Difference between revisions of "Aufgaben:Exercise 1.7: PDF of Rice Fading"

From LNTwww
 
(18 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Mobile Kommunikation/Nichtfrequenzselektives Fading mit Direktkomponente}}
+
{{quiz-Header|Buchseite=Mobile_Communications/Non-Frequency_Selective_Fading_With_Direct_Component}}
  
[[File:P_ID2133__Mob_A_1_7.png|right|frame| Rice-Fading für verschiedene Werte von  $|z_0|^2$]]
+
[[File:P_ID2133__Mob_A_1_7.png|right|frame| Rice fading for different values of  $|z_0|^2$]]
As you can see in the diagram, we consider the same scenario as in  [[Aufgaben:Exercise_1.6:_Autocorrelation_Function_and_PSD_with_Rice_Fading| Exercise 1.6]]:
+
As you can see in the diagram, we consider the same scenario as in  [[Aufgaben:Exercise_1.6:_Autocorrelation_Function_and_PDS_with_Rice_Fading| Exercise 1.6]]:
* <i>Rice fading</i>&nbsp; with variance of the Gaussian processes &nbsp; $\sigma^2 = 1$&nbsp, and parameter&nbsp; $|z_0|$&nbsp; for the direct path.
+
* Rice fading&nbsp; with variance of the Gaussian processes &nbsp; $\sigma^2 = 1$&nbsp; and parameter&nbsp; $|z_0|$&nbsp; for the direct path.
 
* Regarding direct path, we are interested in the parameter values&nbsp; $|z_0|^2 = 0, \ 2, \ 4, \ 10, \ 20$&nbsp; (see graph).
 
* Regarding direct path, we are interested in the parameter values&nbsp; $|z_0|^2 = 0, \ 2, \ 4, \ 10, \ 20$&nbsp; (see graph).
* The PDF of the magnitude&nbsp; $a(t) = |z(t)|$&nbsp; is  
+
* The PDF of the magnitude&nbsp; $a(t) = |z(t)|$&nbsp; is
:$$f_a(a) = \frac{a}{\sigma^2} \cdot {\rm exp} [ -\frac{a^2 + |z_0|^2}{2\sigma^2}] \cdot {\rm I}_0 \left [ \frac{a \cdot |z_0|}{\sigma^2} \right ]\hspace{0.05cm}.$$
+
:$$f_a(a) ={a}/{\sigma^2} \cdot {\rm e}^{  -{(a^2+ |z_0|^2) }/({2\sigma^2})}\cdot {\rm I}_0 \left [ {a \cdot |z_0|}/{\sigma^2} \right ]\hspace{0.05cm}.$$  
 
* For example, the modified zeroth order Bessel function returns the following values:
 
* For example, the modified zeroth order Bessel function returns the following values:
$${\rm I }_0 (2) = 2.28\hspace{0.05cm},\hspace{0.2cm}{\rm I }_0 (4) = 11.30\hspace{0.05cm},\hspace{0.2cm}{\rm I }_0 (3) = 67.23  
+
:$${\rm I }_0 (2) = 2.28\hspace{0.05cm},\hspace{0.2cm}{\rm I }_0 (4) = 11.30\hspace{0.05cm},\hspace{0.2cm}{\rm I }_0 (3) = 67.23  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
 
* The power (noncentral second moment) of the multiplicative factor&nbsp; $|z(t)|$ is
 
* The power (noncentral second moment) of the multiplicative factor&nbsp; $|z(t)|$ is
$${\rm E}\left [ a^2 \right ] = {\rm E}\left [ |z(t)|^2 \right ] = 2 \cdot \sigma^2 + |z_0|^2
+
:$${\rm E}\left [ a^2 \right ] = {\rm E}\left [ |z(t)|^2 \right ] = 2 \cdot \sigma^2 + |z_0|^2
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
* With&nbsp; $z_0 = 0$,&nbsp; the <i>Rice fading</i>&nbsp; becomes <i>Rayleigh fading</i>, which is more critical. In this case, the probability that&nbsp; $a$&nbsp; lies in the yellow-shaded area between&nbsp; $0$&nbsp; and&nbsp; $1$&nbsp; is
+
* With&nbsp; $z_0 = 0$,&nbsp; the Rice fading&nbsp; becomes Rayleigh fading, which is more critical.&nbsp; In this case, the probability that&nbsp; $a$&nbsp; lies in the yellow-shaded area between&nbsp; $0$&nbsp; and&nbsp; $1$&nbsp; is
$$ {\rm Pr}(a \le 1) = 1 - {\rm e}^{-0.5/\sigma^2}  \approx 0.4
+
:$$ {\rm Pr}(a \le 1) = 1 - {\rm e}^{-0.5/\sigma^2}  \approx 0.4
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
 
In this task the probability&nbsp; ${\rm Pr}(a &#8804; 1)$&nbsp; for &nbsp;$|z_0| &ne; 0$&nbsp; is to be approximated. There are two ways to do this, namely:
 
In this task the probability&nbsp; ${\rm Pr}(a &#8804; 1)$&nbsp; for &nbsp;$|z_0| &ne; 0$&nbsp; is to be approximated. There are two ways to do this, namely:
* the <i>triangular approximation</i>:
+
* the triangular approximation: &nbsp; ${\rm Pr}(a \le 1) = {1}/{2} \cdot f_a(a=1)  
$${\rm Pr}(a \le 1) = {1}/{2} \cdot f_a(a=1)  
+
  \hspace{0.05cm}.$
  \hspace{0.05cm}.$$
+
* the Gaussian approximation: &nbsp; If &nbsp; $|z_0| \gg \sigma$, then the Rice distribution can be approximated by a Gaussian distribution with mean&nbsp; $|z_0|$&nbsp; and standard deviation&nbsp; $\sigma$&nbsp;.
* the <i> Gaussian approximation</i>: &nbsp; If &nbsp; $|z_0| \gg \sigma$, then the Rice distribution can be approximated by a Gaussian distribution with mean&nbsp; $|z_0|$&nbsp; and standard deviation&nbsp; $\sigma$&nbsp;.
 
  
  
Line 30: Line 29:
  
 
''Notes:''
 
''Notes:''
* This task belongs to chapter&nbsp; [[Mobile_Kommunikation/Nichtfrequenzselektives_Fading_mit_Direktkomponente| Nichtfrequenzselektives Fading mit Direktkomponente]].
+
* This task belongs to chapter&nbsp; [[Mobile_Communications/Non-frequency_selective_fading_with_direct_component| Non-frequency selective fading with direct component]].
* For the numerical solutions of the last subtasks, we recommend the interaction module&nbsp; [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen_(neues_Applet)|Complementary Gaussian Error Functions]].
+
* For the numerical solutions of the last subtasks, we recommend the applet&nbsp; [[Applets:Complementary_Gaussian_Error_Functions|Complementary Gaussian Error Functions]].
 
   
 
   
  
  
  
===Questionnaire==
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Calculate some PDF values for&nbsp; $|z_0| = 0$&nbsp; and&nbsp; $\sigma = 2$:
+
{Calculate some PDF values for&nbsp; $|z_0| = 2$&nbsp; and&nbsp; $\sigma = 1$:
 
|type="{}"}
 
|type="{}"}
 
$f_a(a = 1) \ = \ ${ 0.187 3% }
 
$f_a(a = 1) \ = \ ${ 0.187 3% }
Line 44: Line 43:
 
$f_a(a = 3) \ = \ ${ 0.303 3% }
 
$f_a(a = 3) \ = \ ${ 0.303 3% }
  
{Let &nbsp; $|z_0| = 2$ &nbsp; &rArr; &nbsp; $|z_0|^2 = 4$&nbsp; ('''blue curve'''). How big is&nbsp; ${\rm Pr}(a &#8804; 1)$? Use the&nbsp; '''triangular approximation'''.
+
{Let &nbsp; $|z_0| = 2$ &nbsp; &rArr; &nbsp; $|z_0|^2 = 4$&nbsp; '''(blue curve)'''.&nbsp; How big is&nbsp; ${\rm Pr}(a &#8804; 1)$?&nbsp; Use the&nbsp; '''triangular approximation'''.
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(a &#8804; 1)\ = \ ${ 9.4 3% } $\ \%$
 
${\rm Pr}(a &#8804; 1)\ = \ ${ 9.4 3% } $\ \%$
  
{Let &nbsp; $|z_0|^2 = 2$&nbsp; ('''red curve'''). How big is&nbsp; ${\rm Pr}(a &#8804; 1)$? Use the &nbsp;'''triangular approximation'''.
+
{Let &nbsp; $|z_0|^2 = 2$&nbsp; '''(red curve)'''.&nbsp; How big is&nbsp; ${\rm Pr}(a &#8804; 1)$?&nbsp; Use the &nbsp;'''triangular approximation'''.
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(a &#8804; 1) \ = \ ${ 17.5 3% } $\ \%$
 
${\rm Pr}(a &#8804; 1) \ = \ ${ 17.5 3% } $\ \%$
  
{Let&nbsp; $|z_0|^2 = 10$&nbsp; ('''green curve'''). How big is&nbsp; ${\rm Pr}(a &#8804; 1)$? Use the&nbsp; '''Gaussian approximation'''.
+
{Let&nbsp; $|z_0|^2 = 10$&nbsp; '''(green curve)'''.&nbsp; How big is&nbsp; ${\rm Pr}(a &#8804; 1)$?&nbsp; Use the&nbsp; '''Gaussian approximation'''.
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(a &#8804; 1) \ = \ ${ 1.5 3% } $\ \%$
 
${\rm Pr}(a &#8804; 1) \ = \ ${ 1.5 3% } $\ \%$
  
{Let&nbsp; $|z_0|^2 = 20$&nbsp; ('''purple curve'''). How big is&nbsp; ${\rm Pr}(a &#8804; 1)$? Use the &nbsp;'''Gaussian approximation'''.
+
{Let&nbsp; $|z_0|^2 = 20$&nbsp; '''(purple curve)'''.&nbsp; How big is&nbsp; ${\rm Pr}(a &#8804; 1)$?&nbsp; Use the &nbsp;'''Gaussian approximation'''.
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(a &#8804; 1) \ = \ ${ 0.02 3% } $\ \%$
 
${\rm Pr}(a &#8804; 1) \ = \ ${ 0.02 3% } $\ \%$
 
</quiz>
 
</quiz>
  
===Sample solution===
+
===Solution===
{{{ML-Kopf}}
+
{{ML-Kopf}}
'''(1)'''&nbsp; With $|z_0| = 2$ and $\sigma = 2$ the Rice PDF is
+
'''(1)'''&nbsp; With&nbsp; $|z_0| = 2$&nbsp; and&nbsp; $\sigma = 1$&nbsp; the Rice PDF is
$$f_a(a) = a \cdot {\rm exp} [ -\frac{a^2 + 4}{2}] \cdot {\rm I}_0 (2a)\hspace{0.05cm}.$$
+
:$$f_a(a) = a \cdot {\rm exp} [ -\frac{a^2 + 4}{2}] \cdot {\rm I}_0 (2a)\hspace{0.05cm}.$$
  
 
*This gives the desired values:
 
*This gives the desired values:
Line 75: Line 74:
  
  
'''(2)'''&nbsp; With the result of the subtask '''(1)''' &nbsp; &rArr; &nbsp; $f_a(a = 1) = 0.187$ is obtained with the triangle approximation:
+
'''(2)'''&nbsp; With the result of the subtask&nbsp; '''(1)''' &nbsp; &rArr; &nbsp; $f_a(a = 1) = 0.187$&nbsp; the triangle approximation gives
$${\rm Pr}(a \le 1) = {1}/{2} \cdot 0.187 \cdot 1\hspace{0.15cm} \underline{ \approx 9.4\,\%} \hspace{0.05cm}.$$
+
:$${\rm Pr}(a \le 1) = {1}/{2} \cdot 0.187 \cdot 1\hspace{0.15cm} \underline{ \approx 9.4\,\%} \hspace{0.05cm}.$$
 +
 
 +
*This result will be a bit too large, because the blue curve is below the connecting line from&nbsp; $(0, 0)$&nbsp; to&nbsp; $(1, 0.187)$ &nbsp; &rArr; &nbsp; convex curve.
  
*This result will be a bit too large, because the blue curve is below the connecting line from $(0, 0)$ to $(1, 0.187)$ &nbsp; &rArr; &nbsp; convex curve.
 
  
'''(3)'''&nbsp; For the red curve the WDF&ndash;value $f_a(a = 1) \approx 0.35$ can be read from the [[Tasks:1.7_WDF_des_Rice%E2%80%93Fadings|Graphic]] on the data page. From this follows:
+
'''(3)'''&nbsp; For the red curve the PDF value&nbsp; $f_a(a = 1) \approx 0.35$&nbsp; can be read from the graph:
$${\rm Pr}(a \le 1) = \frac{1}{2} \cdot 0.35 \hspace{0.15cm} \underline{ \approx 17.5\,\%} \hspace{0.05cm}.$
+
:$${\rm Pr}(a \le 1) = \frac{1}{2} \cdot 0.35 \hspace{0.15cm} \underline{ \approx 17.5\,\%} \hspace{0.05cm}.$$
  
*This probability value will be a little too small because the red curve is concave in the range between $0$ and $1$.
+
*The actual probability value will be slightly larger because the red curve is concave in the range between&nbsp; $0$&nbsp; and&nbsp; $1$.
  
  
  
'''(4)'''&nbsp; The Gaussian approximation states that one can approximate the Rice distribution by a Gaussian distribution with mean $|z_0| = \sqrt{10} = 3.16$ and dispersion $\sigma = 1$ if the quotient $|z_0|/\sigma$ is sufficiently large. Then applies:
+
'''(4)'''&nbsp; The Gaussian approximation states that one can approximate the Rice distribution by a Gaussian distribution with mean&nbsp; $|z_0| = \sqrt{10} = 3.16$&nbsp; and standard deviation&nbsp; $\sigma = 1$&nbsp; if the quotient&nbsp; $|z_0|/\sigma$ &nbsp; is sufficiently large.&nbsp; Then we have
$${\rm Pr}(a \le 1) \approx {\rm Pr}(g \le -2.16) = {\rm Q}(2.16) \hspace{0.15cm} \underline{ \approx 1.5\,\%} \hspace{0.05cm}.$
+
:$${\rm Pr}(a \le 1) \approx {\rm Pr}(g \le -2.16) = {\rm Q}(2.16) \hspace{0.15cm} \underline{ \approx 1.5\,\%} \hspace{0.05cm}.$$
  
*Here $g$ denotes a Gaussian distributed random variable with the mean value $0$ and the dispersion $\sigma = 1$.  
+
*Here,&nbsp; $g$&nbsp; denotes a Gaussian distributed random variable with mean&nbsp; $0$&nbsp; and standard deviation&nbsp; $\sigma = 1$.  
*The numerical value was determined with the specified interactive [[Applets:QFunction|Applet]].
+
*The numerical value was determined with the specified interactive applet&nbsp; [[Applets:Complementary_Gaussian_Error_Functions|Complementary Gaussian Error Functions]].
  
  
 
<i>Note:</i> &nbsp; The Gaussian approximation is certainly associated with a certain error here:  
 
<i>Note:</i> &nbsp; The Gaussian approximation is certainly associated with a certain error here:  
*From the graph you can see that the average value of the green curve is not $a = $3.16$, but rather $3.31$.  
+
*From the graph you can see that the average value of the green curve is not&nbsp; $a = 3.16$,&nbsp; but rather&nbsp; $3.31$.  
*Then the power of the Gaussian approximation $(3.31^2 + 1^2 = 12)$ is exactly the same as that of the Rice distribution:
+
*Then the power of the Gaussian approximation&nbsp; $(3.31^2 + 1^2 = 12)$&nbsp; is exactly the same as that of the Rice distribution:
 
:$$|z_0|^2 + 2 \sigma^2= 10 + 2 =12\hspace{0.05cm}.$$
 
:$$|z_0|^2 + 2 \sigma^2= 10 + 2 =12\hspace{0.05cm}.$$
  
  
'''(5)'''&nbsp; Using the same calculation method, replace the Rice&ndash;WDF with a Gauss&ndash;WDF with mean value $\sqrt{20} \approx $4.47 and spread $\sigma = $1 and you get
+
'''(5)'''&nbsp; Using the same calculation method, replace the Rice PDF with a Gaussian PDF with mean value&nbsp; $\sqrt{20} \approx 4.47$&nbsp; and standard deviation&nbsp; $\sigma = 1$&nbsp; and you get
$${\rm Pr}(a \le 1) \approx {\rm Pr}(g \le -3.37) = {\rm Q}(3.37) { \approx 0.04\,\%} \hspace{0.05cm}.$$
+
:$${\rm Pr}(a \le 1) \approx {\rm Pr}(g \le -3.37) = {\rm Q}(3.37) { \approx 0.04\,\%} \hspace{0.05cm}.$$
  
*If one assumes the equal power Gaussian distribution (see the note to the last subtask), the mean value is $m_g = \sqrt{21}\approx 4.58$, and the probability would then be  
+
*If one assumes the equal power Gaussian distribution&nbsp; (see the note to the last subtask), the mean value is&nbsp; $m_g = \sqrt{21}\approx 4.58$,&nbsp; and the probability would then be  
$${\rm Pr}(a \le 1) \approx {\rm Q}(3.58) \hspace{0.15cm} \underline{ \approx 0.02\,\%} \hspace{0.05cm}.$$
+
:$${\rm Pr}(a \le 1) \approx {\rm Q}(3.58) \hspace{0.15cm} \underline{ \approx 0.02\,\%} \hspace{0.05cm}.$$
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 110: Line 110:
  
  
[[Category:Exercises for Mobile Communications|^1.4 Fading with Direct Path Component^]]
+
[[Category:Mobile Communications: Exercises|^1.4 Fading with Direct Path Component^]]

Latest revision as of 09:19, 7 July 2021

Rice fading for different values of  $|z_0|^2$

As you can see in the diagram, we consider the same scenario as in  Exercise 1.6:

  • Rice fading  with variance of the Gaussian processes   $\sigma^2 = 1$  and parameter  $|z_0|$  for the direct path.
  • Regarding direct path, we are interested in the parameter values  $|z_0|^2 = 0, \ 2, \ 4, \ 10, \ 20$  (see graph).
  • The PDF of the magnitude  $a(t) = |z(t)|$  is
$$f_a(a) ={a}/{\sigma^2} \cdot {\rm e}^{ -{(a^2+ |z_0|^2) }/({2\sigma^2})}\cdot {\rm I}_0 \left [ {a \cdot |z_0|}/{\sigma^2} \right ]\hspace{0.05cm}.$$
  • For example, the modified zeroth order Bessel function returns the following values:
$${\rm I }_0 (2) = 2.28\hspace{0.05cm},\hspace{0.2cm}{\rm I }_0 (4) = 11.30\hspace{0.05cm},\hspace{0.2cm}{\rm I }_0 (3) = 67.23 \hspace{0.05cm}.$$
  • The power (noncentral second moment) of the multiplicative factor  $|z(t)|$ is
$${\rm E}\left [ a^2 \right ] = {\rm E}\left [ |z(t)|^2 \right ] = 2 \cdot \sigma^2 + |z_0|^2 \hspace{0.05cm}.$$
  • With  $z_0 = 0$,  the Rice fading  becomes Rayleigh fading, which is more critical.  In this case, the probability that  $a$  lies in the yellow-shaded area between  $0$  and  $1$  is
$$ {\rm Pr}(a \le 1) = 1 - {\rm e}^{-0.5/\sigma^2} \approx 0.4 \hspace{0.05cm}.$$

In this task the probability  ${\rm Pr}(a ≤ 1)$  for  $|z_0| ≠ 0$  is to be approximated. There are two ways to do this, namely:

  • the triangular approximation:   ${\rm Pr}(a \le 1) = {1}/{2} \cdot f_a(a=1) \hspace{0.05cm}.$
  • the Gaussian approximation:   If   $|z_0| \gg \sigma$, then the Rice distribution can be approximated by a Gaussian distribution with mean  $|z_0|$  and standard deviation  $\sigma$ .




Notes:



Questions

1

Calculate some PDF values for  $|z_0| = 2$  and  $\sigma = 1$:

$f_a(a = 1) \ = \ $

$f_a(a = 2) \ = \ $

$f_a(a = 3) \ = \ $

2

Let   $|z_0| = 2$   ⇒   $|z_0|^2 = 4$  (blue curve).  How big is  ${\rm Pr}(a ≤ 1)$?  Use the  triangular approximation.

${\rm Pr}(a ≤ 1)\ = \ $

$\ \%$

3

Let   $|z_0|^2 = 2$  (red curve).  How big is  ${\rm Pr}(a ≤ 1)$?  Use the  triangular approximation.

${\rm Pr}(a ≤ 1) \ = \ $

$\ \%$

4

Let  $|z_0|^2 = 10$  (green curve).  How big is  ${\rm Pr}(a ≤ 1)$?  Use the  Gaussian approximation.

${\rm Pr}(a ≤ 1) \ = \ $

$\ \%$

5

Let  $|z_0|^2 = 20$  (purple curve).  How big is  ${\rm Pr}(a ≤ 1)$?  Use the  Gaussian approximation.

${\rm Pr}(a ≤ 1) \ = \ $

$\ \%$


Solution

(1)  With  $|z_0| = 2$  and  $\sigma = 1$  the Rice PDF is

$$f_a(a) = a \cdot {\rm exp} [ -\frac{a^2 + 4}{2}] \cdot {\rm I}_0 (2a)\hspace{0.05cm}.$$
  • This gives the desired values:
$$f_a(a = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1 \cdot {\rm e}^{-2.5} \cdot {\rm I}_0 (2) = 0.082 \cdot 2.28 \hspace{0.15cm} \underline{ = 0.187}\hspace{0.05cm},$$
$$f_a(a = 2) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 2 \cdot {\rm e}^{-4} \cdot {\rm I}_0 (4) = 2 \cdot 0.0183 \cdot 11.3 \hspace{0.15cm} \underline{ = 0.414}\hspace{0.05cm},$$
$$f_a(a = 3) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 3 \cdot {\rm e}^{-6.5} \cdot {\rm I}_0 (6) = 3 \cdot 0.0015 \cdot 67.23 \hspace{0.15cm} \underline{ = 0.303}\hspace{0.05cm}.$$
  • The results fit well with the blue curve on the graph.


(2)  With the result of the subtask  (1)   ⇒   $f_a(a = 1) = 0.187$  the triangle approximation gives

$${\rm Pr}(a \le 1) = {1}/{2} \cdot 0.187 \cdot 1\hspace{0.15cm} \underline{ \approx 9.4\,\%} \hspace{0.05cm}.$$
  • This result will be a bit too large, because the blue curve is below the connecting line from  $(0, 0)$  to  $(1, 0.187)$   ⇒   convex curve.


(3)  For the red curve the PDF value  $f_a(a = 1) \approx 0.35$  can be read from the graph:

$${\rm Pr}(a \le 1) = \frac{1}{2} \cdot 0.35 \hspace{0.15cm} \underline{ \approx 17.5\,\%} \hspace{0.05cm}.$$
  • The actual probability value will be slightly larger because the red curve is concave in the range between  $0$  and  $1$.


(4)  The Gaussian approximation states that one can approximate the Rice distribution by a Gaussian distribution with mean  $|z_0| = \sqrt{10} = 3.16$  and standard deviation  $\sigma = 1$  if the quotient  $|z_0|/\sigma$   is sufficiently large.  Then we have

$${\rm Pr}(a \le 1) \approx {\rm Pr}(g \le -2.16) = {\rm Q}(2.16) \hspace{0.15cm} \underline{ \approx 1.5\,\%} \hspace{0.05cm}.$$
  • Here,  $g$  denotes a Gaussian distributed random variable with mean  $0$  and standard deviation  $\sigma = 1$.
  • The numerical value was determined with the specified interactive applet  Complementary Gaussian Error Functions.


Note:   The Gaussian approximation is certainly associated with a certain error here:

  • From the graph you can see that the average value of the green curve is not  $a = 3.16$,  but rather  $3.31$.
  • Then the power of the Gaussian approximation  $(3.31^2 + 1^2 = 12)$  is exactly the same as that of the Rice distribution:
$$|z_0|^2 + 2 \sigma^2= 10 + 2 =12\hspace{0.05cm}.$$


(5)  Using the same calculation method, replace the Rice PDF with a Gaussian PDF with mean value  $\sqrt{20} \approx 4.47$  and standard deviation  $\sigma = 1$  and you get

$${\rm Pr}(a \le 1) \approx {\rm Pr}(g \le -3.37) = {\rm Q}(3.37) { \approx 0.04\,\%} \hspace{0.05cm}.$$
  • If one assumes the equal power Gaussian distribution  (see the note to the last subtask), the mean value is  $m_g = \sqrt{21}\approx 4.58$,  and the probability would then be
$${\rm Pr}(a \le 1) \approx {\rm Q}(3.58) \hspace{0.15cm} \underline{ \approx 0.02\,\%} \hspace{0.05cm}.$$