interpretation der Ergebnisse.}}   
 +
:*&nbsp;Bis zum Rolloff&ndash;Faktor&nbsp; $r=0.2$&nbsp; funktioniert die Signalrekonstruktion perfekt&nbsp; $(P_\varepsilon = 0)$.&nbsp; Erhöht man&nbsp; $r$, so nimmt&nbsp; $P_\varepsilon$&nbsp; kontinuierlich zu und&nbsp; $10 \cdot \lg \ (P_x/P_\varepsilon)$&nbsp; ab. 
 +
:*&nbsp;Mit&nbsp; $r=1$&nbsp; werden die Signalfrequenzen&nbsp; $\text{0.5 kHz}$,&nbsp; ...,&nbsp; $\text{4 kHz}$&nbsp; abgeschwächt, umso mehr, je höher die Frequenz ist, zum Beispiel&nbsp; $H_{\rm E}(f=\text{4 kHz}) = 0.6$.
 +
:*&nbsp;Ebenso beinhaltet&nbsp; $Y(f)$&nbsp; aufgrund der periodischen Fortsetzung auch Anteile bei den Frequenzen&nbsp; $\text{6 kHz}$,&nbsp; $\text{7 kHz}$,&nbsp; $\text{8 kHz}$,&nbsp; $\text{9 kHz}$&nbsp; und&nbsp; $\text{9.5 kHz}$.
 +
:*&nbsp;Zu den Abtastzeitpunkten&nbsp; $t\hspace{0.05cm}' = n \cdot T_{\rm A}$&nbsp; stimmen&nbsp; $x(t\hspace{0.05cm}')$&nbsp; und&nbsp; $y(t\hspace{0.05cm}')$&nbsp; exakt überein  &nbsp; &rArr; &nbsp; $\varepsilon(t\hspace{0.05cm}') = 0$.&nbsp; Dazwischen nicht &nbsp; &rArr; &nbsp; kleine Verzerrungsleistung&nbsp; $P_\varepsilon = 0.008$.
  
::*&nbsp;In&nbsp; $d_{\rm S}(t)$&nbsp; müssen alle &bdquo;Fünf&ndash;'''Symbol'''&ndash;Kombinationen&rdquo; enthalten sein &nbsp; &rArr; &nbsp; mindestens&nbsp; $4^5 = 1024$&nbsp; Teilstücke &nbsp; &rArr; &nbsp; maximal&nbsp; $1024$&nbsp; unterscheidbare Linien.
 
::*&nbsp;Alle &nbsp;$1024$&nbsp; Augenlinien gehen bei &nbsp;$t=0$&nbsp; durch nur vier Punkte:  &nbsp;$ö_{\rm norm}= 0.333$.&nbsp;$\sigma_{\rm norm} = 0.143$&nbsp; ist etwas größer als in&nbsp; '''(9)'''&nbsp; &rArr; &nbsp; ebenso &nbsp;$p_{\rm U}  \approx 1\%$.
 
  
{{BlaueBox|TEXT=
 
'''(11)'''&nbsp; Wählen Sie die Einstellungen&nbsp; $M=4 \text{, nach Gauß&ndash;TP, }f_{\rm G}/R_{\rm B} = 0.48$&nbsp; und variieren Sie &nbsp;$f_{\rm G}/R_{\rm B}$. &nbsp; Interpretieren Sie die Ergebnisse. }}
 
  
::*&nbsp;$f_{\rm G}/R_{\rm B}=0.48$&nbsp; führt zur minimalen Fehlerwahrscheinlichkeit &nbsp;$p_{\rm U} \approx 0.21\%$.&nbsp; Kompromiss zwischen &nbsp;$ö_{\rm norm}= 0.312$&nbsp; und &nbsp;$\sigma_{\rm norm}= 0.109$.
+
   
::*&nbsp;Bei zu kleiner Grenzfrequenz dominieren die Impulsinterferenzen.&nbsp; Beispiel: &nbsp;$f_{\rm G}/R_{\rm B}= 0.3$:&nbsp; $ö_{\rm norm}= 0.157; $&nbsp;$\sigma_{\rm norm}= 0.086$&nbsp; &rArr; &nbsp; &nbsp;$p_{\rm U}  \approx 3.5\%$.
 
::*&nbsp;Bei zu großer Grenzfrequenz dominiert das Rauschen.&nbsp; Beispiel: &nbsp;$f_{\rm G}/R_{\rm B}= 1.0$:&nbsp; $ö_{\rm norm}= 0.333; $&nbsp;$\sigma_{\rm norm}= 0.157$&nbsp; &rArr; &nbsp; &nbsp;$p_{\rm U}  \approx 1.7\%$.
 
::*&nbsp;Aus dem Vergleich mit&nbsp; '''(9)'''&nbsp; erkennt man:&nbsp; '''Bei Quaternärcodierung ist es günstiger, Impulsinterferenzen zuzulassen'''.
 
  
{{BlaueBox|TEXT=
 
'''(12)'''&nbsp; Welche Unterschiede zeigt das Auge für&nbsp; $M=3 \text{ (AMI-Code), nach Gauß&ndash;TP, }f_{\rm G}/R_{\rm B} = 0.48$&nbsp; gegenüber dem vergleichbaren Binärsystem? Interpretation. }}
 
::*&nbsp;Der Detektionsgrundimpuls&nbsp; $g_d(t)$&nbsp; ist in beiden Fällen gleich. Die Abtastwerte sind jeweils&nbsp; $g_0 = 0.771, \ g_1 = 0.114$.
 
::*&nbsp;Beim AMI&ndash;Code gibt es zwei Augenöffnungen mit je &nbsp;$ö_{\rm norm}= 1/2 \cdot (g_0 -3 \cdot g_1) = 0.214$.&nbsp; Beim Binärcode:&nbsp;  $ö_{\rm norm}= g_0 -2 \cdot g_1 = 0.543$.
 
::*&nbsp;Die AMI&ndash;Folge besteht zu 50% aus Nullen. Die Symbole &nbsp;$+1$&nbsp; und&nbsp; $-1$&nbsp; wechseln sich ab &nbsp; &rArr; &nbsp; es gibt keine lange &nbsp;$+1$&ndash;Folge und keine lange &nbsp;$-1$&ndash;Folge.
 
::*&nbsp;Darin liegt der einzige Vorteil des AMI&ndash;Codes:&nbsp; Dieser kann auch bei einem gleichsignalfreien Kanal &nbsp; &rArr; &nbsp; $H_{\rm K}(f= 0)=0$&nbsp; angewendet werden.
 
 
{{BlaueBox|TEXT=
 
'''(13)'''&nbsp; Gleiche Einstellung wie in&nbsp; '''(12)''', zudem &nbsp;$10 \cdot \lg \ E_{\rm B}/N_0 = 12 \ {\rm dB}$. Analysieren Sie die Fehlerwahrscheinlichkeit des AMI&ndash;Codes. }}
 
::*&nbsp;Trotz kleinerem &nbsp;$\sigma_{\rm norm} = 0.103$&nbsp; hat der AMI&ndash;Code eine höhere Fehlerwahrscheinlichkeit &nbsp;$p_{\rm U}  \approx 2\%$&nbsp; als der Binärcode: &nbsp;$\sigma_{\rm norm} = 0.146, \ p_{\rm U}  \approx \cdot 10^{-4}.$
 
::*&nbsp;Für &nbsp;$f_{\rm G}/R_{\rm B}<0.34$&nbsp; ergibt sich ein geschlossenes Auge &nbsp;$(ö_{\rm norm}= 0)$&nbsp; &rArr; &nbsp; &nbsp;$p_{\rm U} =50\%$. Beim Binärcode:&nbsp; Für &nbsp;$f_{\rm G}/R_{\rm B}>0.34$&nbsp; ist das Auge geöffnet.
 
 
{{BlaueBox|TEXT=
 
'''(14)'''&nbsp; Welche Unterschiede zeigt das Auge für&nbsp; $M=3 \text{ (Duobinärcode), nach Gauß&ndash;TP, }f_{\rm G}/R_{\rm B} = 0.30$&nbsp; gegenüber dem vergleichbaren Binärsystem?  }}
 
::*&nbsp;Redundanzfreier Binärcode:&nbsp; $ö_{\rm norm}= 0.096, \  \sigma_{\rm norm} = 0.116 \ p_{\rm U} \approx 20\% $ &nbsp; &nbsp; &nbsp; Duobinärcode:&nbsp; $ö_{\rm norm}= 0.167, \  \sigma_{\rm norm} = 0.082 \ p_{\rm U} \approx 2\% $.
 
::*Insbesondere bei kleinem &nbsp;$f_{\rm G}/R_{\rm B}$&nbsp; liefert der Duobinärcode gute Ergebnisse, da die Übergänge von &nbsp;$+1$&nbsp; nach &nbsp;$-1$&nbsp; (und umgekehrt) im Auge fehlen.
 
::*Selbst mit &nbsp;$f_{\rm G}/R_{\rm B}=0.2$&nbsp; ist das Auge noch geöffnet. Im Gegensatz zum AMI&ndash;Code&nbsp; ist aber &bdquo;Duobinär&rdquo; bei gleichsignalfreiem Kanal nicht anwendbar.
 
  
 
==Zur Handhabung des Applets==
 
==Zur Handhabung des Applets==
 
<br>
 
<br>
[[File:Anleitung_Auge.png|right|600px]]
+
[[File:Anleitung_abtast.png|right|600px]]
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Auswahl: &nbsp; Codierung <br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;(binär,&nbsp; quaternär,&nbsp; AMI&ndash;Code,&nbsp; Duobinärcode)
+
<br><br><br><br>
 +
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Auswahl eines von vier Quellensignalen 
  
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Auswahl: &nbsp; Detektionsgrundimpuls<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (nach Gauß&ndash;TP,&nbsp; CRO&ndash;Nyquist,&nbsp; nach Spalt&ndash;TP}
+
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Parameterwahl für Quellensignal&nbsp; $1$&nbsp; (Amplitude, Frequenz, Phase)
  
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Prametereingabe zu&nbsp; '''(B)'''<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;(Grenzfrequenz,&nbsp; Rolloff&ndash;Faktor,&nbsp; Rechteckdauer)  
+
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Ausgabe der verwendeten Programmparameter  
  
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Steuerung der Augendiagrammdarstellung<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;(Start,&nbsp; Pause/Weiter,&nbsp; Einzelschritt,&nbsp; Gesamt,&nbsp; Reset)
+
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Parameterwahl für Abtastung&nbsp; $(f_{\rm G})$&nbsp; und <br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Signalrekonstruktion&nbsp; $(f_{\rm A},\ r)$
  
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Geschwindigkeit der Augendiagrammdarstellung
+
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Skizze des Empfänger&ndash;Frequenzgangs&nbsp; $H_{\rm E}(f)$
  
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Darstellung:&nbsp; Detektionsgrundimpuls &nbsp;$g_d(t)$  
+
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Numerische Ausgabe&nbsp; $(P_x, \ P_{\rm \varepsilon}, \ 10 \cdot \lg(P_x/ P_{\rm \varepsilon})$
  
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Darstellung:&nbsp; Detektionsnutzsignal &nbsp;$d_{\rm S}(t - \nu \cdot T)$
+
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Darstellungsauswahl für Zeitbereich
  
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Darstellung:&nbsp; Augendiagramm im Bereich &nbsp;$\pm T$
+
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Grafikbereich für Zeitbereich
  
&nbsp; &nbsp; '''( I )''' &nbsp; &nbsp; Numerikausgabe:&nbsp; $ö_{\rm norm}$&nbsp; (normierte Augenöffnung)  
+
&nbsp; &nbsp; '''( I )''' &nbsp; &nbsp; Darstellungsauswahl für Frequenzbereich  
  
&nbsp; &nbsp; '''(J)''' &nbsp; &nbsp; Prametereingabe &nbsp;$10 \cdot \lg \ E_{\rm B}/N_0$&nbsp; für&nbsp; '''(K)'''
+
&nbsp; &nbsp; '''(J)''' &nbsp; &nbsp; Grafikbereich für Frequenzbereich
  
&nbsp; &nbsp; '''(K)''' &nbsp; &nbsp; Numerikausgabe:&nbsp; $\sigma_{\rm norm}$&nbsp; (normierter Rauscheffektivwert)
+
&nbsp; &nbsp; '''(K)''' &nbsp; &nbsp; Bereich für Übungen:&nbsp; Aufgabenauswahl, Fragen, Musterlösung
 
+
<br clear=all>
&nbsp; &nbsp; '''(L)''' &nbsp; &nbsp; Numerikausgabe:&nbsp; $p_{\rm U}$&nbsp; (ungünstigste Fehlerwahrscheinlichkeit)
+
==Über die Autoren==
 +
Dieses interaktive Berechnungstool  wurde am&nbsp; [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik]&nbsp; der&nbsp; [https://www.tum.de/ Technischen Universität München]&nbsp; konzipiert und realisiert.
 +
*Die erste Version wurde 2008 von&nbsp; [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Slim_Lamine_.28Studienarbeit_EI_2006.29|Slim Lamine]]&nbsp; im Rahmen einer Werkstudententätigkeit mit "FlashMX&ndash;Actionscript" erstellt (Betreuer:&nbsp; [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).
 +
* 2020 wurde das Programm  von&nbsp; [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|Carolin Mirschina]]&nbsp; im Rahmen einer Werkstudententätigkeit auf  "HTML5" umgesetzt und neu gestaltet (Betreuer:&nbsp; [[Biographies_and_Bibliographies/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]]).
  
&nbsp; &nbsp; '''(M)''' &nbsp; &nbsp; Bereich für die Versuchsdurchführung: &nbsp;  Aufgabenauswahl
 
  
&nbsp; &nbsp; '''(N)''' &nbsp; &nbsp; Bereich für die Versuchsdurchführung: &nbsp; Aufgabenstellung
+
Die Umsetzung dieses Applets auf HTML 5 wurde durch die&nbsp; [https://www.lehren.tum.de/themen/ideenwettbewerb/ Exzellenzinitiative]&nbsp; der TU München finanziell unterstützt. Wir bedanken uns.
  
&nbsp; &nbsp; '''(O)''' &nbsp; &nbsp; Bereich für die Versuchsdurchführung: &nbsp;  Musterlösung einblenden
 
<br clear=all>
 
==Über die Autoren==
 
Dieses interaktive Berechnungstool  wurde am&nbsp; [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik]&nbsp; der&nbsp; [https://www.tum.de/ Technischen Universität München]&nbsp; konzipiert und realisiert.
 
*Die erste Version wurde 2008 von&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Thomas_Gro.C3.9Fer_.28Diplomarbeit_LB_2006.2C_danach_freie_Mitarbeit_bis_2010.29|Thomas Großer]]&nbsp; im Rahmen einer Werkstudententätigkeit mit &bdquo;FlashMX&ndash;Actionscript&rdquo; erstellt (Betreuer:&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).
 
* 2019 wurde das Programm  von&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|Carolin Mirschina]]&nbsp; im Rahmen einer Werkstudententätigkeit auf  &bdquo;HTML5&rdquo; umgesetzt und neu gestaltet (Betreuer:&nbsp; [[Biografien_und_Bibliografien/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]]).
 
  
  
Die Umsetzung dieses Applets auf HTML 5 wurde durch&nbsp; [https://www.ei.tum.de/studium/studienzuschuesse/ Studienzuschüsse]&nbsp; der Fakultät EI der TU München finanziell unterstützt. Wir bedanken uns.
 
  
  
 
==Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster==
 
==Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster==
  
{{LntAppletLink|augendiagramm}}
+
{{LntAppletLink|sampling}}

Latest revision as of 15:47, 28 May 2021

Open Applet in a new tab

Programmbeschreibung


Das Applet behandelt die Systemkomponenten  "Abtastung"  und  "Signalrekonstruktion", zwei Komponenten, die zum Beispiel für das Verständnis der  Pulscodemodulation  $({\rm PCM})$  von großer Wichtigkeit sind.  Die obere Grafik zeigt das für dieses Applet zugrundeliegende Modell.  Darunter gezeichnet sind die Abtastwerte  $x(\nu \cdot T_{\rm A})$  des zeitkontinuierlichen Signals  $x(t)$. Die (unendliche) Summe über alle diese Abtastwerte bezeichnen wir als das abgetastete Signal  $x_{\rm A}(t)$.

Oben:    Zugrundeliegendes Modell für Abtastung und Signalrekonstruktion
Unten:   Beispiel zur Zeitdiskretisierung des zeitkontinuierlichen Signals  $x(t)$
  • Beim Sender wird aus dem zeitkontinuierlichen Quellensignal  $x(t)$  das zeitdiskrete (abgetastete) Signal  $x_{\rm A}(t)$  gewonnen.  Man nennt diesen Vorgang  Abtastung  oder  A/D–Wandlung.
  • Der entsprechende Programmparameter für den Sender ist die Abtastrate  $f_{\rm A}= 1/T_{\rm A}$. In der unteren Grafik ist der Abtastabstand  $T_{\rm A}$  eingezeichnet.
  • Beim Empfänger wird aus dem zeitdiskreten Empfangssignal  $y_{\rm A}(t)$  das zeitkontinuierliche Sinkensignal  $y(t)$  erzeugt   ⇒   Signalrekonstruktion  oder  D/A–Wandlung  entsprechend dem Empfänger–Frequenzgang  $H_{\rm E}(f)$.


Das Applet berücksichtigt nicht die PCM–Blöcke  "Quantisierung",  "Codierung / Decodierung" und der Digitale Übertragungskanal ist als ideal angenommen. 

Empfänger–Frequenzgang  $H_{\rm E}(f)$

Daraus ergeben sich folgende Konsequenzen:

  • Im Programm ist vereinfachend  $y_{\rm A}(t) = x_{\rm A}(t)$  gesetzt.
  • Bei geeigneten Systemparametern ist somit auch das Fehlersignal   $\varepsilon(t) = y(t)-x(t)\equiv 0$  möglich.


Das Abtasttheorem und die Signalrekonstruktion lassen sich im Frequenzbereich besser erklären.  Im Programm werden deshalb auch alle Spektralfunktionen angezeigt:

             $X(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ x(t)$,  $X_{\rm A}(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ x_{\rm A}(t)$,  $Y(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ y(t)$,  $E(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ \varepsilon(t).$ 

Parameter für den Empfänger–Frequenzgang  $H_{\rm E}(f)$  sind die Grenzfrequenz und der Rolloff–Faktor  (siehe untere Grafik):

$$f_{\rm G} = \frac{f_2 +f_1}{2},\hspace{1cm}r = \frac{f_2 -f_1}{f_2 +f_1}.$$

Hinweise:

(1)   Alle Signalwerte sind normiert auf  $\pm 1$  zu verstehen. 

(2)   Die Leistungsberechnung erfolgt durch Integration über die jeweilige Periodendauer  $T_0$:

$$P_x = \frac{1}{T_0} \cdot \int_0^{T_0} x^2(t)\ {\rm d}t,\hspace{0.8cm}P_\varepsilon = \frac{1}{T_0} \cdot \int_0^{T_0} \varepsilon^2(t).$$

(3)   Die Signalleistung  $P_x$  und die Verzerrungsleistung  $P_\varepsilon$  werden ebenfalls normiert ausgegeben, was implizit den Bezugswiderstand  $R = 1\, \rm \Omega$  voraussetzt. 

(4)   Daraus kann der Signal–Verzerrungs–Abstand  $10 \cdot \lg \ (P_x/P_\varepsilon)$  berechnet werden.

(5)   Besteht die Spektralfunktion  $X(f)$  bei positiven Frequenzen aus  $I$  Diraclinien mit den (eventuell komplexen) Gewichten  $X_1$, ... , $X_I$,
         so gilt für die Sendeleistung unter Berücksichtigung der spiegelbildlichen Linien bei den negativen Frequenzen:

$$P_x = 2 \cdot \sum_{i=1}^I |X_k|^2.$$

(6)   Entsprechend gilt für die Verzerrungsleistung, wenn die Spektralfunktion  $E(f)$  im Bereich  $f>0$  genau  $J$  Diraclinien mit Gewichten  $E_1$, ... , $E_J$  aufweist:

$$P_\varepsilon = 2 \cdot \sum_{j=1}^J |E_j|^2.$$




Theoretischer Hintergrund

Beschreibung der Abtastung im Zeitbereich

Zur Zeitdiskretisierung des zeitkontinuierlichen Signals  $x(t)$

Im Folgenden verwenden wir für die Beschreibung der Abtastung folgende Nomenklatur:

  • Das zeitkontinuierliche Signal sei  $x(t)$.
  • Das in äquidistanten Abständen  $T_{\rm A}$  abgetastete zeitdiskretisierte Signal sei  $x_{\rm A}(t)$.
  • Außerhalb der Abtastzeitpunkte  $\nu \cdot T_{\rm A}$  gilt stets  $x_{\rm A}(t) \equiv 0$.
  • Die Laufvariable  $\nu$  sei  ganzzahlig:     $\nu \in \mathbb{Z} = \{\hspace{0.05cm} \text{...}\hspace{0.05cm} , –3, –2, –1, \hspace{0.2cm}0, +1, +2, +3, \text{...} \hspace{0.05cm}\} $.
  • Dagegen ergibt sich zu den äquidistanten Abtastzeitpunkten mit der Konstanten  $K$:
$$x_{\rm A}(\nu \cdot T_{\rm A}) = K \cdot x(\nu \cdot T_{\rm A})\hspace{0.05cm}.$$

Die Konstante hängt von der Art der Zeitdiskretisierung ab. Für die obige Skizze gilt  $K = 1$.

Beschreibung der Abtastung mit Diracpuls

Im Folgenden gehen wir von einer geringfügig anderen Beschreibungsform aus.  Die folgenden Seiten werden zeigen, dass diese gewöhnungsbedürftigen Gleichungen durchaus zu sinnvollen Ergebnissen führen, wenn man sie konsequent anwendet.

$\text{Definitionen:}$ 

  • Unter  Abtastung  verstehen wir hier die Multiplikation des zeitkontinuierlichen Signals  $x(t)$  mit einem  Diracpuls:
$$x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.05cm}.$$
  • Der  Diracpuls (im Zeitbereich)  besteht aus unendlich vielen Diracimpulsen, jeweils im gleichen Abstand  $T_{\rm A}$  und alle mit gleichem Impulsgewicht  $T_{\rm A}$:
$$p_{\delta}(t) = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot \delta(t- \nu \cdot T_{\rm A} )\hspace{0.05cm}.$$


Aufgrund dieser Definition ergeben sich für das abgetastete Signal folgende Eigenschaften:

$$x_{\rm A}(t) = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot x(\nu \cdot T_{\rm A})\cdot \delta (t- \nu \cdot T_{\rm A} )\hspace{0.05cm}.$$
  • Das abgetastete Signal zum betrachteten Zeitpunkt  $(\nu \cdot T_{\rm A})$  ist gleich  $T_{\rm A} \cdot x(\nu \cdot T_{\rm A}) · \delta (0)$.
  • Da  $\delta (t)$  zur Zeit  $t = 0$  unendlich ist, sind eigentlich alle Signalwerte  $x_{\rm A}(\nu \cdot T_{\rm A})$  ebenfalls unendlich groß und auch der oben eingeführte Faktor  $K$.
  • Zwei Abtastwerte  $x_{\rm A}(\nu_1 \cdot T_{\rm A})$  und  $x_{\rm A}(\nu_2 \cdot T_{\rm A})$  unterscheiden sich jedoch im gleichen Verhältnis wie die Signalwerte  $x(\nu_1 \cdot T_{\rm A})$  und  $x(\nu_2 \cdot T_{\rm A})$.
  • Die Abtastwerte von  $x(t)$  erscheinen in den Impulsgewichten der Diracfunktionen:
  • Die zusätzliche Multiplikation mit  $T_{\rm A}$  ist erforderlich, damit  $x(t)$  und  $x_{\rm A}(t)$  gleiche Einheit besitzen.  Beachten Sie hierbei, dass  $\delta (t)$  selbst die Einheit „1/s” aufweist.


Beschreibung der Abtastung im Frequenzbereich

Zum Spektrum des abgetasteten Signals  $x_{\rm A}(t)$  kommt man durch Anwendung des  Faltungssatzes. Dieser besagt, dass der Multiplikation im Zeitbereich die Faltung im Spektralbereich entspricht:

$$x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} X_{\rm A}(f) = X(f) \star P_{\delta}(f)\hspace{0.05cm}.$$

Entwickelt man den  Diracpuls  $p_{\delta}(t)$   (im Zeitbereich)   in eine  Fourierreihe  und transformiert diese unter Anwendung des  Verschiebungssatzes  in den Frequenzbereich, so ergibt sich mit dem Abstand  $f_{\rm A} = 1/T_{\rm A}$  zweier benachbarter Diraclinien im Frequenzbereich folgende Korrespondenz   ⇒   Beweis:

$$p_{\delta}(t) = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot \delta(t- \nu \cdot T_{\rm A} )\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} P_{\delta}(f) = \sum_{\mu = - \infty }^{+\infty} \delta (f- \mu \cdot f_{\rm A} ).$$
Diracpuls im Zeit- und Frequenzbereich mit  $T_{\rm A} = 50\ {\rm µs}$  und  $f_{\rm A} = 1/T_{\rm A} = 20\ \text{kHz}$

Das Ergebnis besagt:

  • Der Diracpuls  $p_{\delta}(t)$  im Zeitbereich besteht aus unendlich vielen Diracimpulsen, jeweils im gleichen Abstand  $T_{\rm A}$  und alle mit gleichem Impulsgewicht  $T_{\rm A}$.
  • Die Fouriertransformierte von  $p_{\delta}(t)$  ergibt wiederum einen Diracpuls, aber nun im Frequenzbereich   ⇒   $P_{\delta}(f)$.
  • Auch  $P_{\delta}(f)$  besteht aus unendlich vielen Diracimpulsen, nun im jeweiligen Abstand  $f_{\rm A} = 1/T_{\rm A}$  und alle mit dem Impulsgewicht  $1$.
  • Die Abstände der Diraclinien in Zeit– und Frequenzbereich folgen demnach dem  Reziprozitätsgesetz:   $T_{\rm A} \cdot f_{\rm A} = 1 \hspace{0.05cm}.$


Daraus folgt:   Aus dem Spektrum  $X(f)$  wird durch Faltung mit der um  $\mu \cdot f_{\rm A}$  verschobenen Diraclinie:

$$X(f) \star \delta (f- \mu \cdot f_{\rm A} )= X (f- \mu \cdot f_{\rm A} )\hspace{0.05cm}.$$

Wendet man dieses Ergebnis auf alle Diraclinien des Diracpulses an, so erhält man schließlich:

$$X_{\rm A}(f) = X(f) \star \sum_{\mu = - \infty }^{+\infty} \delta (f- \mu \cdot f_{\rm A} ) = \sum_{\mu = - \infty }^{+\infty} X (f- \mu \cdot f_{\rm A} )\hspace{0.05cm}.$$

$\text{Fazit:}$  Die Abtastung des analogen Zeitsignals  $x(t)$  in äquidistanten Abständen  $T_{\rm A}$  führt im Spektralbereich zu einer  periodischen Fortsetzung  von  $X(f)$  mit dem Frequenzabstand  $f_{\rm A} = 1/T_{\rm A}$.


Spektrum des abgetasteten Signals

$\text{Beispiel 1:}$  Die obere Grafik zeigt  (schematisch!)  das Spektrum  $X(f)$  eines Analogsignals  $x(t)$, das Frequenzen bis  $5 \text{ kHz}$  beinhaltet.

Tastet man das Signal mit der Abtastrate  $f_{\rm A}\,\text{ = 20 kHz}$, also im jeweiligen Abstand  $T_{\rm A}\, = {\rm 50 \, µs}$  ab, so erhält man das unten skizzierte periodische Spektrum  $X_{\rm A}(f)$.

  • Da die Diracfunktionen unendlich schmal sind, beinhaltet das abgetastete Signal  $x_{\rm A}(t)$  auch beliebig hochfrequente Anteile.
  • Dementsprechend ist die Spektralfunktion  $X_{\rm A}(f)$  des abgetasteten Signals bis ins Unendliche ausgedehnt.


Signalrekonstruktion

Gemeinsames Modell von "Signalabtastung" und "Signalrekonstruktion"

Die Signalabtastung ist bei einem digitalen Übertragungssystem kein Selbstzweck, sondern sie muss irgendwann wieder rückgängig gemacht werden.  Betrachten wir zum Beispiel das folgende System:

  • Das Analogsignal  $x(t)$  mit der Bandbreite  $B_{\rm NF}$  wird wie oben beschrieben abgetastet.
  • Am Ausgang eines idealen Übertragungssystems liegt das ebenfalls zeitdiskrete Signal  $y_{\rm A}(t) = x_{\rm A}(t)$  vor.
  • Die Frage ist nun, wie der Block   Signalrekonstruktion   zu gestalten ist, damit auch  $y(t) = x(t)$  gilt.
Frequenzbereichsdarstellung der "Signalrekonstruktion"


Die Lösung ist einfach, wenn man die Spektralfunktionen betrachtet:  

Man erhält aus  $Y_{\rm A}(f)$  das Spektrum  $Y(f) = X(f)$  durch ein Tiefpass Filter mit dem  Frequenzgang  $H_{\rm E}(f)$, der 

  • die tiefen Frequenzen unverfälscht durchlässt:
$$H_{\rm E}(f) = 1 \hspace{0.3cm}{\rm{f\ddot{u}r}} \hspace{0.3cm} |f| \le B_{\rm NF}\hspace{0.05cm},$$
  • die hohen Frequenzen vollständig unterdrückt:
$$H_{\rm E}(f) = 0 \hspace{0.3cm}{\rm{f\ddot{u}r}} \hspace{0.3cm} |f| \ge f_{\rm A} - B_{\rm NF}\hspace{0.05cm}.$$

Weiter ist aus der nebenstehenden Grafik zu erkennen:   Solange die beiden oben genannten Bedingungen erfüllt sind, kann  $H_{\rm E}(f)$  im Bereich von  $B_{\rm NF}$  bis  $f_{\rm A}–B_{\rm NF}$  beliebig geformt sein kann,

  • beispielsweise linear abfallend (gestrichelter Verlauf)
  • oder auch rechteckförmig,


Das Abtasttheorem

Die vollständige Rekonstruktion des Analogsignals  $y(t)$  aus dem abgetasteten Signal  $y_{\rm A}(t) = x_{\rm A}(t)$  ist nur möglich, wenn die Abtastrate  $f_{\rm A}$  entsprechend der Bandbreite  $B_{\rm NF}$  des Nachrichtensignals richtig gewählt wurde.

Aus der obigen Grafik erkennt man, dass folgende Bedingung erfüllt sein muss:   $f_{\rm A} - B_{\rm NF} > B_{\rm NF} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm A} > 2 \cdot B_{\rm NF}\hspace{0.05cm}.$

$\text{Abtasttheorem:}$  Besitzt ein Analogsignal  $x(t)$  nur Spektralanteile im Bereich  $\vert f \vert < B_{\rm NF}$, so kann dieses aus seinem abgetasteten Signal  $x_{\rm A}(t)$  nur dann vollständig rekonstruiert werden, wenn die Abtastrate hinreichend groß ist:

$$f_{\rm A} ≥ 2 \cdot B_{\rm NF}.$$

Für den Abstand zweier Abtastwerte muss demnach gelten:

$$T_{\rm A} \le \frac{1}{ 2 \cdot B_{\rm NF} }\hspace{0.05cm}.$$


Wird bei der Abtastung der größtmögliche Wert   ⇒   $T_{\rm A} = 1/(2B_{\rm NF})$  herangezogen,

  • so muss zur Signalrekonstruktion des Analogsignals aus seinen Abtastwerten
  • ein idealer, rechteckförmiger Tiefpass mit der Grenzfrequenz  $f_{\rm G} = f_{\rm A}/2 = 1/(2T_{\rm A})$  verwendet werden.


$\text{Beispiel 2:}$  Die Grafik zeigt oben das auf  $\pm\text{ 5 kHz}$  begrenzte Spektrum  $X(f)$  eines Analogsignals, unten das Spektrum  $X_{\rm A}(f)$  des im Abstand  $T_{\rm A} =\,\text{ 100 µs}$  abgetasteten Signals   ⇒   $f_{\rm A}=\,\text{ 10 kHz}$.

Abtasttheorem im Frequenzbereich

Zusätzlich eingezeichnet ist der Frequenzgang  $H_{\rm E}(f)$  des tiefpassartigen Empfangsfilters zur Signalrekonstruktion, dessen Grenzfrequenz exakt  $f_{\rm G} = f_{\rm A}/2 = 5\,\text{ kHz}$  betragen muss.


  • Mit jedem anderen  $f_{\rm G}$–Wert ergäbe sich  $Y(f) \neq X(f)$.
  • Bei  $f_{\rm G} < 5\,\text{ kHz}$  fehlen die oberen  $X(f)$–Anteile.
  • Bei  $f_{\rm G} > 5\,\text{ kHz}$  kommt es aufgrund von Faltungsprodukten zu unerwünschten Spektralanteilen in  $Y(f)$.


Wäre am Sender die Abtastung mit einer Abtastrate  $f_{\rm A} < 10\ \text{ kHz}$  erfolgt   ⇒   $T_{\rm A} >100 \ {\rm µ s}$, so wäre das Analogsignal  $y(t) = x(t)$  aus den Abtastwerten  $y_{\rm A}(t)$  auf keinen Fall rekonstruierbar.


Versuchsdurchführung


Aufgaben 2D-Gauss.png
  • Wählen Sie zunächst die Nummer  (1, ... , 10)  der zu bearbeitenden Aufgabe.
  • Eine Aufgabenbeschreibung wird angezeigt. Die Parameterwerte sind angepasst.
  • Lösung nach Drücken von "Musterlösung".
  • Die Nummer  0  entspricht einem "Reset":  Gleiche Einstellung wie beim Programmstart.
  • Alle Signalwerte sind normiert auf  $\pm 1$  zu verstehen.  Auch die ausgegebenen Leistungen sind normierte Größen.


(1)  Für das Quellensignal gelte  $x(t) = A \cdot \cos (2\pi \cdot f_0 \cdot t -\varphi)$  mit  $f_0 = \text{4 kHz}$.  Abtastung mit  $f_{\rm A} = \text{10 kHz}$.  Rechteck–Tiefpass;  Grenzfrequenz:  $f_{\rm G} = \text{5 kHz}$.
          Interpretieren Sie die ausgegebenen Grafiken und bewerten Sie die vorliegende Signalrekonstruktion für alle erlaubten Parameterwerte von $A$  und $\varphi$.

  •  Das Spektrum  $X(f)$  besteht aus zwei Diraclinien bei  $\pm \text{4 kHz}$, jeweils mit Impulsgewicht  $0.5$.
  •  Durch die periodische Fortsetzung hat  $X_{\rm A}(f)$  Linien gleicher Höhe bei  $\pm \text{4 kHz}$,  $\pm \text{6 kHz}$,  $\pm \text{14 kHz}$,  $\pm \text{16 kHz}$,  $\pm \text{24 kHz}$,  $\pm \text{26 kHz}$,  usw.
  •  Der Rechteck–Tiefpass mit der Grenzfrequenz  $f_{\rm G} = \text{5 kHz}$  entfernt alle Linien bis auf die beiden bei  $\pm \text{4 kHz}$  ⇒  $Y(f) =X(f)$  ⇒  $y(t) =x(t)$  ⇒   $P_\varepsilon = 0$.
  •  Die Signalrekonstruktion funktioniert hier perfekt  $(P_\varepsilon = 0)$  und zwar für alle Amplituden $A$  und beliebige Phasen $\varphi$.

(2)  Es gelte weiter  $A=1$,  $f_0 = \text{4 kHz}$,  $\varphi=0$,  $f_{\rm A} = \text{10 kHz}$,  $f_{\rm G} = \text{5 kHz}$.  Welchen Einfluss haben hier die Rolloff–Faktoren  $r=0.2$,  $r=0.5$  und   $r=1$?
          Geben Sie die jeweiligen Leistungen  $P_x$  und  $P_\varepsilon$  an.  für welche  $r$–Werte ist  $P_\varepsilon= 0$?  Gelten diese Ergebnisse auch für andere  $A$  und  $\varphi$?

  •  Die Signalleistung ist mit  $|X_1|=0.5$  gleich  $P_x = 2\cdot 0.5^2 = 0.5$.  Die Verzerrungsleistung  $P_\varepsilon$  hängt signifikant vom Rolloff–Faktor  $r$  ab.
  •  Für  $r \le 0.2$  ist  $P_\varepsilon=0$.  Die  $X_{\rm A}(f)$–Linie bei  $f_0 = \text{4 kHz}$  wird durch den Tiefpass nicht verändert und die unerwünschte  Linie bei  $\text{6 kHz}$  voll unterdrückt.
  •  $r = 0.5$ :  $Y(f = \text{4 kHz}) = 0.35$,  $Y(f = \text{6 kHz}) = 0.15$  ⇒   $|E(f = \text{4 kHz})| = |E(f = \text{6 kHz})|= 0.15$  ⇒  $P_\varepsilon = 0.09$  ⇒  $10 \cdot \lg \ (P_x/P_\varepsilon)=7.45\ \rm dB$.
  • $r = 1.0$ :  $Y(f = \text{4 kHz}) = 0.3$,  $Y(f = \text{6 kHz}) = 0.2$  ⇒   $|E(f = \text{4 kHz})| = |E(f = \text{6 kHz})|= 0.2$  ⇒  $P_\varepsilon = 0.16$  ⇒  $10 \cdot \lg \ (P_x/P_\varepsilon)=4.95\ \rm dB$.
  •  Für alle  $r$  ist  $P_\varepsilon$  unabhängig von  $\varphi$.  Die Amplitude  $A$  beeinflusst  $P_x$  und  $P_\varepsilon$  in gleicher Weise   ⇒   der Quotient ist jeweils unabhängig von  $A$.

(3)  Nun gelte  $A=1$,  $f_0 = \text{5 kHz}$,  $\varphi=0$,  $f_{\rm A} = \text{10 kHz}$,  $f_{\rm G} = \text{5 kHz}$,  $r=0$  $($Rechteck–Tiefpass$)$.  Interpretieren Sie das Ergebnis der Signalrekonstruktion.

  •  $X(f)$  besteht aus zwei Diraclinien bei  $\pm \text{5 kHz}$  $($Gewicht  $0.5)$.  Durch die periodische Fortsetzung hat  $X_{\rm A}(f)$  Linien bei  $\pm \text{5 kHz}$,  $\pm \text{15 kHz}$,  $\pm \text{25 kHz}$,  usw.
  •   Der Rechteck–Tiefpass entfernt die Linien bei  $\pm \text{15 kHz}$,  $\pm \text{25 kHz}$,  Die Linien bei  $\pm \text{5 kHz}$  werden wegen  $H_{\rm E}(\pm f_{\rm G}) = H_{\rm E}(\pm \text{5 kHz}) = 0.5$ halbiert
  •    ⇒   $\text{Gewichte von }X(f = \pm \text{5 kHz})$:  $0.5$   |   $\text{Gewichte von }X(f_{\rm A} = \pm \text{5 kHz})$:  $1.0$;     |   $\text{Gewichte von }Y(f = \pm \text{5 kHz})$:  $0.5$   ⇒   $Y(f)=X(f)$.
  •  Die Signalrekonstruktion funktioniert also auch hier perfekt  $(P_\varepsilon = 0)$.  Das gilt auch für die Phase  $\varphi=180^\circ$   ⇒   $x(t) = -A \cdot \cos (2\pi \cdot f_0 \cdot t)$.

(4)  Es gelten weiter die Einstellungen von  (3)  mit Ausnahme von  $\varphi=30^\circ$.  Interpretieren Sie die Unterschiede gegenüber der Einstellung  (3)   ⇒   $\varphi=0^\circ$.

  •  Die Phasenbeziehung geht verloren.  Das Sinkensignal  $y(t)$  verläuft cosinusförmig  $(\varphi_y=0^\circ)$  mit um  $\cos(\varphi_x)$  kleinerer Amplitude als das Quellensignal  $x(t)$.
  •  Begründung im Frequenzbereich:  Bei der periodische Fortsetzung von  $X(f)$  ⇒  $X_{\rm A}(f)$  sind nur die Realteile zu addieren.  Die Imaginärteile löschen sich aus.
  •  Die  $f_0$–Diraclinie von  $Y(f)$  ist reell, die von  $X(f)$  komplex und die von  $E(f)$  imaginär   ⇒   $\varepsilon(t)$  verläuft minus–sinusförmig   ⇒   $P_\varepsilon = 0.125$.

(5)  Verdeutlichen Sie sich nochmals das Ergebnis von  (4)  im Vergleich zu den Einstellungen  $f_0 = \text{5 kHz}$,  $\varphi=30^\circ$,  $f_{\rm A} = \text{11 kHz}$,  $f_{\rm G} = \text{5.5 kHz}$.

  •  Bei dieser Einstellung hat das  $X_{\rm A}(f)$–Spektrum auch einen positiven Imaginärteil bei  $\text{5 kHz}$  und einen negativen Imaginärteil gleicher Höhe bei  $\text{6 kHz}$.
  •  Der Rechteck–Tiefpass mit der Grenzfrequenz  $\text{5.5 kHz}$  entfernt diesen zweiten Anteil.  Somit ist bei dieser Einstellung  $Y(f) =X(f)$   ⇒   $P_\varepsilon = 0$.
  •  Jede  $f_0$–Schwingung beliebiger Phase ist fehlerfrei aus seinen Abtastwerten rekonstruierbar, falls  $f_{\rm A} = 2 \cdot f_{\rm 0} + \mu, \ f_{\rm G}= f_{\rm A}/2$  $($beliebig kleines $\mu>0)$.
  •  Bei wertkontinuierlichem Spektrum mit   $X(|f|> f_0) \equiv 0$  ⇒   $\big[$keine Diraclinien bei $\pm f_0 \big ]$ genügt grundsätzlich die Abtastrate  $f_{\rm A} = 2 \cdot f_{\rm 0}$.

(6)  Es gelten weiter die Einstellungen von  (3)  und  (4)  mit Ausnahme von  $\varphi=90^\circ$.  Interpretieren Sie die Darstellungen im Zeit– und Frequenzbereich.

  •  Das Quellensignal wird genau bei seinen Nulldurchgängen abgetastet   ⇒   $x_{\rm A}(t) \equiv 0$  ⇒    $y(t) \equiv 0$  ⇒  $\varepsilon(t)=-x(t)$  ⇒  $P_\varepsilon = P_x$  ⇒  $10 \cdot \lg \ (P_x/P_\varepsilon)=0\ \rm dB$.
  •  Beschreibung im Frequenzbereich:  Wie in  (4)  löschen sich die Imaginärteile von  $X_{\rm A}(f)$  aus.  Auch die Realteile von  $X_{\rm A}(f)$  sind wegen des Sinusverlaufs Null.

(7)  Nun betrachten wir das  $\text {Quellensignal 2}$.  Die weiteren Parameter seien  $f_{\rm A} = \text{5 kHz}$,  $f_{\rm G} = \text{2.5 kHz}$,  $r=0$.  Interpretieren Sie die Ergebnisse.

  •  Das Quellensignal besitzt Spektralanteile bis  $\pm \text{2 kHz}$.  Die Signalleistung ist $P_x = 2 \cdot \big[0.1^2 + 0.25^2+0.15^2\big]= 0.19 $. 
  •  Mit der Abtastrate  $f_{\rm A} = \text{5 kHz}$  sowie den Empfängerparametern  $f_{\rm G} = \text{2.5 kHz}$  und  $r=0$ funktioniert die Signalrekonstruktion perfekt:  $P_\varepsilon = 0$.
  •  Ebenso mit dem Trapez–Tiefpass mit  $f_{\rm G} = \text{2.5 kHz}$, wenn für den Rolloff–Faktor gilt:  $r \le 0.2$.

(8)  Was passiert, wenn die Grenzfrequenz  $f_{\rm G} = \text{1.5 kHz}$  des Rechteck–Tiefpasses zu klein ist?  Interpretieren Sie insbesondere das Fehlersignal  $\varepsilon(t)=y(t)-x(t)$.

  •  Das Fehlersignal  $\varepsilon(t)=-0.3 \cdot \cos(2\pi \cdot \text{2 kHz} \cdot t -60^\circ)=0.3 \cdot \cos(2\pi \cdot \text{2 kHz} \cdot t +120^\circ)$  ist gleich dem (negierten) Signalanteil bei  $\text{2 kHz}$.  Stimmt das?
  •  Die Verzerrungsleistung ist  $P_\varepsilon(t)=2 \cdot 0.15^2= 0.045$  und der Signal–zu–Verzerrungsabstand  $10 \cdot \lg \ (P_x/P_\varepsilon)=10 \cdot \lg \ (0.19/0.045)= 6.26\ \rm dB$.

(9)  Was passiert, wenn die Grenzfrequenz  $f_{\rm G} = \text{3.5 kHz}$  des Rechteck–Tiefpasses zu groß ist?  Interpretieren Sie insbesondere das Fehlersignal  $\varepsilon(t)=y(t)-x(t)$.

  •  Das Fehlersignal  $\varepsilon(t)=0.3 \cdot \cos(2\pi \cdot \text{3 kHz} \cdot t +60^\circ)$  ist nun gleich dem vom Tiefpass nicht entfernten $\text{3 kHz}$–Anteil des Sinkensignals  $y(t)$.  Stimmt das?
  •  Gegenüber der Teilaufgabe  (8)  verändert sich die Frequenz von  $\text{2 kHz}$  auf  $\text{3 kHz}$  und auch die Phasenbeziehung.
  •  Die Amplitude dieses  $\text{3 kHz}$–Fehlersignals ist gleich der Amplitude des  $\text{2 kHz}$–Anteils von$x(t)$.  Auch hier gilt  $P_\varepsilon(t)= 0.045$,  $10 \cdot \lg \ (P_x/P_\varepsilon)= 6.26\ \rm dB$.

(10)  Abschließend betrachten wir das  $\text {Quellensignal 4}$  $($Anteile bis  $\pm \text{4 kHz})$, sowie  $f_{\rm A} = \text{5 kHz}$,  $f_{\rm G} = \text{2.5 kHz}$,  $0 \le r\le 1$.  Interpretation der Ergebnisse.

  •  Bis zum Rolloff–Faktor  $r=0.2$  funktioniert die Signalrekonstruktion perfekt  $(P_\varepsilon = 0)$.  Erhöht man  $r$, so nimmt  $P_\varepsilon$  kontinuierlich zu und  $10 \cdot \lg \ (P_x/P_\varepsilon)$  ab.
  •  Mit  $r=1$  werden die Signalfrequenzen  $\text{0.5 kHz}$,  ...,  $\text{4 kHz}$  abgeschwächt, umso mehr, je höher die Frequenz ist, zum Beispiel  $H_{\rm E}(f=\text{4 kHz}) = 0.6$.
  •  Ebenso beinhaltet  $Y(f)$  aufgrund der periodischen Fortsetzung auch Anteile bei den Frequenzen  $\text{6 kHz}$,  $\text{7 kHz}$,  $\text{8 kHz}$,  $\text{9 kHz}$  und  $\text{9.5 kHz}$.
  •  Zu den Abtastzeitpunkten  $t\hspace{0.05cm}' = n \cdot T_{\rm A}$  stimmen  $x(t\hspace{0.05cm}')$  und  $y(t\hspace{0.05cm}')$  exakt überein   ⇒   $\varepsilon(t\hspace{0.05cm}') = 0$.  Dazwischen nicht   ⇒   kleine Verzerrungsleistung  $P_\varepsilon = 0.008$.




Zur Handhabung des Applets


Anleitung abtast.png





    (A)     Auswahl eines von vier Quellensignalen

    (B)     Parameterwahl für Quellensignal  $1$  (Amplitude, Frequenz, Phase)

    (C)     Ausgabe der verwendeten Programmparameter

    (D)     Parameterwahl für Abtastung  $(f_{\rm G})$  und
                Signalrekonstruktion  $(f_{\rm A},\ r)$

    (E)     Skizze des Empfänger–Frequenzgangs  $H_{\rm E}(f)$

    (F)     Numerische Ausgabe  $(P_x, \ P_{\rm \varepsilon}, \ 10 \cdot \lg(P_x/ P_{\rm \varepsilon})$

    (G)     Darstellungsauswahl für Zeitbereich

    (H)     Grafikbereich für Zeitbereich

    ( I )     Darstellungsauswahl für Frequenzbereich

    (J)     Grafikbereich für Frequenzbereich

    (K)     Bereich für Übungen:  Aufgabenauswahl, Fragen, Musterlösung

Über die Autoren

Dieses interaktive Berechnungstool wurde am  Lehrstuhl für Nachrichtentechnik  der  Technischen Universität München  konzipiert und realisiert.

  • Die erste Version wurde 2008 von  Slim Lamine  im Rahmen einer Werkstudententätigkeit mit "FlashMX–Actionscript" erstellt (Betreuer:  Günter Söder).
  • 2020 wurde das Programm von  Carolin Mirschina  im Rahmen einer Werkstudententätigkeit auf "HTML5" umgesetzt und neu gestaltet (Betreuer:  Tasnád Kernetzky).


Die Umsetzung dieses Applets auf HTML 5 wurde durch die  Exzellenzinitiative  der TU München finanziell unterstützt. Wir bedanken uns.



Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster

Open Applet in a new tab