Difference between revisions of "Applets:Discrete Fouriertransform and Inverse"

From LNTwww
(Created page with "{{LntAppletLink|dft}} ==Programmbeschreibung== <br> Das Applet verdeutlicht die Eigenschaften zweidimensionaler Gaußscher Zufallsgrößen  $XY\hspace{-0.1cm}$, gekennz...")
 
 
(50 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{LntAppletLink|dft}}
+
{{LntAppletLinkEnDe|dft_en|dft}}
 +
 
 
   
 
   
==Programmbeschreibung==
+
==Applet Description==
 
<br>
 
<br>
Das Applet verdeutlicht die Eigenschaften zweidimensionaler Gaußscher Zufallsgrößen&nbsp; $XY\hspace{-0.1cm}$, gekennzeichnet durch die Standardabweichungen (Streuungen)&nbsp; $\sigma_X$&nbsp; und&nbsp; $\sigma_Y$&nbsp; ihrer beiden Komponenten sowie den Korrelationskoeffizienten&nbsp; $\rho_{XY}$&nbsp;zwischen diesen. Die Komponenten werden als mittelwertfrei vorausgesetzt:&nbsp; $m_X = m_Y = 0$.
+
The conventional&nbsp; &raquo;Fourier Transform&laquo;&nbsp; $\rm (FT)$&nbsp; allows the calculation of the spectral function&nbsp; $X(f)$&nbsp; of a time-continuous signal&nbsp; $x(t)$.&nbsp;
 +
 
 +
In contrast,&nbsp; the&nbsp; &raquo;Discrete Fourier Transform&laquo;&nbsp; $\rm (DFT)$&nbsp; is limited to a time-discrete signal,&nbsp; represented by&nbsp; $N$&nbsp; time domain coefficients &nbsp; $d(\nu)$&nbsp; with indices&nbsp; $\nu = 0, \text{...} , N\hspace{-0.1cm}-\hspace{-0.1cm}1$,&nbsp; which can be interpreted as equidistant samples of the time-continuous signal&nbsp; $x(t)$.
 +
 
 +
If the&nbsp; [[Signal_Representation/Discrete-Time_Signal_Representation#Sampling_theorem|&raquo;sampling theorem&laquo;]]&nbsp;  is fulfilled, the DFT algorithm likewise allows the calculation of&nbsp; $N$&nbsp; frequency domain coefficients&nbsp; $D(\mu)$&nbsp; with indices&nbsp; $\mu = 0, \text{...} , N\hspace{-0.1cm}-\hspace{-0.1cm}1$.&nbsp;  These are equidistant samples of the frequency-continuous spectrum&nbsp; $X(f)$.
 +
 
 +
*The applet illustrates the properties of the&nbsp; $\text{DFT:}\hspace{0.3cm}d(\nu)\hspace{0.1cm} \Rightarrow \hspace{0.1cm} D(\mu)$&nbsp; by using the example&nbsp; $N=16$.&nbsp; The default &nbsp; $d(\nu)$ assignments  for the DFT are:
 +
 
 +
: $\rm (a)$&nbsp; According to the input field,&nbsp; $\rm (b)$&nbsp; Constant signal,&nbsp; $\rm (c)$&nbsp;  Complex exponential time function ,&nbsp; $\rm (d)$&nbsp;  Harmonic oscillation&nbsp; $($with &nbsp;phase &nbsp;$\varphi = 45^\circ)$,
 +
: $\rm (e)$&nbsp; Cosine signal&nbsp; $($one period$)$,&nbsp; $\rm (f)$&nbsp; Sinusoidal signal&nbsp; $($one period$)$,&nbsp; $\rm (g)$&nbsp;  Cosine signal&nbsp; $($two periods$)$,&nbsp; $\rm (h)$&nbsp;  Alternating time coefficients,
 +
: $\rm (i)$&nbsp; Dirac delta impulse,&nbsp; $\rm (j)$&nbsp; Rectangular pulse ,&nbsp; $\rm (k)$&nbsp;  Triangular pulse,&nbsp; $\rm (l)$&nbsp;  Gaussian pulse.
 +
 
 +
*Possible &nbsp;$D(\mu)$ assignments  for the Inverse Discrete Fourier Transform &nbsp; &rArr; &nbsp; $\text{IDFT:}\hspace{0.3cm}D(\mu)\hspace{0.1cm} \Rightarrow \hspace{0.1cm} d(\nu)$&nbsp;  are:
 +
 
 +
: $\rm (A)$&nbsp; According to the input field,&nbsp; $\rm (B)$&nbsp; Constant spectrum,&nbsp; $\rm (C)$&nbsp;  Complex exponential function (of frequency),&nbsp; $\rm (D)$&nbsp;  Equivalent to setting&nbsp; $\rm (d)$&nbsp; in the time domain,
 +
: $\rm (E)$&nbsp; Cosine spectrum&nbsp; $($one frequency period$)$,&nbsp; $\rm (F)$&nbsp; Sinusoidal spectrum&nbsp; $($one frequency period$)$,&nbsp; $\rm (G)$&nbsp;  Cosine spectrum&nbsp; $($two frequency periods$)$,&nbsp;
 +
: $\rm (H)$&nbsp;  Alternating spectral coefficients,&nbsp; $\rm (I)$&nbsp; Dirac delta spectrum,&nbsp; $\rm (J)$&nbsp; Rectangular spectrum,&nbsp; $\rm (K)$&nbsp;  Triangular spectrum,&nbsp; $\rm (L)$&nbsp;  Gaussian spectrum.  
 +
 
  
Das Applet zeigt
+
The applet uses the framework &nbsp;[https://en.wikipedia.org/wiki/Plotly &raquo;Plot.ly&laquo;].
* die zweidimensionale Wahrscheinlichkeitsdichtefunktion &nbsp; &rArr; &nbsp; $\rm 2D\hspace{-0.1cm}-\hspace{-0.1cm}WDF$&nbsp; $f_{XY}(x, \hspace{0.1cm}y)$&nbsp; in dreidimensionaler Darstellung sowie in Form von Höhenlinien,
 
* die zugehörige Randwahrscheinlichkeitsdichtefunktion&nbsp; &rArr; &nbsp;  $\rm 1D\hspace{-0.1cm}-\hspace{-0.1cm}WDF$&nbsp; $f_{X}(x)$&nbsp;  der Zufallsgröße&nbsp; $X$&nbsp; als blaue Kurve; ebenso&nbsp; $f_{Y}(y)$&nbsp; für die zweite Zufallsgröße,
 
* die zweidimensionale Verteilungsfunktion  &nbsp; &rArr; &nbsp; $\rm 2D\hspace{-0.1cm}-\hspace{-0.1cm}VTF$&nbsp; $F_{XY}(x, \hspace{0.1cm}y)$&nbsp; als 3D-Plot,
 
* die Verteilungsfunktion&nbsp; &rArr; &nbsp; $\rm 1D\hspace{-0.1cm}-\hspace{-0.1cm}VTF$&nbsp; $F_{X}(x)$&nbsp; der Zufallsgröße&nbsp; $X$;  ebenso&nbsp; $F_{Y}(y)$&nbsp; als rote Kurve.
 
  
  
Das Applet verwendet das Framework &nbsp;[https://en.wikipedia.org/wiki/Plotly Plot.ly]
 
 
    
 
    
==Theoretischer Hintergrund==
+
==Theoretical Background==
 
<br>
 
<br>
===Argumente für die diskrete Realisierung der Fouriertransformation===
+
===Arguments for the discrete realization of the Fourier transform===
  
Die&nbsp; '''Fouriertransformation'''&nbsp; gemäß der herkömmlichen Beschreibung für zeitkontinuierliche Signale weist aufgrund der unbegrenzten Ausdehnung des Integrationsintervalls eine unendlich hohe Selektivität auf und ist deshalb ein ideales theoretisches Hilfsmittel der Spektralanalyse.
+
The&nbsp; &raquo;'''Fourier transform'''&laquo;&nbsp; according to the conventional description for continuous-time signals has an infinitely high selectivity due to the unlimited extension of the integration interval and is therefore an ideal theoretical tool for spectral analysis.
  
Sollen die Spektralanteile&nbsp; $X(f)$&nbsp; einer Zeitfunktion&nbsp; $x(t)$&nbsp; numerisch ermittelt werden, so sind die allgemeinen Transformationsgleichungen
+
If the spectral components&nbsp; $X(f)$&nbsp; of a time function&nbsp; $x(t)$&nbsp; are to be determined numerically,&nbsp; the general transformation equations
 
   
 
   
 
:$$\begin{align*}X(f) & =  \int_{-\infty
 
:$$\begin{align*}X(f) & =  \int_{-\infty
  }^{+\infty}x(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi f t}\hspace{0.1cm} {\rm d}t\hspace{0.5cm} \Rightarrow\hspace{0.5cm} \text{Hintransformation}\hspace{0.7cm} \Rightarrow\hspace{0.5cm} \text{Erstes Fourierintegral}
+
  }^{+\infty}x(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi f t}\hspace{0.1cm} {\rm d}t\hspace{0.5cm} \Rightarrow\hspace{0.5cm} \text{Forward transformation}\hspace{0.7cm} \Rightarrow\hspace{0.5cm} \text{First Fourier integral}
 
  \hspace{0.05cm},\\
 
  \hspace{0.05cm},\\
 
x(t) & =  \int_{-\infty
 
x(t) & =  \int_{-\infty
 
  }^{+\infty}\hspace{-0.15cm}X(f) \cdot {\rm e}^{\hspace{0.05cm}+{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi f t}\hspace{0.1cm} {\rm d}f\hspace{0.35cm} \Rightarrow\hspace{0.5cm}
 
  }^{+\infty}\hspace{-0.15cm}X(f) \cdot {\rm e}^{\hspace{0.05cm}+{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi f t}\hspace{0.1cm} {\rm d}f\hspace{0.35cm} \Rightarrow\hspace{0.5cm}
\text{Rücktransformation}\hspace{0.4cm} \Rightarrow\hspace{0.5cm} \text{Zweites Fourierintegral}
+
\text{Backward transformation}\hspace{0.4cm} \Rightarrow\hspace{0.5cm} \text{Second Fourier integral}
 
  \hspace{0.05cm}\end{align*}$$
 
  \hspace{0.05cm}\end{align*}$$
  
aus zwei Gründen ungeeignet:
+
are unsuitable for two reasons:
*Die Gleichungen gelten ausschließlich für zeitkontinuierliche Signale. Mit Digitalrechnern oder Signalprozessoren kann man jedoch nur zeitdiskrete Signale verarbeiten.
+
*The equations apply exclusively to continuous-time signals.&nbsp; With digital computers or signal processors,&nbsp; however,&nbsp; only discrete-time signals can be processed.
*Für eine numerische Auswertung der beiden Fourierintegrale ist es erforderlich, das jeweilige Integrationsintervall auf einen endlichen Wert zu begrenzen.
+
 
 +
*For a numerical evaluation of the two Fourier integrals it is necessary to limit the respective integration interval to a finite value.
  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Daraus ergibt sich folgende Konsequenz:}$&nbsp;
+
$\text{This results in the following consequence:}$&nbsp;
 +
 
 +
A&nbsp; &raquo;'''continuous-time signal'''&laquo;&nbsp; must undergo two processes before the numerical determination of its spectral properties, viz.
  
Ein&nbsp; '''kontinuierliches Signal'''&nbsp; muss vor der numerischen Bestimmung seiner Spektraleigenschaften zwei Prozesse durchlaufen, nämlich
+
*&nbsp; &raquo;'''sampling'''&laquo;&nbsp; for discretization,&nbsp; and
*den der&nbsp; '''Abtastung'''&nbsp; zur Diskretisierung, und
 
*den der&nbsp; '''Fensterung'''&nbsp; zur Begrenzung des Integrationsintervalls.}}
 
  
 +
*&nbsp; &raquo;'''windowing'''&laquo;&nbsp; to limit the integration interval.}}
  
Im Folgenden wird ausgehend von einer aperiodischen Zeitfunktion&nbsp; $x(t)$&nbsp; und dem dazugehörigen Fourierspektrum&nbsp; $X(f)$&nbsp; eine für die Rechnerverarbeitung geeignete zeit– und frequenzdiskrete Beschreibung vorgestellt.
 
  
 +
In the following,&nbsp; starting from an aperiodic time function&nbsp; $x(t)$&nbsp; and the corresponding Fourier spectrum&nbsp; $X(f)$,&nbsp; a discrete-time and discrete-frequency description suitable for computer processing is presented.
  
===Zeitdiskretisierung &ndash; Periodifizierung im Frequenzbereich===
 
  
Die folgenden Grafiken zeigen einheitlich links den Zeitbereich und rechts den Frequenzbereich. Ohne Einschränkung der Allgemeingültigkeit sind&nbsp; $x(t)$&nbsp; und&nbsp; $X(f)$&nbsp; jeweils reell und gaußförmig.
+
===Time discretization &ndash; periodization in the frequency domain===
  
[[Datei:P_ID1132__Sig_T_5_1_S2_neu.png|center|frame|Diskretisierung im Zeitbereich – Periodifizierung im Frequenzbereich]]
+
The following graphs uniformly show the time domain on the left and the frequency domain on the right.&nbsp; Without restriction of generality,&nbsp; $x(t)$&nbsp; and&nbsp; $X(f)$&nbsp; are real and Gaussian,&nbsp; respectively.
  
Man kann die Abtastung des Zeitsignals&nbsp; $x(t)$&nbsp; durch die Multiplikation mit einem Diracpuls&nbsp; $p_{\delta}(t)$&nbsp; beschreiben. Es ergibt sich das im Abstand&nbsp; $T_{\rm A}$&nbsp; abgetastete Zeitsignal
+
[[File:P_ID1132__Sig_T_5_1_S2_neu.png|center|frame|Discretization in the time domain – periodization in the frequency domain]]
 +
 
 +
One can describe the sampling of the time signal&nbsp; $x(t)$&nbsp; by multiplication with a Dirac delta pulse&nbsp; $p_{\delta}(t)$.&nbsp; This results in the time signal sampled at distance&nbsp; $T_{\rm A}$:&nbsp;  
 
   
 
   
 
:$${\rm A}\{x(t)\} =  \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot x(\nu \cdot T_{\rm A})\cdot
 
:$${\rm A}\{x(t)\} =  \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot x(\nu \cdot T_{\rm A})\cdot
Line 58: Line 74:
 
  )\hspace{0.05cm}.$$
 
  )\hspace{0.05cm}.$$
  
Dieses abgetastete Signal&nbsp; $\text{A}\{ x(t)\}$&nbsp; transformieren wir nun in den Frequenzbereich. Der Multiplikation des Diracpulses&nbsp; $p_{\delta}(t)$&nbsp; mit&nbsp; $x(t)$&nbsp; entspricht im Frequenzbereich die Faltung von&nbsp; $P_{\delta}(f)$&nbsp; mit&nbsp; $X(f)$. Es ergibt sich das periodifizierte Spektrum&nbsp; $\text{P}\{ X(f)\}$, wobei&nbsp; $f_{\rm P}$&nbsp; die Frequenzperiode der Funktion&nbsp; $\text{P}\{ X(f)\}$&nbsp; angibt:
+
We now transform this sampled signal&nbsp; $\text{A}\{ x(t)\}$&nbsp; into the frequency domain. The multiplication of the Dirac delta pulse&nbsp; $p_{\delta}(t)$&nbsp; with&nbsp; $x(t)$&nbsp; corresponds in the frequency domain to the convolution of&nbsp; $P_{\delta}(f)$&nbsp; with&nbsp; $X(f)$.&nbsp; The periodized spectrum&nbsp; $\text{P}\{ X(f)\}$ is obtained,&nbsp; where&nbsp; $f_{\rm P}$&nbsp; is the frequency period of the function&nbsp; $\text{P}\{ X(f)\}$:&nbsp;  
 
   
 
   
 
:$${\rm A}\{x(t)\} \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} {\rm P}\{X(f)\} =  \sum_{\mu = - \infty }^{+\infty}
 
:$${\rm A}\{x(t)\} \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} {\rm P}\{X(f)\} =  \sum_{\mu = - \infty }^{+\infty}
  X (f- \mu \cdot f_{\rm P} )\hspace{0.5cm} {\rm mit }\hspace{0.5cm}f_{\rm
+
  X (f- \mu \cdot f_{\rm P} )\hspace{0.5cm} {\rm with }\hspace{0.5cm}f_{\rm
 
  P}= {1}/{T_{\rm A}}\hspace{0.05cm}.$$
 
  P}= {1}/{T_{\rm A}}\hspace{0.05cm}.$$
  
*Das abgetastete Signal nennen wir&nbsp; $\text{A}\{ x(t)\}$.
+
*We call the sampled signal&nbsp; $\text{A}\{ x(t)\}$.
* Die&nbsp; '''Frequenzperiode'''&nbsp; wird mit&nbsp; $f_{\rm P}$ = $1/T_{\rm A}$&nbsp; bezeichnet.
 
  
 +
*The&nbsp; &raquo;'''frequency period'''&laquo;&nbsp; is denoted by&nbsp; $f_{\rm P}$ = $1/T_{\rm A}$.&nbsp;
  
Die obige Grafik zeigt den hier beschriebenen Funktionalzusammenhang. Es ist anzumerken:
 
*Die Frequenzperiode&nbsp; $f_{\rm P}$&nbsp; wurde hier bewusst klein gewählt, so dass die Überlappung der zu summierenden Spektren deutlich zu erkennen ist.
 
*In der Praxis sollte&nbsp; $f_{\rm P}$&nbsp; aufgrund des Abtasttheorems mindestens doppelt so groß sein wie die größte im Signal&nbsp; $x(t)$&nbsp; enthaltene Frequenz.
 
*Ist dies nicht erfüllt, so muss mit&nbsp; '''Aliasing'''&nbsp; gerechnet werden.
 
  
 +
The graph above shows the functional relationship described here.&nbsp; It should be noted:
 +
#The frequency period&nbsp; $f_{\rm P}$&nbsp; was deliberately chosen small here so that the overlap of the spectra to be summed can be clearly seen.
 +
#In practice,&nbsp; due to the sampling theorem,&nbsp; $f_{\rm P}$&nbsp; should be at least twice as large as the largest frequency contained in the signal&nbsp; $x(t)$.&nbsp;
 +
#If this is not fulfilled,&nbsp; &raquo;'''aliasing'''&laquo;&nbsp; must be expected.
  
  
===Frequenzdiskretisierung &ndash; Periodifizierung im Zeitbereich===
 
  
Die Diskretisierung von&nbsp; $X(f)$&nbsp; lässt sich ebenfalls durch eine Multiplikation mit einem Diracpuls beschreiben. Es ergibt sich das im Abstand&nbsp; $f_{\rm A}$&nbsp; abgetastete Spektrum:
+
===Frequency discretization &ndash; periodization in the time domain===
 +
 
 +
The discretization of&nbsp; $X(f)$&nbsp; can also be described by a multiplication with a Dirac delta pulse. The result is the spectrum sampled at distance&nbsp; $f_{\rm A}$:&nbsp;  
 
   
 
   
 
:$${\rm A}\{X(f)\} =  X(f) \cdot  \sum_{\mu = - \infty }^{+\infty}
 
:$${\rm A}\{X(f)\} =  X(f) \cdot  \sum_{\mu = - \infty }^{+\infty}
Line 83: Line 100:
 
  f_{\rm A} \cdot X(\mu \cdot f_{\rm A } ) \cdot\delta (f- \mu \cdot f_{\rm A } )\hspace{0.05cm}.$$
 
  f_{\rm A} \cdot X(\mu \cdot f_{\rm A } ) \cdot\delta (f- \mu \cdot f_{\rm A } )\hspace{0.05cm}.$$
  
Transformiert man den hier verwendeten Frequenz–Diracpuls $($mit Impulsgewichten&nbsp; $f_{\rm A})$&nbsp; in den Zeitbereich, so erhält man mit&nbsp; $T_{\rm P} = 1/f_{\rm A}$:
+
*Transforming the frequency Dirac delta pulse used here&nbsp; $($with pulse weights&nbsp; $f_{\rm A})$&nbsp; into the time domain,&nbsp; we obtain with&nbsp; $T_{\rm P} = 1/f_{\rm A}$:
 
   
 
   
 
:$$\sum_{\mu = - \infty }^{+\infty}
 
:$$\sum_{\mu = - \infty }^{+\infty}
Line 90: Line 107:
 
   \delta (t- \nu \cdot T_{\rm P } ) \hspace{0.05cm}.$$
 
   \delta (t- \nu \cdot T_{\rm P } ) \hspace{0.05cm}.$$
  
Die Multiplikation mit&nbsp; $X(f)$&nbsp; entspricht im Zeitbereich der Faltung mit&nbsp; $x(t)$. Man erhält das im Abstand&nbsp; $T_{\rm P}$&nbsp; periodifizierte Signal&nbsp; $\text{P}\{ x(t)\}$:
+
*The multiplication with&nbsp; $X(f)$&nbsp; corresponds in the time domain to the convolution with&nbsp; $x(t)$. The signal&nbsp; $\text{P}\{ x(t)\}$ periodized at distance&nbsp; $T_{\rm P}$&nbsp; is obtained:
 
   
 
   
 
:$${\rm A}\{X(f)\} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm}
 
:$${\rm A}\{X(f)\} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm}
Line 97: Line 114:
 
   x (t- \nu \cdot T_{\rm P } ) \hspace{0.05cm}.$$
 
   x (t- \nu \cdot T_{\rm P } ) \hspace{0.05cm}.$$
  
[[Datei:P_ID1134__Sig_T_5_1_S3_neu.png|right|frame|Diskretisierung im Frequenzbereich – Periodifizierung im Zeitbereich]]
+
 
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\text{Beispiel 1:}$&nbsp;
+
[[File:P_ID1134__Sig_T_5_1_S3_neu.png|right|frame|Discretization in the frequency domain – periodization in the time domain]]
Dieser Zusammenhang ist in der Grafik veranschaulicht:  
+
$\text{Example 1:}$&nbsp;
*Aufgrund der groben Frequenzrasterung ergibt sich in diesem Beispiel für die Zeitperiode&nbsp; $T_{\rm P}$&nbsp; ein relativ kleiner Wert.
+
This relationship is illustrated in the graph:
 +
 
 +
 
 +
 
 +
#Due to the coarse frequency rastering,&nbsp; this example results in a relatively small value for the time period&nbsp; $T_{\rm P}$.&nbsp;<br><br>
 +
#Therefore,&nbsp; the&nbsp; $($blue$)$&nbsp; periodized time signal&nbsp; $\text{P}\{ x(t)\}$&nbsp; differs significantly from&nbsp; $x(t)$ due to overlaps.}}
 +
 
  
  
* Deshalb  unterscheidet sich das (blaue) periodifizierte Zeitsignal&nbsp; $\text{P}\{ x(t)\}$&nbsp; aufgrund von Überlappungen deutlich von&nbsp; $x(t)$.}}
+
===Finite signal representation===
  
 +
One arrives at the so-called&nbsp; &raquo;'''finite signal representation'''&laquo;&nbsp; 
 +
*when both the time function&nbsp; $x(t)$&nbsp; and
  
===Finite Signaldarstellung===
+
*the spectral function&nbsp; $X(f)$
  
[[Datei:P_ID1135__Sig_T_5_1_S4_neu.png|right|frame|Finite Signale der Diskreten Fouriertransformation (DFT)]]
+
[[File:P_ID1135__Sig_T_5_1_S4_neu.png|right|frame|Finite signals of the Discrete Fourier Transform]]
Zur so genannten&nbsp; ''finiten Signaldarstellung''&nbsp; kommt man,
 
*wenn sowohl die Zeitfunktion&nbsp; $x(t)$
 
*als auch die Spektralfunktion&nbsp; $X(f)$
 
  
 +
are specified exclusively by their sample values:
  
ausschließlich durch ihre Abtastwerte angegeben werden.
+
The graph is to be interpreted as follows:
<br clear=all>
+
*In the left graph the function&nbsp; $\text{A}\{ \text{P}\{ x(t)\}\}$&nbsp; is drawn in blue.&nbsp; It is obtained by sampling the periodized time function&nbsp; $\text{P}\{ x(t)\}$&nbsp; with equidistant Dirac delta pulses in the distance&nbsp; $T_{\rm A} = 1/f_{\rm P}$.
Die Grafik ist wie folgt zu interpretieren:
+
 
*Im linken Bild blau eingezeichnet ist die Funktion&nbsp; $\text{A}\{ \text{P}\{ x(t)\}\}$. Diese ergibt sich durch Abtastung der periodifizierten Zeitfunktion&nbsp; $\text{P}\{ x(t)\}$&nbsp; mit äquidistanten Diracimpulsen im Abstand&nbsp; $T_{\rm A} = 1/f_{\rm P}$.
+
*In the right graph the function&nbsp; $\text{P}\{ \text{A}\{ X(f)\}\}$&nbsp; is drawn in green.&nbsp; This results from periodization&nbsp; $($with&nbsp; $f_{\rm P})$&nbsp; of the sampled spectral function&nbsp; $\{ \text{A}\{ X(f)\}\}$.
*Im rechten Bild grün eingezeichnet ist die Funktion&nbsp; $\text{P}\{ \text{A}\{ X(f)\}\}$. Diese ergibt sich durch Periodifizierung $($mit&nbsp; $f_{\rm P})$&nbsp; der abgetasteten Spektralfunktion&nbsp; $\{ \text{A}\{ X(f)\}\}$.  
+
*Zwischen dem blauen finiten Signal und dem grünen finiten Signal besteht ebenfalls eine Fourierkorrespondenz, und zwar die folgende:
+
*There is also a Fourier correspondence between the blue finite signal and the green finite signal,&nbsp; as follows:
 
   
 
   
 
:$${\rm A}\{{\rm P}\{x(t)\}\} \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} {\rm P}\{{\rm A}\{X(f)\}\} \hspace{0.05cm}.$$
 
:$${\rm A}\{{\rm P}\{x(t)\}\} \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} {\rm P}\{{\rm A}\{X(f)\}\} \hspace{0.05cm}.$$
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
Die Diraclinien der periodischen Fortsetzung&nbsp; $\text{P}\{ \text{A}\{ X(f)\}\}$&nbsp; der abgetasteten Spektralfunktion fallen allerdings nur dann in das gleiche Frequenzraster wie diejenigen von&nbsp; $\text{A}\{ X(f)\}$, wenn die Frequenzperiode&nbsp; $f_{\rm P}$&nbsp; ein ganzzahliges Vielfaches&nbsp; $(N)$&nbsp; des Frequenzabtastabstandes&nbsp; $f_{\rm A}$&nbsp; ist.
+
However,&nbsp; the Dirac delta lines of the periodic continuation&nbsp; $\text{P}\{ \text{A}\{ X(f)\}\}$&nbsp; of the sampled spectral function fall into the same frequency grid as those of&nbsp; $\text{A}\{ X(f)\}$&nbsp; only if the frequency period&nbsp; $f_{\rm P}$&nbsp; is an integer multiple&nbsp; $(N)$&nbsp; of the frequency sampling interval&nbsp; $f_{\rm A}$.&nbsp;  
  
*Bei Anwendung der finiten Signaldarstellung muss stets die folgende Bedingung erfüllt sein, wobei für die natürliche Zahl&nbsp; $N$&nbsp; in der Praxis meist eine Zweierpotenz verwendet wird&nbsp; (der obigen Grafik liegt der Wert&nbsp; $N = 8$&nbsp; zugrunde):
+
When using the finite signal representation,&nbsp; the following condition must always be fulfilled,&nbsp; where in practice a power of two is usually used for the natural number&nbsp; $N$&nbsp; $($the graph above is based on the value&nbsp; $N = 8)$:
 
   
 
   
 
:$$f_{\rm P} = N \cdot f_{\rm A} \hspace{0.5cm} \Rightarrow\hspace{0.5cm} {1}/{T_{\rm A} }= N \cdot f_{\rm A} \hspace{0.5cm} \Rightarrow\hspace{0.5cm}
 
:$$f_{\rm P} = N \cdot f_{\rm A} \hspace{0.5cm} \Rightarrow\hspace{0.5cm} {1}/{T_{\rm A} }= N \cdot f_{\rm A} \hspace{0.5cm} \Rightarrow\hspace{0.5cm}
Line 133: Line 156:
  
  
Bei Einhaltung der Bedingung&nbsp; $N \cdot f_{\rm A} \cdot T_{\rm A} = 1$&nbsp; ist die Reihenfolge von Periodifizierung und Abtastung vertauschbar. Somit gilt:
+
If the condition&nbsp; $N \cdot f_{\rm A} \cdot T_{\rm A} = 1$&nbsp; is satisfied, the order of periodization and sampling can be interchanged. Thus:
 
   
 
   
 
:$${\rm A}\{{\rm P}\{x(t)\}\} = {\rm P}\{{\rm A}\{x(t)\}\}\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm}
 
:$${\rm A}\{{\rm P}\{x(t)\}\} = {\rm P}\{{\rm A}\{x(t)\}\}\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm}
Line 139: Line 162:
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Fazit:}$&nbsp;
+
$\text{Conclusions:}$&nbsp;
*Die Zeitfunktion&nbsp; $\text{P}\{ \text{A}\{ x(t)\}\}$&nbsp; besitzt die Periode&nbsp; $T_{\rm P} = N \cdot T_{\rm A}$.  
+
#The time function&nbsp; $\text{P}\{ \text{A}\{ x(t)\}\}$&nbsp; has the period&nbsp; $T_{\rm P} = N \cdot T_{\rm A}$.  
*Die Periode im Frequenzbereich ist&nbsp; $f_{\rm P} = N \cdot f_{\rm A}$.  
+
#The period in the frequency domain is&nbsp; $f_{\rm P} = N \cdot f_{\rm A}$.  
*Zur Beschreibung des diskretisierten Zeit– und Frequenzverlaufs reichen somit jeweils&nbsp; $N$&nbsp; '''komplexe Zahlenwerte''' in Form von Impulsgewichten aus.}}
+
#For the description of the discretized time and frequency course&nbsp; $N$&nbsp; '''&raquo;complex numerical values&laquo;''' in the form of pulse weights are sufficient in each case.}}
  
  
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\text{Beispiel 2:}$&nbsp;
+
$\text{Example 2:}$&nbsp;
Es liegt ein zeitbegrenztes (impulsartiges) Signal&nbsp; $x(t)$&nbsp; in abgetasteter Form vor, wobei  der Abstand zweier Abtastwerte&nbsp; $T_{\rm A} = 1\, {\rm &micro; s}$&nbsp; beträgt:
+
A time-limited&nbsp; $($pulse-like$)$&nbsp; signal&nbsp; $x(t)$&nbsp; is present in sampled form,&nbsp; where the distance between two samples is&nbsp; $T_{\rm A} = 1\, {\rm &micro; s}$:&nbsp;  
*Nach einer diskreten Fouriertransformation mit&nbsp; $N = 512$&nbsp; liegt das Spektrum&nbsp; $X(f)$&nbsp; in Form von Abtastwerten im Abstand&nbsp; $f_{\rm A} = (N \cdot T_{\rm A})^{–1} \approx 1.953\,\text{kHz} $&nbsp; vor.
+
 
*Vergrößert man den DFT&ndash;Parameter auf&nbsp;  $N= 2048$, so ergibt sich ein feineres Frequenzraster mit&nbsp; $f_{\rm A} \approx 488\,\text{Hz}$.}}
+
*After a discrete Fourier transform with&nbsp; $N = 512$&nbsp; the spectrum&nbsp; $X(f)$&nbsp; is available as samples with the distance&nbsp; $f_{\rm A} = (N \cdot T_{\rm A})^{–1} \approx 1.953\,\text{kHz} $.&nbsp;
 +
 +
*Increasing the DFT parameter to&nbsp;  $N= 2048$ results&nbsp; in a finer frequency grid with&nbsp; $f_{\rm A} \approx 488\,\text{Hz}$.}}
  
  
  
===Diskrete Fouriertransformation===
+
===Discrete Fourier Transform===
  
Aus dem herkömmlichen&nbsp; &bdquo;ersten Fourierintegral&rdquo;
+
From the conventional&nbsp; &raquo;first Fourier integral&laquo;
 
   
 
   
 
:$$X(f) =\int_{-\infty
 
:$$X(f) =\int_{-\infty
 
  }^{+\infty}x(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm} f  \hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.1cm} {\rm d}t$$
 
  }^{+\infty}x(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm} f  \hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.1cm} {\rm d}t$$
  
entsteht durch Diskretisierung&nbsp; $(\text{d}t \to T_{\rm A}$,&nbsp;  $t \to \nu \cdot T_{\rm A}$,&nbsp;  $f \to \mu \cdot f_{\rm A}$,&nbsp;  $T_{\rm A} \cdot f_{\rm A} = 1/N)$&nbsp; die abgetastete und periodifizierte Spektralfunktion
+
&raquo;discretization&laquo;&nbsp; $(\text{d}t \to T_{\rm A}$,&nbsp;  $t \to \nu \cdot T_{\rm A}$,&nbsp;  $f \to \mu \cdot f_{\rm A}$,&nbsp;  $T_{\rm A} \cdot f_{\rm A} = 1/N)$&nbsp; yields the sampled and periodized spectral function
 
   
 
   
 
:$${\rm P}\{X(\mu \cdot f_{\rm A})\} = T_{\rm A} \cdot \sum_{\nu = 0 }^{N-1}
 
:$${\rm P}\{X(\mu \cdot f_{\rm A})\} = T_{\rm A} \cdot \sum_{\nu = 0 }^{N-1}
Line 166: Line 191:
 
  \cdot \hspace{0.05cm}\mu /N} \hspace{0.05cm}.$$
 
  \cdot \hspace{0.05cm}\mu /N} \hspace{0.05cm}.$$
  
Es ist berücksichtigt, dass aufgrund der Diskretisierung jeweils die periodifizierten Funktionen einzusetzen sind.  
+
It is taken into account that due to the discretization the periodized functions have to be used in each case.  
  
Aus Gründen einer vereinfachten Schreibweise nehmen wir nun die folgenden Substitutionen vor:
+
For reasons of a simplified notation we now make the following substitutions:
*Die&nbsp; $N$&nbsp; '''Zeitbereichskoeffizienten'''&nbsp; seien mit der Laufvariablen&nbsp; $\nu = 0$, ... , $N - 1$:
+
*Let the&nbsp; $N$&nbsp; &raquo;'''time-domain coefficients'''&laquo;&nbsp; be associated with the indexing variable&nbsp; $\nu = 0$, ... , $N - 1$:
 
:$$d(\nu) =
 
:$$d(\nu) =
 
   {\rm P}\left\{x(t)\right\}{\big|}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm A}}\hspace{0.05cm}.$$
 
   {\rm P}\left\{x(t)\right\}{\big|}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm A}}\hspace{0.05cm}.$$
*Die&nbsp; $N$&nbsp; '''Frequenzbereichskoeffizienten'''&nbsp; seien mit der Laufvariablen&nbsp; $\mu = 0,$ ... , $N$ – 1:
+
*Let the&nbsp; $N$&nbsp; &raquo;'''frequency-domain coefficients'''&laquo;&nbsp; be associated with the indexing variable&nbsp; $\mu = 0,$ ... , $N$ – 1:
 
:$$D(\mu) = f_{\rm A} \cdot
 
:$$D(\mu) = f_{\rm A} \cdot
 
   {\rm P}\left\{X(f)\right\}{\big|}_{f \hspace{0.05cm}= \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm A}}\hspace{0.05cm}.$$
 
   {\rm P}\left\{X(f)\right\}{\big|}_{f \hspace{0.05cm}= \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm A}}\hspace{0.05cm}.$$
*Abkürzend wird für den von&nbsp; $N$&nbsp; abhängigen&nbsp;  '''komplexen Drehfaktor'''&nbsp; geschrieben:
+
*Abbreviation for the&nbsp; &raquo;'''complex rotation factor'''&laquo;&nbsp; depending on&nbsp; $N$&nbsp; is written:
 
:$$w  = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N}
 
:$$w  = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N}
 
  = \cos \left(  {2 \pi}/{N}\right)-{\rm j} \cdot \sin \left(  {2 \pi}/{N}\right)
 
  = \cos \left(  {2 \pi}/{N}\right)-{\rm j} \cdot \sin \left(  {2 \pi}/{N}\right)
 
  \hspace{0.05cm}.$$  
 
  \hspace{0.05cm}.$$  
  
[[Datei:P_ID2730__Sig_T_5_1_S5_neu.png|right|frame|Zur Definition der Diskreten Fouriertransformation (DFT) mit&nbsp; $N=8$]]
 
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Definition:}$&nbsp;
+
$\text{Definition:}$&nbsp; The term&nbsp;  &raquo;'''Discrete Fourier Transform'''&laquo;&nbsp; $\rm (DFT)$&nbsp; means the calculation of the&nbsp; $N$&nbsp; spectral coefficients&nbsp; $D(\mu)$&nbsp; from the&nbsp; $N$&nbsp; signal coefficients&nbsp; $d(\nu)$:
 
+
[[File:P_ID2730__Sig_T_5_1_S5_neu.png|right|frame|On the definition of the Discrete Fourier Transform&nbsp; $\rm (DFT)$&nbsp; with&nbsp; $N=8$]]
Unter dem Begriff&nbsp;  '''Diskrete Fouriertransformation'''&nbsp; (kurz '''DFT''')&nbsp; versteht man die Berechnung der&nbsp; $N$&nbsp; Spektralkoeffizienten&nbsp; $D(\mu)$&nbsp; aus den&nbsp; $N$&nbsp; Signalkoeffizienten&nbsp; $d(\nu)$:
 
 
   
 
   
 
:$$D(\mu) = \frac{1}{N} \cdot \sum_{\nu = 0 }^{N-1}
 
:$$D(\mu) = \frac{1}{N} \cdot \sum_{\nu = 0 }^{N-1}
 
   d(\nu)\cdot  {w}^{\hspace{0.05cm}\nu \hspace{0.03cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}. $$
 
   d(\nu)\cdot  {w}^{\hspace{0.05cm}\nu \hspace{0.03cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}. $$
  
In der Grafik erkennt man  an einem Beispiel 
 
*die&nbsp; $N = 8$&nbsp; Signalkoeffizienten&nbsp; $d(\nu)$&nbsp; an der blauen Füllung,
 
*die&nbsp; $N = 8$&nbsp; Spektralkoeffizienten&nbsp; $D(\mu)$&nbsp; an der grünen Füllung.}}
 
  
  
===Inverse Diskrete Fouriertransformation===
 
  
Die Inverse Diskrete Fouriertransformation (IDFT) beschreibt das&nbsp; &bdquo;zweite Fourierintegral&rdquo;
+
In the graph you can see in an example
 +
#the&nbsp; $N = 8$&nbsp; signal coefficients&nbsp; $d(\nu)$&nbsp; at the blue filling,
 +
#the&nbsp; $N = 8$&nbsp; spectral coefficients&nbsp; $D(\mu)$&nbsp; at the green filling.}}
 +
 
 +
 
 +
===Inverse Discrete Fourier Transform===
 +
 
 +
The&nbsp; &raquo;Inverse Discrete Fourier Transform&laquo;&nbsp; describes the&nbsp; &raquo;second Fourier integral&laquo;:
 
   
 
   
 
:$$\begin{align*}x(t) & =  \int_{-\infty
 
:$$\begin{align*}x(t) & =  \int_{-\infty
Line 202: Line 228:
 
  t}\hspace{0.1cm} {\rm d}f\end{align*}$$
 
  t}\hspace{0.1cm} {\rm d}f\end{align*}$$
  
in diskretisierter Form: &nbsp; $d(\nu) =
+
in discretized form: &nbsp;  
 +
:$$d(\nu) =
 
   {\rm P}\left\{x(t)\right\}{\big|}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm
 
   {\rm P}\left\{x(t)\right\}{\big|}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm
   A}}\hspace{0.01cm}.$
+
   A}}\hspace{0.01cm}.$$
  
[[Datei:P_ID2731__Sig_T_5_1_S6_neu.png|right|frame|Zur Definition der IDFT mit&nbsp; $N=8$]]
 
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Definition:}$&nbsp;
+
$\text{Definition:}$&nbsp; The term&nbsp;  &raquo;'''Inverse Discrete Fourier Transform&laquo;'''&nbsp; $\rm (IDFT)$&nbsp; refers to the calculation of the signal coefficients&nbsp; $d(\nu)$&nbsp; from the spectral coefficients&nbsp; $D(\mu)$:
 
+
[[File:P_ID2731__Sig_T_5_1_S6_neu.png|right|frame|For the definition of the IDFT with&nbsp; $N=8$]]
Unter dem Begriff&nbsp;  '''Inverse Diskrete Fouriertransformation'''&nbsp; (kurz '''IDFT''')&nbsp; versteht man die Berechnung der Signalkoeffizienten&nbsp; $d(\nu)$&nbsp; aus den Spektralkoeffizienten&nbsp; $D(\mu)$:
 
 
 
:$$d(\nu) =  \sum_{\mu = 0 }^{N-1}
 
:$$d(\nu) =  \sum_{\mu = 0 }^{N-1}
 
  D(\mu) \cdot  {w}^{-\nu \hspace{0.03cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$
 
  D(\mu) \cdot  {w}^{-\nu \hspace{0.03cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$
  
Mit den Laufvariablen&nbsp; $\nu = 0,  \hspace{0.05cm}\text{...} \hspace{0.05cm}, N-1$&nbsp; und&nbsp; $\mu = 0,  \hspace{0.05cm}\text{...} \hspace{0.05cm}, N-1$&nbsp; gilt auch hier:
+
With the indexing variables&nbsp;  
:$$d(\nu) =
+
*$\nu = 0,  \hspace{0.05cm}\text{...} \hspace{0.05cm}, N-1$,
 +
*$\mu = 0,  \hspace{0.05cm}\text{...} \hspace{0.05cm}, N-1$,:
 +
 
 +
 
 +
then holds:  
 +
#$d(\nu) =
 
   {\rm P}\left\{x(t)\right\}{\big \vert}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm
 
   {\rm P}\left\{x(t)\right\}{\big \vert}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm
   A} }\hspace{0.01cm},$$
+
   A} }\hspace{0.01cm},$
 +
#$D(\mu) = f_{\rm A} \cdot
 +
  {\rm P}\left\{X(f)\right\}{\big \vert}_{f \hspace{0.05cm}= \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm A} }
 +
  \hspace{0.01cm},$
 +
#$w  = {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N}
 +
\hspace{0.01cm}.$}}
 +
 
 
   
 
   
:$$D(\mu) = f_{\rm A} \cdot
+
A comparison between DFT and IDFT shows that exactly the same algorithm can be used. The only differences of the IDFT compared to the DFT are:
  {\rm P}\left\{X(f)\right\}{\big \vert}_{f \hspace{0.05cm}= \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm A} }
+
*The exponent of the rotation factor must be applied with different sign.
  \hspace{0.01cm},$$
+
 
 +
*With the IDFT the division by&nbsp; $N$&nbsp; is omitted.
 +
 
 +
 
 +
===Interpretation of DFT and IDFT===
 +
 
 +
The graph shows the discrete coefficients in the time and frequency domain together with the periodized continuous-time functions.
 +
 
 +
[[File:P_ID1136__Sig_T_5_1_S7_neu.png|right|frame|Time and frequency domain coefficients of the DFT]]
 +
 
 +
When using DFT or IDFT,&nbsp; it should be noted:
 +
*According to the above definitions,&nbsp; the DFT coefficients&nbsp; $d(ν)$&nbsp; and&nbsp; $D(\mu)$&nbsp; always have the unit of the time function.
 +
 
 +
*Dividing&nbsp; $D(\mu)$&nbsp; by&nbsp; $f_{\rm A}$&nbsp; gives the spectral value&nbsp; $X(\mu \cdot f_{\rm A})$.
  
:$$w  = {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N}
+
*The spectral coefficients&nbsp; $D(\mu)$&nbsp; must always be set complex to be able to consider also odd time functions.
\hspace{0.01cm}.$$}}
 
  
+
*In order to be able to transform band&ndash;pass signals in the equivalent low&ndash;pass range,&nbsp; complex time coefficients&nbsp; $d(\nu)$ are usually used.
Ein Vergleich zwischen DFT und IDFT zeigt, dass genau der gleiche Algorithmus verwendet werden kann. Die einzigen Unterschiede der IDFT gegenüber der DFT sind:
 
*Der Exponent des Drehfaktors ist mit unterschiedlichem Vorzeichen anzusetzen.
 
*Bei der IDFT entfällt die Division durch&nbsp; $N$.
 
  
 +
*The basic interval for&nbsp; $\nu$&nbsp; and&nbsp;  $\mu$&nbsp; is usually defined as the range from&nbsp; $0$&nbsp; to&nbsp; $N - 1$,&nbsp; as in the above diagram.
  
===Interpretation von DFT und IDFT===
+
*With the complex-valued number sequences&nbsp;
<br>
+
**$\langle \hspace{0.03cm}d(\nu)\hspace{0.03cm}\rangle  = \langle \hspace{0.03cm}d(0), \hspace{0.05cm}\text{...} \hspace{0.05cm} , d(N-1) \hspace{0.03cm}\rangle$,
Die Grafik zeigt die diskreten Koeffizienten im Zeit– und Frequenzbereich zusammen mit den periodifizierten zeitkontinuierlichen Funktionen.
+
**$\langle \hspace{0.03cm}D(\mu)\hspace{0.03cm}\rangle  =   \langle \hspace{0.03cm}D(0), \hspace{0.05cm}\text{...} \hspace{0.05cm} , D(N-1) \hspace{0.03cm}\rangle$:&nbsp;
  
[[Datei:P_ID1136__Sig_T_5_1_S7_neu.png|center|frame|Zeit&ndash; und Frequenzbereichskoeffizienten der DFT]]
 
  
Bei Anwendung von DFT bzw. IDFT ist zu beachten:
+
:&rArr; &nbsp; DFT and IDFT are symbolized similar to the conventional Fourier transform:
*Nach obigen Definitionen besitzen die DFT–Koeffizienten&nbsp; $d(ν)$&nbsp; und&nbsp; $D(\mu)$&nbsp; stets die Einheit der Zeitfunktion.
+
::$$\langle \hspace{0.03cm} D(\mu)\hspace{0.03cm}\rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.03cm} d(\nu) \hspace{0.03cm}\rangle  \hspace{0.05cm}.$$  
*Dividiert man&nbsp; $D(\mu)$&nbsp; durch&nbsp; $f_{\rm A}$, so erhält man den Spektralwert&nbsp; $X(\mu \cdot f_{\rm A})$.
+
*If the function&nbsp; $x(t)$&nbsp; is already limited to the range&nbsp; $0 \le t \lt N \cdot T_{\rm A}$,&nbsp; then the time coefficients output by the IDFT directly indicate the samples of the time function:  &nbsp;  
*Die Spektralkoeffizienten&nbsp; $D(\mu)$&nbsp; müssen stets komplex angesetzt werden, um auch ungerade Zeitfunktionen berücksichtigen zu können.
+
:$$d(\nu) = x(\nu \cdot T_{\rm A}).$$
*Um auch Bandpass–Signale im äquivalenten Tiefpass&ndash;Bereich transformieren zu können, verwendet man meist auch komplexe Zeitkoeffizienten&nbsp; $d(\nu)$.
+
*If&nbsp; $x(t)$&nbsp; is shifted with respect to the basic interval,&nbsp; one has to choose the assignment between&nbsp; $x(t)$&nbsp; and the coefficients&nbsp; $d(\nu)$&nbsp; as shown in&nbsp; $\text{Example 3}$.&nbsp;
*Als Grundintervall für&nbsp; $\nu$&nbsp; und&nbsp;  $\mu$&nbsp; definiert man meist – wie in obiger Grafik – den Bereich von&nbsp; $0$&nbsp; bis&nbsp; $N - 1$.
 
*Mit den komplexwertigen Zahlenfolgen&nbsp; $\langle \hspace{0.1cm}d(\nu)\hspace{0.1cm}\rangle  = \langle \hspace{0.1cm}d(0), \hspace{0.05cm}\text{...} \hspace{0.05cm} , d(N-1) \hspace{0.1cm}\rangle$  &nbsp; sowie &nbsp; $\langle \hspace{0.1cm}D(\mu)\hspace{0.1cm}\rangle  =  \langle \hspace{0.1cm}D(0), \hspace{0.05cm}\text{...} \hspace{0.05cm} , D(N-1) \hspace{0.1cm}\rangle$&nbsp; werden DFT und IDFT ähnlich wie die herkömmliche Fouriertransformation symbolisiert:
 
:$$\langle \hspace{0.1cm} D(\mu)\hspace{0.1cm}\rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.1cm} d(\nu) \hspace{0.1cm}\rangle  \hspace{0.05cm}.$$  
 
*Ist die Zeitfunktion&nbsp; $x(t)$&nbsp; bereits auf den Bereich&nbsp; $0 \le t \lt N \cdot T_{\rm A}$&nbsp; begrenzt, dann geben die von der IDFT ausgegebenen Zeitkoeffizienten direkt die Abtastwerte der Zeitfunktion an:  &nbsp; $d(\nu) = x(\nu \cdot T_{\rm A}).$
 
*Ist&nbsp; $x(t)$&nbsp; gegenüber dem Grundintervall verschoben, so muss man die im&nbsp; $\text{Beispiel 3}$&nbsp; gezeigte Zuordnung zwischen&nbsp; $x(t)$&nbsp; und den Koeffizienten&nbsp; $d(\nu)$&nbsp; wählen.
 
  
  
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\text{Beispiel 3:}$&nbsp;
+
$\text{Example 3:}$&nbsp;
Die obere Grafik zeigt den unsymmetrischen Dreieckimpuls&nbsp; $x(t)$, dessen absolute Breite kleiner ist als&nbsp; $T_{\rm P} = N \cdot T_{\rm A}$.  
+
The upper graph shows the asymmetric triangular pulse&nbsp; $x(t)$&nbsp; whose absolute width is smaller than&nbsp; $T_{\rm P} = N \cdot T_{\rm A}$.  
  
[[Datei:P_ID1139__Sig_T_5_1_S7b_neu.png|right|frame|Zur Belegung der DFT-Koeffizienten  mit&nbsp; $N=8$]]
+
[[File:EN_Sig_T_5_1_S7b_neu.png|right|frame|On assigning of the DFT coefficients with&nbsp; $N=8$]]
  
Die untere Skizze zeigt die zugeordneten DFT–Koeffizienten gültig für&nbsp;  $N = 8$
+
The sketch below shows the assigned DFT coefficients valid for&nbsp;  $N = 8$:
  
*Für&nbsp;  $\nu = 0,\hspace{0.05cm}\text{...} \hspace{0.05cm} , N/2 = 4$&nbsp; gilt&nbsp; $d(\nu) = x(\nu \cdot T_{\rm A})$:
+
*For&nbsp;  $\nu = 0,\hspace{0.05cm}\text{...} \hspace{0.05cm} , N/2 = 4$,&nbsp; &nbsp; $d(\nu) = x(\nu \cdot T_{\rm A})$ &nbsp; is valid:
  
 
:$$d(0) = x (0)\hspace{0.05cm}, \hspace{0.15cm}
 
:$$d(0) = x (0)\hspace{0.05cm}, \hspace{0.15cm}
Line 266: Line 305:
 
:$$d(3) = x (3T_{\rm A})\hspace{0.05cm}, \hspace{0.15cm}
 
:$$d(3) = x (3T_{\rm A})\hspace{0.05cm}, \hspace{0.15cm}
 
d(4) = x (4T_{\rm A})\hspace{0.05cm}.$$  
 
d(4) = x (4T_{\rm A})\hspace{0.05cm}.$$  
*Dagegen sind die Koeffizienten&nbsp; $d(5)$,&nbsp; $d(6)$&nbsp; und&nbsp; d$(7)$&nbsp; wie folgt zu setzen:
+
*The coefficients&nbsp; $d(5)$,&nbsp; $d(6)$&nbsp; and&nbsp; d$(7)$&nbsp; are to be set as follows:
  
 
:$$d(\nu) = x \big ((\nu\hspace{-0.05cm} - \hspace{-0.05cm} N ) \cdot T_{\rm  A}\big )  $$
 
:$$d(\nu) = x \big ((\nu\hspace{-0.05cm} - \hspace{-0.05cm} N ) \cdot T_{\rm  A}\big )  $$
Line 278: Line 317:
 
<br><br>
 
<br><br>
  
==Versuchsdurchführung==
+
==Exercises==
 
<br>
 
<br>
[[Datei:Aufgaben_2D-Gauss.png|right]]
+
[[File:Aufgaben_2D-Gauss.png|right]]
 +
* First select the number&nbsp; $($1,&nbsp;...$)$&nbsp; of the exercise. <br>
 +
* A description of the exercise will be displayed.
 +
*The parameter values are adjusted. <br>
 +
*Solution after pressing&nbsp; &raquo;Show solution&laquo;. <br>
 +
*The number&nbsp; "$0$"&nbsp; corresponds to a&nbsp; &raquo;Reset&laquo;:
 +
#Same setting as at program start.
 +
#Output of a&nbsp; &raquo;reset text&laquo;&nbsp; with further explanations about the applet.
  
*Wählen Sie zunächst die Nummer ('''1''', ...) der zu bearbeitenden Aufgabe.
 
*Eine Aufgabenbeschreibung wird angezeigt. Die Parameterwerte sind angepasst.
 
*Lösung nach Drücken von &bdquo;Musterlösung&rdquo;.
 
  
 +
{{BlaueBox|TEXT=
 +
'''(1)'''&nbsp; New setting:&nbsp; DFT of signal&nbsp; $\rm (b)$:&nbsp; Constant signal.&nbsp; Interpret the result in the frequency domain.&nbsp; What is the analogon of the conventional Fourier transform?}}
  
 
+
:*&nbsp;All coefficients in the time domain are&nbsp; $d(\nu)=1$.&nbsp; Thus all&nbsp; $D(\mu)=0$&nbsp; with the exception of&nbsp; $\textrm{Re}[D(0)]=1$. <br>
Die Nummer '''0''' entspricht einem &bdquo;Reset&rdquo;:
+
:*&nbsp;This corresponds to the conventional&nbsp; $($time-continuous$)$&nbsp; Fourier Transform:&nbsp; $x(t)=A\hspace{0.15cm} \circ\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm} X(f)=A\cdot \delta (f=0)$&nbsp; with&nbsp; $A=1$.
*Gleiche Einstellung wie beim Programmstart.
 
*Ausgabe eines &bdquo;Reset&ndash;Textes&rdquo; mit weiteren Erläuterungen zum Applet.
 
 
 
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(1)'''&nbsp; Neue Einstellung:&nbsp; $\text{DFT von Signal (b): Gleichsignal}$. &nbsp;Interpretieren Sie das Ergebnis im Frequenzbereich. Wie lautet das Analogon der herkömmlichen&nbsp; $\text{FT}$&nbsp;?}}
+
'''(2)'''&nbsp; Assume the obtained&nbsp; $D(\mu)$&nbsp; field and shift all coefficients one entry down.&nbsp; Which time function does the IDFT provide?
 +
}}
  
::*&nbsp;Im Zeitbereich sind alle&nbsp; $d(\nu) =1$. Im Frequenzbereich sind alle&nbsp; $D(\mu) =0$&nbsp; mit Ausnahme von&nbsp; ${\rm Re}\big [D(0)] =1$.
+
:*&nbsp;Now all&nbsp; $D(\mu)=0$,&nbsp; except for&nbsp; $\textrm{Re}[D(1)]=1$.&nbsp; The result in the time domain is a complex exponential function.
::*&nbsp;Dies entspricht bei der herkömmlichen (zeitkontinuierlichen) Fouriertransformation:&nbsp; &nbsp;$x(t) = A\hspace{0.15cm}\circ\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm}X(f) = A \cdot \delta(f=0)$&nbsp; mit&nbsp; $A=1$.
+
:*&nbsp;The real part of  the&nbsp; $d(\nu)$&nbsp; field  shows a cosine and the imaginary part a sine function.&nbsp; For each function one can see one period respectively.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(2)'''&nbsp; Gehen Sie vom erhaltenen $D(\mu)$&ndash;Feld aus und verschieben Sie alle Koeffizienten um eine Stelle nach unten. Welche Zeitfunktion liefert die&nbsp; $\rm IDFT$?&nbsp;}}
+
'''(3)'''&nbsp; Add the following coefficient to the current&nbsp; $D(\mu)$ field:&nbsp; $\textrm{Im}[D(1)]=1$.&nbsp; What are the differences compared to&nbsp; '''(2)'''&nbsp; in the time domain?
 
+
&nbsp;}}
::*&nbsp;Nun sind alle&nbsp; $D(\mu) =0$&nbsp; mit Ausnahme von&nbsp; ${\rm Re}\big [D(1)] =1$. Das Zeitbereichsergebnis ist eine komplexe Exponentialfunktion.
+
:*&nbsp;On the one hand,&nbsp; a phase shift of two support values can now be detected for the real and the imaginary parts.&nbsp; This corresponds to the phase&nbsp; $\varphi = 45^\circ$.
::*&nbsp;Der Realteil des&nbsp; $d(\nu)$&ndash;Feldes zeigt einen Cosinus und der Imaginärteil eine Sinusfunktion. Bei beiden Funktionen erkennt man jeweils eine Periode.
+
:*&nbsp;On the other hand,&nbsp; the amplitudes of the real and the imaginary part were each increased by the factor&nbsp; $\sqrt{2}$.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(3)'''&nbsp; Ergänzen Sie das aktuelle $D(\mu)$&ndash;Feld&nbsp; um den Koeffizienten&nbsp; ${\rm Im}\big [D(1)] =1$. Welche Unterschiede erkennt man gegenüber '''(2)''' im Zeitbereich?&nbsp;}}
+
'''(4)'''&nbsp; Set the&nbsp; $D(\mu)$ field&nbsp; to zero except for&nbsp; $\textrm{Re}[D(1)]=1$.&nbsp; Which additional&nbsp; $D(\mu)$&nbsp; coefficient yields a real&nbsp; $d(\nu)$&nbsp; field?
 +
}}
  
::*&nbsp;Zum einen erkennt man nun  bei Realteil und Imaginärteil eine Phasenverschiebung um zwei Stützwerte. Dies entspricht der Phase&nbsp; $\varphi = 45^\circ$.
+
:*&nbsp;By trial and error,&nbsp; one can see that&nbsp; $\textrm{Re}[D(15)]=1$&nbsp; must apply additionally.&nbsp; Then the&nbsp; $d(\nu)$&nbsp; field describes a cosine.
::*&nbsp;Zudem wurden die Amplituden von Real&ndash; und Imaginärteil jeweils um den Faktor&nbsp; $\sqrt{2}$&nbsp; vergrößert.
+
:*&nbsp;The following applies to the conventional&nbsp; $($time continuous$)$&nbsp; Fourier transform:&nbsp; $x(t)=2\cdot \cos(2\pi \cdot f_0 \cdot t)\hspace{0.15cm}\circ\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm}
 +
X(f)=\delta (f-f_0)+\delta (f+f_0)$.
 +
:*&nbsp;The entry&nbsp; $D(1)$&nbsp; is representative of the frequency&nbsp; $f_0$&nbsp; and due to the periodicity with&nbsp; $N=16$&nbsp; the frequency&nbsp; $-f_0$&nbsp; is expressed by&nbsp; $D(15)=D(-1)$.  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(4)'''&nbsp; Setzen Sie das $D(\mu)$&ndash;Feld auf Null mit Ausnahme von&nbsp; ${\rm Re}\big [D(1)] =1$. Durch welchen zusätzlichen $D(\mu)$&ndash;Koeffizienten erhält man ein reelles&nbsp; $d(\nu)$&ndash;Feld?}}
+
'''(5)'''&nbsp; According to the IDFT in the&nbsp; $d(\nu)$&nbsp; field, by which&nbsp; $D(\mu)$&nbsp; field does one obtain a real cosine function  with the amplitude&nbsp; $A=1$?}}
  
::*&nbsp;Durch Probieren oder Nachdenken erkennt man, dass auch&nbsp; ${\rm Re}\big [D(15)] =1$&nbsp; gesetzt werden muss. Dann beschreibt das $d(\nu)$&ndash;Feld einen Cosinus.
+
:*&nbsp;Like the conventional Fourier transform the discrete Fourier Transform is linear&nbsp; &rArr; &nbsp;  $D(1)=D(15)=0.5$.
::*&nbsp;Für die herkömmliche (zeitkontinuierliche) Fouriertransformation gilt:&nbsp; &nbsp;$x(t) = 2 \cdot \cos(2\pi \cdot f_0 \cdot t)\hspace{0.15cm}\circ\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm}X(f) = \delta(f -f_0)+\delta(f +f_0)$.
 
::*&nbsp;Das Feld&nbsp; $D(1)$&nbsp; steht für die Frequenz&nbsp; $+f_0$&nbsp; und aufgrund der Periodizät mit&nbsp; $N=16$&nbsp; wird die Frequenz&nbsp; $-f_0$&nbsp; durch&nbsp; $D(15) = D(-1)$&nbsp; ausgedrückt.
 
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(5)'''&nbsp; Mit welchem $D(\mu)$&ndash;Feld erhält man nach der&nbsp; $\rm IDFT$&nbsp; im&nbsp; $d(\nu)$&ndash;Feld eine reelle Cosinusfunktion mit der Amplitude $A=1$?}}
+
'''(6)'''&nbsp; New setting:&nbsp; DFT of signal&nbsp; $\rm (e)$:&nbsp; Cosine signal and subsequent signal shifts.&nbsp; What are the effects of these shifts in the frequency domain?
 +
}}
  
::*&nbsp;Die Diskrete Fouriertransformation ist ebenso wie die herkömmliche Fouriertransformation linear &nbsp; &rArr; &nbsp; $D(1) = D(15)=0.5$.
+
:*&nbsp;A shift in the time domain changes the cosine signal to a&nbsp; "harmonic oscillation"&nbsp; with arbitrary phase.
 +
:*&nbsp;The&nbsp; $D(\mu)$&nbsp; field is still zero except for&nbsp; $D(1)$&nbsp; and&nbsp; $D(15)$.&nbsp; The absolute values&nbsp; $|D(1)|$&nbsp; and&nbsp; $|D(15)|$&nbsp; also remain the same.
 +
:*&nbsp;The only change concerns the phase,&nbsp; i.e. the different distribution of the absolute values between the real and imaginary part.  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(6)'''&nbsp; Neue Einstellung:&nbsp; $\text{DFT von Signal (e): Cosinussignal}$ und anschließende Signalverschiebungen. &nbsp;Was bewirken diese Verschiebungen im Frequenzbereich?&nbsp;}}
+
'''(7)'''&nbsp; New setting:&nbsp; DFT of signal&nbsp; $\rm (f)$:&nbsp; Sinusoidal signal.&nbsp; Interpret the result in the frequency domain.&nbsp; What is the analogon of the conventional Fourier Transform?
 +
}}
  
::*&nbsp;Eine Verschiebung im Zeitbereich verändert das Cosinussignal zu einer &bdquo;Harmonischen Schwingung&rdquo; mit beliebiger Phase.
+
:*&nbsp;The sine signal results from the cosine signal by applying four time shifts.&nbsp; Therefore all statements of&nbsp; '''(6)'''&nbsp; are still valid.
::*&nbsp;Das&nbsp; $D(\mu)$&ndash;Feld ist weiterhin Null bis auf&nbsp; $D(1)$&nbsp; und&nbsp; $D(15)$. Die Beträge &nbsp; $|D(1)|$&nbsp; und&nbsp; $|D(15)|$&nbsp; bleiben ebenfalls gleich.
+
:*&nbsp;For the conventional (time continuous) Fourier transform it holds that&nbsp; $x(t)= \sin(2\pi \cdot f_0 \cdot t)\hspace{0.15cm}\circ\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm}
::*&nbsp;Die alleinige Veränderung betrifft die Phase, also die unterschiedliche Aufteilung der Beträge auf Real&ndash; und Imaginärteil.  
+
X(f)=j/2 \cdot [\delta (f+f_0)-\delta (f-f_0)]$.
 +
:*&nbsp;The coefficient&nbsp; $D(1)$ &nbsp; $\Rightarrow$ &nbsp;$($frequency:&nbsp; $+f_0)$&nbsp; is imaginary and has the imaginary part&nbsp; $-0.5$.&nbsp; Accordingly,&nbsp; $\textrm{Im}[D(15)]=+0.5$ &nbsp; &rArr; &nbsp; $($frequency:&nbsp; $-f_0)$&nbsp; applies.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(7)'''&nbsp; Neue Einstellung:&nbsp; $\text{DFT von Signal (f): Sinussignal}$. &nbsp;Interpretieren Sie das Ergebnis im Frequenzbereich. Wie lautet das Analogon der herkömmlichen&nbsp; $\text{FT}$&nbsp;?}}
+
'''(8)'''&nbsp; New setting:&nbsp; DFT of signal&nbsp; $\rm (g)$:&nbsp; Cosine signal (two periods).&nbsp; Interpret the result in comparison to exercise&nbsp; '''(5)'''.
 +
}}
  
::*&nbsp;Das Sinussignal ergibt sich aus dem Cosinussignal durch vier Zeitverschiebungen. Deshalb gelten alle Aussagen von '''(6)''' weiterhin.
+
:*&nbsp;Here the time continuous Fourier transform reads&nbsp; $x(t)=\cos(2\pi \cdot (2 f_0) \cdot t)\hspace{0.15cm}\circ\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm}X(f)=0.5 \cdot \delta (f- 2 f_0)+0.5 \cdot \delta (f+ 2 f_0)$.
::*&nbsp;Für die herkömmliche (zeitkontinuierliche) Fouriertransformation gilt:&nbsp; &nbsp;$x(t) = \sin(2\pi \cdot f_0 \cdot t)\hspace{0.15cm}\circ\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm}X(f) = {\rm j}/2 \cdot \big [\delta(f +f_0)-\delta(f -f_0)\big ]$.
+
:*&nbsp;$D(2)$&nbsp; is representative of the frequency&nbsp; $2 f_0$.&nbsp; Due to the periodicity,&nbsp; $D(14)=D(-2)$: &nbsp; $D(2)=D(14)=0.5$ is representative of the frequency&nbsp; $-2 f_0$.
::*&nbsp;Der Koeffizient&nbsp; $D(1)$ &nbsp; &rArr; &nbsp; $($Frequenz: $+f_0)$&nbsp; ist imaginär und hat den Imaginärteil&nbsp; $-0.5$. Entsprechend gilt&nbsp; ${\rm Im}\big [D(15)] =+0.5$ &nbsp; &rArr; &nbsp; $($Frequenz: $-f_0)$.
 
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(8)'''&nbsp; Neue Einstellung:&nbsp; $\text{DFT von Signal (g): Cosinussignal (zwei Perioden)}$. &nbsp;Interpretieren Sie das Ergebnis im Vergleich zur Aufgabe &nbsp;'''(5)'''.}}
+
'''(9)'''&nbsp; Now examine the case DFT of a sinodial signal (two periods).&nbsp; Which modifications do you need to make in the time domain?&nbsp; Interpret the result.
 +
}}
  
::*&nbsp;Hier lautet die zeitkontinuierliche Fouriertransformation:&nbsp; &nbsp;$x(t) = \cos(2\pi \cdot (2f_0) \cdot  t)\hspace{0.15cm}\circ\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm}X(f) = 0.5 \cdot \delta(f -2 f_0)+0.5 \cdot \delta(f +2f_0)$.
+
:*&nbsp;The desired signal can be obtained from the DFT of signal&nbsp; $\rm (g)$:&nbsp; Cosine signal (two periods) with two shifts.&nbsp; With the result of&nbsp; '''(7)''':&nbsp; Four shifts.
::*&nbsp;Für die Frequenz&nbsp; $2f_0$&nbsp;steht das Feld&nbsp; $D(2)$&nbsp; und für die Frequenz&nbsp; $-2f_0$&nbsp;aufgrund der Periodizät das Feld&nbsp; $D(14) = D(-2)$&nbsp;: &nbsp; $D(2) = D(14) = 0.5$.
+
:*&nbsp;The DFT result is accordingly&nbsp; $\textrm{Im}[D(2)]=-0.5$&nbsp; and&nbsp; $\textrm{Im}[D(14)]=+0.5$.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(9)'''&nbsp; Untersuchen Sie nun den Fall&nbsp; $\text{DFT von Sinussignal (zwei Perioden)}$. Welche Einstellung müssen Sie vornehmen?&nbsp;Interpretieren Sie das Ergebnis.}}
+
'''(10)'''&nbsp; New setting: DFT of signal&nbsp; $\rm (h)$:&nbsp; Alternating time coefficients.&nbsp; Interpret the DFT result.}}
  
::*&nbsp;Zum gewünschten Signal kommt man von&nbsp; $\text{DFT von Signal (g): Cosinussignal (zwei Perioden)}$&nbsp; mit zwei Verschiebungen. Bei&nbsp; '''(7)''':&nbsp; Vier Verschiebungen.  
+
:*&nbsp;Here, the time continuous Fourier transform is given by:&nbsp; $x(t)=\cos(2\pi \cdot (8 f_0) \cdot t)\hspace{0.15cm}\circ\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm}
::*&nbsp;&nbsp;Das DFT&ndash;Ergebnis lautet dementsprechend:&nbsp; ${\rm Im}\big [D(2)] =-0.5$&nbsp; und&nbsp; ${\rm Im}\big [D(14)] =+0.5$.
+
X(f)=0.5 \cdot \delta (f- 8 f_0)+0.5 \cdot \delta (f+ 8 f_0)$.
 +
:*&nbsp;$8 f_0$ is the highest frequency that can be displayed with&nbsp; $N=16$&nbsp; in the DFT.&nbsp; There are only two sampled values per period, namely $+1$ and $-1$.
 +
:*&nbsp;Difference to exercise&nbsp; '''(5)''':&nbsp; $D(1)=0.5$&nbsp; now becomes&nbsp; $D(8)=0.5$.&nbsp; Likewise,&nbsp; $D(15)=0.5$&nbsp; is shifted to&nbsp; $D(8)=0.5$.&nbsp; Final result:&nbsp; $D(8)=1$.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(10)'''&nbsp; Neue Einstellung:&nbsp; $\text{DFT von (h) Alternierende Zeitkoeffizienten}$. Interpretieren Sie das DFT&ndash;Ergebnis.}}
+
'''(11)'''&nbsp; What are the differences between the two settings DFT from signal&nbsp; $\rm (i)$:&nbsp; Dirac delta impulse  and &nbsp;  IDFT from spectrum&nbsp; $\rm (I)$:&nbsp; Dirac delta spectrum?
 +
}}
  
::*&nbsp;Hier lautet die zeitkontinuierliche Fouriertransformation:&nbsp; &nbsp;$x(t) = \cos(2\pi \cdot (8f_0) \cdot  t)\hspace{0.15cm}\circ\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm}X(f) = 0.5 \cdot \delta(f -8 f_0)+0.5 \cdot \delta(f +8f_0)$.
+
:*&nbsp;None! In the first case, all coefficients are&nbsp; $D(\mu)=1$ (real);&nbsp; in the second case, however, equivalently&nbsp; $d(\nu)=1$ (real).
::*&nbsp;$8f_0$&nbsp; ist die höchste mit&nbsp; $N=16$&nbsp; in der DFT darstellbare Frequenz. Pro Periodendauer gibt es nur zwei Abtastwerte, nämlich&nbsp; $+1$&nbsp; und&nbsp; $-1$.
 
::*&nbsp;Unterschied zur Teilaufgabe&nbsp; '''(5)''': Aus&nbsp; $D(1) =0.5$&nbsp; wird nun&nbsp; $D(8) =0.5$. Ebenso verschiebt sich&nbsp; $D(15) =0.5$&nbsp; auf&nbsp; $D(8) =0.5$. &nbsp; Endergebnis:&nbsp; $D(8) =1$.
 
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(11)'''&nbsp; Welche Unterschiede erhält man mit den beiden Einstellungen &nbsp; $\text{DFT von Signal (i): Diracimpuls}$&nbsp; &nbsp; sowie&nbsp;&nbsp; $\text{IDFT von Spektrum (I): Diracspektrum}$&nbsp;?}}
+
'''(12)'''&nbsp; Are there differences in shifting the real&nbsp; "$1$"&nbsp; in the according input fields by one place at a time, that is for&nbsp; $d(\nu = 1)=1$&nbsp; and&nbsp; $D(\mu = 1)=1$?
 +
}}
  
::*&nbsp;Keine! Im ersten Fall sind alle Koeffizienten&nbsp; $D(\mu) = 1$&nbsp;(reell); im zweiten Fall dagegen in äquivalenter Weise die  Koeffizienten&nbsp; $d(\nu) = 1$&nbsp;(reell).
+
:*&nbsp;The first case &nbsp;$\Rightarrow$&nbsp; $\textrm{Re}[d(\nu = 1)]=1$&nbsp; results in the complex exponential function in the frequency domain given by&nbsp; $X(f)= \textrm{e}^{-{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm} 2 \pi\hspace{0.05cm}\cdot\hspace{0.05cm} f/f_0}$&nbsp; with negative sign.
 +
:*&nbsp;The second case&nbsp; $\Rightarrow$&nbsp; $\textrm{Re}[D(\mu = 1)]=1$ results in the complex exponential function in the time domain given by&nbsp; $x(t)= \textrm{e}^{+{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm} 2 \pi\hspace{0.05cm}\cdot\hspace{0.05cm} f_0\cdot t}$&nbsp; with positive sign.
 +
:*&nbsp;<i>Note:</i>&nbsp; With&nbsp; $\textrm{Re}[D(\mu=15)]=1$&nbsp; the result in the time domain would also be a complex exponential function&nbsp;  $x(t)= \textrm{e}^{-{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm} 2 \pi\hspace{0.05cm}\cdot\hspace{0.05cm} f_0\hspace{0.05cm}\cdot\hspace{0.05cm} t}$ with negative sign.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(12)'''&nbsp; Gibt es Unterschiede, wenn man im jeweiligen Eingabefeld die reelle&nbsp; $1$&nbsp; um jeweils eine Stelle nach unten verschiebt, also&nbsp; $d(\nu=1) = 1$&nbsp; bzw.&nbsp; $D(\mu=1) = 1$?}}
+
'''(13)'''&nbsp; New setting: DFT of signal&nbsp; $\rm (k)$:&nbsp; Triangle pulse.&nbsp; Interpret the&nbsp; $d(\nu)$&nbsp; assignment under the assumption&nbsp; $T_\textrm{A} = 1$ ms.}}
::*&nbsp;Im ersten Fall&nbsp; &rArr; &nbsp; ${\rm Re}\big [d(\nu=1)] = 1$&nbsp; ergibt sich im Frequenzbereich die komplexe Exponentialfunktion &nbsp; &rArr; &nbsp; $X(f) = {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}2\pi \hspace{0.05cm}\cdot\hspace{0.05cm} f/f_0}$&nbsp; mit negativem Vorzeichen.
 
::*&nbsp;Im zweiten Fall&nbsp; &rArr; &nbsp; ${\rm Re}\big [D(\mu=1)] = 1$&nbsp; ergibt sich im Zeitbereich die komplexe Exponentialfunktion &nbsp; &rArr; &nbsp; $x(t) = {\rm e}^{+{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}2\pi \hspace{0.05cm}\cdot\hspace{0.05cm} f_0 \hspace{0.05cm}\cdot\hspace{0.05cm}  t}$&nbsp; mit positivem Vorzeichen.
 
::*&nbsp;''Hinweis'': &nbsp; Mit&nbsp; ${\rm Re}\big [D(\mu=15)] = 1$&nbsp; ergäbe sich auch im Zeitbereich die komplexe Exponentialfunktion &nbsp; &rArr; &nbsp; $x(t) = {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}2\pi \hspace{0.05cm}\cdot\hspace{0.05cm} f_0 \hspace{0.05cm}\cdot\hspace{0.05cm}  t}$&nbsp; mit negativem Vorzeichen.
 
  
{{BlaueBox|TEXT=
+
:*&nbsp;Change the display to "absolute value".&nbsp; $x(t)$ is symmetrical around&nbsp; $t=0$&nbsp; and extends from&nbsp; $-8 \cdot T_\textrm{A} = -8$&nbsp; ms to&nbsp; $+8 \cdot T_\textrm{A}= +8$&nbsp; ms.  
'''(13)'''&nbsp; Neue Einstellung:&nbsp; $\text{DFT von Signal  (k): Dreieckimpuls}$. Interpretieren Sie die&nbsp; $d(\nu)$&ndash;Belegungunter der Annahme&nbsp; $T_{\rm A} = 1 \ \rm ms$.}}
+
:*&nbsp;$d(\nu)$&nbsp; assignment:&nbsp; $d(0)=x(0)=1$,&nbsp; $d(1)=x(T_\textrm{A})=0.875$, ... ,&nbsp; $d(8)=x(8 T_\textrm{A})=0$,&nbsp; $d(9)=x(-7 T_\textrm{A})=0.125$, ... ,&nbsp; $d(15)=x(-T_\textrm{A})=0.875$.
 
 
::*&nbsp;Wählen Sie die Betragsdarstellung. $x(t)$&nbsp; ist symmetrisch um&nbsp; $t=0$&nbsp; und erstreckt sich von&nbsp; $-8 \cdot T_{\rm A} = -8 \ \rm ms$&nbsp; bis&nbsp; $+8 \cdot T_{\rm A} = +8 \ \rm ms$.  
 
::* $d(\nu)$&ndash;Belegung:&nbsp; &nbsp; $d(0)=x(0)= 1$,&nbsp;$d(1)=x(T_{\rm A})= 0.875$, ... , &nbsp;$d(8)=x(8T_{\rm A})= 0$, &nbsp;$d(9)=x(-7T_{\rm A})= 0.125$, ..., &nbsp;$d(15)=x(-T_{\rm A})= 0.875$.
 
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(14)'''&nbsp; Gleiche Einstellung wie bei '''(13)'''. Interpretieren Sie das DFT&ndash;Ergebnis, insbesondere die Koeffizienten $D(0)$,&nbsp; $D(1)$,&nbsp; $D(2)$&nbsp; und &nbsp;$D(15)$.}}
+
'''(14)'''&nbsp; Same setting as&nbsp;  '''(13)'''.&nbsp; Interpret the DFT result, especially the coefficients&nbsp; $D(0)$,&nbsp; $D(1)$,&nbsp; $D(2)$&nbsp; and&nbsp; $D(15)$.}}
  
::* Im Frequenzbereich steht &nbsp;$D(0)$&nbsp; für die Frequenz &nbsp;$f= 0$&nbsp; und &nbsp;$D(1)$&nbsp; und &nbsp;$D(15)$&nbsp; für die Frequenzen &nbsp;$\pm f_{\rm A}$. Es gilt &nbsp;$f_{\rm A} = 1/(N \cdot T_{\rm A}) = 62.5\text{ Hz}$.
+
:* In the frequency range&nbsp; $D(0)$&nbsp; stands for the frequency&nbsp; $f=0$&nbsp; and&nbsp; $D(1)$&nbsp; and&nbsp; $D(15)$&nbsp; for the frequencies&nbsp; $\pm f_\textrm{A}$.&nbsp; It holds that&nbsp; $f_\textrm{A}= 1/ (N\cdot T_\textrm{A})=62.5$&nbsp; Hz.
::* Für den Wert des kontinuierlichen Spektrums bei &nbsp;$f=0$&nbsp; gilt &nbsp;$X(f=0)=D(0)/f_{\rm A} = 0.5/(0.0625\text{ kHz}) = 8\cdot \text{ kHz}^{-1}$.
+
:* For the value of the continuous spectrum at $f=0$ the following applies: &nbsp; $X(f=0)=D(0)/f_\textrm{A} = 0.5/ (0.0625$ kHz$)=8\cdot \textrm{kHz}^{-1}$.
::*Die erste Nullstelle des &nbsp;${\rm si}^2$&ndash;förmigen Spektrums &nbsp;$X(f)$&nbsp; tritt bei &nbsp;$2 \cdot f_{\rm A}= 125\text{ Hz}$ auf. Die weiteren Nullstellen sind äquidistant.
+
:* The first zero of the&nbsp; $\textrm{si}^2$&ndash;shaped spectrum&nbsp; $X(f)$&nbsp; occurs at&nbsp; $2\cdot f_\textrm{A} = 125$ Hz.&nbsp; The other zeros are equidistant.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(15)'''&nbsp; Neue Einstellung:&nbsp; $\text{DFT von Signal  (i): Rechteckimpuls}$. Interpretieren Sie die dargestellten Ergebnisse.}}
+
'''(15)'''&nbsp; New setting: DFT of signal&nbsp; $\rm (i)$:&nbsp; Rectangular pulse.&nbsp; Interpret the displayed results.}}
 
+
:*&nbsp;The set (symmetrical) rectangle extends over&nbsp; $\pm 4 \cdot T_\textrm{A}$.&nbsp; At the edges, the time coefficients are only half as large:&nbsp; $d(4)=d(12)=0.5$.
::*&nbsp;Das eingestellte (symmetrische) Rechteck erstreckt sich über&nbsp; $\pm 4 \cdot T_{\rm A}$. An den Rändern sind die Zeitkoeffizienten nur halb so groß: &nbsp;$d(4) = d(12) =0.5$.
+
:* The further statements of&nbsp; '''(14)'''&nbsp; also apply to this&nbsp; $\textrm{si}$&ndash;shaped spectrum&nbsp; $X(f)$.
::* Die weiteren Aussagen von&nbsp; '''(14)'''&nbsp; gelten auch für dieses &nbsp;${\rm si}$&ndash;förmige Spektrum &nbsp;$X(f)$.
 
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(16)'''&nbsp; Gleiche Einstellung wie bei '''(15)'''. Welche Modifikationen sind am&nbsp; $d(\nu)$&ndash;Feld vorzunehmen, um die Rechteckdauer zu halbieren &nbsp; &rArr; &nbsp; $\pm 2 \cdot T_{\rm A}$.}}
+
'''(16)'''&nbsp; Same setting as for&nbsp;  '''(15)'''.&nbsp; Which modifications need to be made in the&nbsp; $d(\nu)$&nbsp; field,
 
+
to have the duration of the rectangle &nbsp; $\Rightarrow$ &nbsp; $\pm 2 \cdot T_\textrm{A}$.
::*&nbsp;$d(0) = d(1) = d(15) =1, \ d(2) = d(14) = 0.5$. Alle anderen Zeitkoeffizienten Null&nbsp; &rArr; &nbsp; erste Nullstelle des &nbsp;${\rm si}$&ndash;Spektrums bei &nbsp;$4 \cdot f_{\rm A}= 250\text{ Hz}$.
+
}}
 +
:*&nbsp;$d(0) = d(1) = d(15) =1, \ d(2) = d(14) = 0.5$. All other time coefficients zero&nbsp; &rArr; &nbsp; first zero of the &nbsp;${\rm si}$ spectrum at &nbsp;$4 \cdot f_{\rm A}= 250\text{ Hz}$.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(17)'''&nbsp; Neue Einstellung:&nbsp; $\text{IDFT von Spektrum  (L): Gaußspektrum}$. Interpretieren Sie das Ergebnis im Zeitbereich.}}
+
'''(17)'''&nbsp; New setting:&nbsp;  IDFT of spectrum&nbsp; $\rm (L)$:&nbsp; Gaussian spectrum.&nbsp; Interpret the result in the time domain.}}
 +
:*&nbsp;Here, the time function&nbsp; $x(t)$&nbsp; is Gaussian with the maximum&nbsp; $x(t=0)=4$.&nbsp; For the spectrum the following applies:&nbsp; $X(f=0)=D(0)/f_\textrm{A} = 16 \cdot \textrm{kHz}^{-1}$.
 +
:*&nbsp;The equivalent duration of the pulse  is&nbsp; $\Delta t = X(f=0)/x(t=0)=4\text{ ms}$.&nbsp; The inverse value gives the equivalent bandwidth&nbsp; $\Delta f = 1/\Delta t = 250\text{ Hz}$.
  
::*&nbsp;Die Zeitfunktion&nbsp; $x(t)$&nbsp; ist hier ebenfalls gaußförmig mit dem Maximum&nbsp; $x(t=0)=4$. Für das Spektrum gilt &nbsp;$X(f=0)=D(0)/f_{\rm A} = 16\cdot \text{ kHz}^{-1}$.
 
::*&nbsp;Die äquivalente Impulsdauer ist&nbsp; $\Delta t= X(f= 0)/x(t= 0) = 4\text{ ms}$. Der Kehrwert ergibt die äquivalente Bandbreite &nbsp;$\Delta f = 1/\Delta t=  250\text{ Hz}$.
 
  
  
Line 402: Line 450:
  
  
==Zur Handhabung des Applets==
+
==Applet Manual==
 
<br>
 
<br>
[[Datei:Anleitung_DFT_endgültig.png|left|600px]]
+
[[File:Anleitung_DFT_endgültig.png|left|600px|frame|Screenshot of the German version]]
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Zeitbereich (Eingabe- und Ergebnisfeld)  
+
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Time domain (input and result field)  
  
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; '''(A)'''&ndash;Darstellung numerisch, grafisch, Betrag
+
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; '''(A)''' representation numerical, graphical, magnitude
  
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Frequenzbereich (Eingabe- und Ergebnisfeld)
+
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; frequency domain (input and result field)
  
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; '''(C)'''&ndash;Darstellung numerisch, grafisch, Betrag
+
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; '''(C)''' representation numerical, graphical, magnitude
  
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Auswahl: DFT &nbsp;$(t \to f)$&nbsp; oder IDFT &nbsp;$(f \to t)$
+
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Selection: DFT &nbsp;$(t \to f)$&nbsp; or IDFT &nbsp;$(f \to t)$
  
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Vorgegebene &nbsp;$d(\nu)$&ndash;Belegungen (falls DFT), oder
+
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Given &nbsp;$d(\nu)$ assignments (if DFT), or
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;  &nbsp; &nbsp; Vorgegebene &nbsp;$D(\mu)$&ndash;Belegungen (falls IDFT)
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;  &nbsp; &nbsp; Given &nbsp;$D(\mu)$ assignments (if IDFT)
  
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Eingabefeld auf Null setzen
+
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Set input field to zero
  
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Eingabefeld zyklisch nach unten (bzw. oben) verschieben
+
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Move input field cyclically down (or up)
  
&nbsp; &nbsp; '''( I )''' &nbsp; &nbsp; Bereich für die Versuchsdurchführung: &nbsp;  Aufgabenauwahl  
+
&nbsp; &nbsp; '''( I )''' &nbsp; &nbsp; Range for experiment execution: &nbsp;  exercise selection  
  
&nbsp; &nbsp; '''(J)''' &nbsp; &nbsp; Bereich für die Versuchsdurchführung: &nbsp;  Aufgabenstellung
+
&nbsp; &nbsp; '''(J)''' &nbsp; &nbsp; Range for experiment execution: &nbsp;  exercise definition
  
&nbsp; &nbsp; '''(K)''' &nbsp; &nbsp; Bereich für die Versuchsdurchführung: &nbsp;  Musterlösung einblenden
+
&nbsp; &nbsp; '''(K)''' &nbsp; &nbsp; Range for experiment execution: &nbsp;  show sample solution
 
<br clear=all>
 
<br clear=all>
*Vorgegebene &nbsp;$d(\nu)$&ndash;Belegungen (für DFT):
+
*Given &nbsp;$d(\nu)$ assignments (for DFT):
 +
 
 +
:(a)&nbsp; corresponding number field,&nbsp; (b)&nbsp; DC signal,&nbsp; (c)&nbsp;  Complex exponential function of time,&nbsp; (d)&nbspHarmonic oscillation &nbsp;$($phase &nbsp;$\varphi = 45^\circ)$,
 +
:(e)&nbsp; Cosine signal (one period),&nbsp; (f)&nbsp; Sine signal (one period),&nbsp; (g)&nbsp;  Cosine signal (two periods),&nbsp;(h)&nbsp;  Alternating time coefficients, 
 +
:&nbsp; (i)&nbsp; Dirac delta pulse,&nbsp; (j)&nbsp; Rectangular pulse,&nbsp; (k)&nbsp;  Triangular pulse,&nbsp; (l)&nbsp;  Gaussian pulse.
 +
 
 +
*Given &nbsp;$D(\mu)$ assignments (for IDFT):
  
:(a)&nbsp; entsprechend Zahlenfeld,&nbsp; (b)&nbsp; Gleichsignal,&nbsp; (c)&nbsp;  Komplexe Exponentialfunktion der Zeit,&nbsp; (d)&nbsp;  Harmonische Schwingung &nbsp;$($Phase &nbsp;$\varphi = 45^\circ)$,
+
:(A)&nbsp; corresponding number field,&nbsp; (B)&nbsp; Constant spectrum,&nbsp; (C)&nbsp;  Complex exponential function of frequency,&nbsp; (D)&nbsp;  equivalent to setting (d) in time domain ,
:(e)&nbsp; Cosinussignal (eine Periode),&nbsp; (f)&nbsp; Sinussignal (eine Periode),&nbsp; (g)&nbsp;  Cosinussignal (zwei Perioden),&nbsp;(h)&nbsp;  Alternierende Zeitkoeffizienten,
+
:(E)&nbsp; Cosine signal (one frequency period),&nbsp; (F)&nbsp; Sine signal (one frequency period),&nbsp; (G)&nbsp;  Cosine signal (two frequency periods),&nbsp; (H)&nbsp;  Alternating spectral coefficients,
:&nbsp; (i)&nbsp; Diracimpuls,&nbsp; (j)&nbsp; Rechteckimpuls,&nbsp; (k)&nbsp;  Dreieckimpuls,&nbsp; (l)&nbsp;  Gaußimpuls.
+
:(I)&nbsp; Dirac delta spectrum,&nbsp; (J)&nbsp; Rectangular spectrum,&nbsp; (K)&nbsp;  Triangular spectrum,&nbsp; (L)&nbsp;  Gaussian spectrum.  
  
*Vorgegebene  &nbsp;$D(\mu)$&ndash;Belegungen  (für IDFT):
 
  
:(A)&nbsp; entsprechend Zahlenfeld,&nbsp; (B)&nbsp; Konstantes Spektrum,&nbsp; (C)&nbsp;  Komplexe Exponentialfunktion der Frequenz,&nbsp; (D)&nbsp;  äquivalent zur Einstellung (d) im Zeitbereich ,
+
==About the Authors==
:(E)&nbsp; Cosinussignal (eine Frequenzperiode),&nbsp; (F)&nbsp; Sinussignal (eine Frequenzperiode),&nbsp; (G)&nbsp;  Cosinussignal (zwei Frequenzperioden),&nbsp; (H)&nbsp;  Alternierende Spektralkoeffizienten,
 
:(I)&nbsp; Diracspektrum,&nbsp; (J)&nbsp; Rechteckspektrum,&nbsp; (K)&nbsp;  Dreieckspektrum,&nbsp; (L)&nbsp;  Gaußspektrum. 
 
  
 +
This interactive calculation tool was designed and implemented at the&nbsp; [https://www.ei.tum.de/en/lnt/home/ Institute for Communications Engineering]&nbsp; at the&nbsp; [https://www.tum.de/en Technical University of Munich].
 +
*The first version was created in 2008 by&nbsp; [[Biographies_and_Bibliographies/Students_involved_in_LNTwww#Thomas_Gro.C3.9Fer_.28Diplomarbeit_LB_2006.2C_danach_freie_Mitarbeit_bis_2010.29|&raquo;Thomas Großer&laquo;]]&nbsp; as part of his diploma thesis with “FlashMX – Actionscript” (Supervisor: [[Biographies_and_Bibliographies/LNTwww_members_from_LNT#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28at_LNT_since_1974.29|Günter Söder]]).
  
 +
*Last revision and English version 2020/2021 by&nbsp; [[Biographies_and_Bibliographies/Students_involved_in_LNTwww#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|&raquo;Carolin Mirschina&laquo;]]&nbsp; in the context of a working student activity.&nbsp;
  
==Über die Autoren==
 
Dieses interaktive Berechnungstool  wurde am&nbsp; [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik]&nbsp; der&nbsp; [https://www.tum.de/ Technischen Universität München]&nbsp; konzipiert und realisiert.
 
*Die erste Version wurde 2003 von&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Thomas_Gro.C3.9Fer_.28Diplomarbeit_LB_2006.2C_danach_freie_Mitarbeit_bis_2010.29|Thomas Großer]]&nbsp; im Rahmen ihrer Diplomarbeit mit &bdquo;FlashMX&ndash;Actionscript&rdquo; erstellt (Betreuer:&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).
 
* 2019 wurde das Programm  von&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|Carolin Mirschina]]&nbsp; im Rahmen einer Werkstudententätigkeit auf  &bdquo;HTML5&rdquo; umgesetzt und neu gestaltet (Betreuer:&nbsp; [[Biografien_und_Bibliografien/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]]).
 
  
 +
The conversion of this applet to HTML 5 was financially supported by&nbsp; [https://www.ei.tum.de/studium/studienzuschuesse/ Studienzuschüsse]&nbsp; ("study grants") of the TUM Faculty EI. We thank them.
  
Die Umsetzung dieses Applets auf HTML 5 wurde durch&nbsp; [https://www.ei.tum.de/studium/studienzuschuesse/ Studienzuschüsse]&nbsp; der Fakultät EI der TU München finanziell unterstützt. Wir bedanken uns.
 
  
  
==Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster==
+
==Once again: Open Applet in new Tab==
  
{{LntAppletLink|dft}}
+
{{LntAppletLinkEnDe|dft_en|dft}}

Latest revision as of 17:02, 6 July 2023

Open Applet in new Tab   Deutsche Version Öffnen


Applet Description


The conventional  »Fourier Transform«  $\rm (FT)$  allows the calculation of the spectral function  $X(f)$  of a time-continuous signal  $x(t)$. 

In contrast,  the  »Discrete Fourier Transform«  $\rm (DFT)$  is limited to a time-discrete signal,  represented by  $N$  time domain coefficients   $d(\nu)$  with indices  $\nu = 0, \text{...} , N\hspace{-0.1cm}-\hspace{-0.1cm}1$,  which can be interpreted as equidistant samples of the time-continuous signal  $x(t)$.

If the  »sampling theorem«  is fulfilled, the DFT algorithm likewise allows the calculation of  $N$  frequency domain coefficients  $D(\mu)$  with indices  $\mu = 0, \text{...} , N\hspace{-0.1cm}-\hspace{-0.1cm}1$.  These are equidistant samples of the frequency-continuous spectrum  $X(f)$.

  • The applet illustrates the properties of the  $\text{DFT:}\hspace{0.3cm}d(\nu)\hspace{0.1cm} \Rightarrow \hspace{0.1cm} D(\mu)$  by using the example  $N=16$.  The default   $d(\nu)$ assignments for the DFT are:
$\rm (a)$  According to the input field,  $\rm (b)$  Constant signal,  $\rm (c)$  Complex exponential time function ,  $\rm (d)$  Harmonic oscillation  $($with  phase  $\varphi = 45^\circ)$,
$\rm (e)$  Cosine signal  $($one period$)$,  $\rm (f)$  Sinusoidal signal  $($one period$)$,  $\rm (g)$  Cosine signal  $($two periods$)$,  $\rm (h)$  Alternating time coefficients,
$\rm (i)$  Dirac delta impulse,  $\rm (j)$  Rectangular pulse ,  $\rm (k)$  Triangular pulse,  $\rm (l)$  Gaussian pulse.
  • Possible  $D(\mu)$ assignments for the Inverse Discrete Fourier Transform   ⇒   $\text{IDFT:}\hspace{0.3cm}D(\mu)\hspace{0.1cm} \Rightarrow \hspace{0.1cm} d(\nu)$  are:
$\rm (A)$  According to the input field,  $\rm (B)$  Constant spectrum,  $\rm (C)$  Complex exponential function (of frequency),  $\rm (D)$  Equivalent to setting  $\rm (d)$  in the time domain,
$\rm (E)$  Cosine spectrum  $($one frequency period$)$,  $\rm (F)$  Sinusoidal spectrum  $($one frequency period$)$,  $\rm (G)$  Cosine spectrum  $($two frequency periods$)$, 
$\rm (H)$  Alternating spectral coefficients,  $\rm (I)$  Dirac delta spectrum,  $\rm (J)$  Rectangular spectrum,  $\rm (K)$  Triangular spectrum,  $\rm (L)$  Gaussian spectrum.


The applet uses the framework  »Plot.ly«.


Theoretical Background


Arguments for the discrete realization of the Fourier transform

The  »Fourier transform«  according to the conventional description for continuous-time signals has an infinitely high selectivity due to the unlimited extension of the integration interval and is therefore an ideal theoretical tool for spectral analysis.

If the spectral components  $X(f)$  of a time function  $x(t)$  are to be determined numerically,  the general transformation equations

$$\begin{align*}X(f) & = \int_{-\infty }^{+\infty}x(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi f t}\hspace{0.1cm} {\rm d}t\hspace{0.5cm} \Rightarrow\hspace{0.5cm} \text{Forward transformation}\hspace{0.7cm} \Rightarrow\hspace{0.5cm} \text{First Fourier integral} \hspace{0.05cm},\\ x(t) & = \int_{-\infty }^{+\infty}\hspace{-0.15cm}X(f) \cdot {\rm e}^{\hspace{0.05cm}+{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi f t}\hspace{0.1cm} {\rm d}f\hspace{0.35cm} \Rightarrow\hspace{0.5cm} \text{Backward transformation}\hspace{0.4cm} \Rightarrow\hspace{0.5cm} \text{Second Fourier integral} \hspace{0.05cm}\end{align*}$$

are unsuitable for two reasons:

  • The equations apply exclusively to continuous-time signals.  With digital computers or signal processors,  however,  only discrete-time signals can be processed.
  • For a numerical evaluation of the two Fourier integrals it is necessary to limit the respective integration interval to a finite value.


$\text{This results in the following consequence:}$ 

A  »continuous-time signal«  must undergo two processes before the numerical determination of its spectral properties, viz.

  •   »sampling«  for discretization,  and
  •   »windowing«  to limit the integration interval.


In the following,  starting from an aperiodic time function  $x(t)$  and the corresponding Fourier spectrum  $X(f)$,  a discrete-time and discrete-frequency description suitable for computer processing is presented.


Time discretization – periodization in the frequency domain

The following graphs uniformly show the time domain on the left and the frequency domain on the right.  Without restriction of generality,  $x(t)$  and  $X(f)$  are real and Gaussian,  respectively.

Discretization in the time domain – periodization in the frequency domain

One can describe the sampling of the time signal  $x(t)$  by multiplication with a Dirac delta pulse  $p_{\delta}(t)$.  This results in the time signal sampled at distance  $T_{\rm A}$: 

$${\rm A}\{x(t)\} = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot x(\nu \cdot T_{\rm A})\cdot \delta (t- \nu \cdot T_{\rm A} )\hspace{0.05cm}.$$

We now transform this sampled signal  $\text{A}\{ x(t)\}$  into the frequency domain. The multiplication of the Dirac delta pulse  $p_{\delta}(t)$  with  $x(t)$  corresponds in the frequency domain to the convolution of  $P_{\delta}(f)$  with  $X(f)$.  The periodized spectrum  $\text{P}\{ X(f)\}$ is obtained,  where  $f_{\rm P}$  is the frequency period of the function  $\text{P}\{ X(f)\}$: 

$${\rm A}\{x(t)\} \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} {\rm P}\{X(f)\} = \sum_{\mu = - \infty }^{+\infty} X (f- \mu \cdot f_{\rm P} )\hspace{0.5cm} {\rm with }\hspace{0.5cm}f_{\rm P}= {1}/{T_{\rm A}}\hspace{0.05cm}.$$
  • We call the sampled signal  $\text{A}\{ x(t)\}$.
  • The  »frequency period«  is denoted by  $f_{\rm P}$ = $1/T_{\rm A}$. 


The graph above shows the functional relationship described here.  It should be noted:

  1. The frequency period  $f_{\rm P}$  was deliberately chosen small here so that the overlap of the spectra to be summed can be clearly seen.
  2. In practice,  due to the sampling theorem,  $f_{\rm P}$  should be at least twice as large as the largest frequency contained in the signal  $x(t)$. 
  3. If this is not fulfilled,  »aliasing«  must be expected.


Frequency discretization – periodization in the time domain

The discretization of  $X(f)$  can also be described by a multiplication with a Dirac delta pulse. The result is the spectrum sampled at distance  $f_{\rm A}$: 

$${\rm A}\{X(f)\} = X(f) \cdot \sum_{\mu = - \infty }^{+\infty} f_{\rm A} \cdot \delta (f- \mu \cdot f_{\rm A } ) = \sum_{\mu = - \infty }^{+\infty} f_{\rm A} \cdot X(\mu \cdot f_{\rm A } ) \cdot\delta (f- \mu \cdot f_{\rm A } )\hspace{0.05cm}.$$
  • Transforming the frequency Dirac delta pulse used here  $($with pulse weights  $f_{\rm A})$  into the time domain,  we obtain with  $T_{\rm P} = 1/f_{\rm A}$:
$$\sum_{\mu = - \infty }^{+\infty} f_{\rm A} \cdot \delta (f- \mu \cdot f_{\rm A } ) \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} \sum_{\nu = - \infty }^{+\infty} \delta (t- \nu \cdot T_{\rm P } ) \hspace{0.05cm}.$$
  • The multiplication with  $X(f)$  corresponds in the time domain to the convolution with  $x(t)$. The signal  $\text{P}\{ x(t)\}$ periodized at distance  $T_{\rm P}$  is obtained:
$${\rm A}\{X(f)\} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} {\rm P}\{x(t)\} = x(t) \star \sum_{\nu = - \infty }^{+\infty} \delta (t- \nu \cdot T_{\rm P } )= \sum_{\nu = - \infty }^{+\infty} x (t- \nu \cdot T_{\rm P } ) \hspace{0.05cm}.$$


Discretization in the frequency domain – periodization in the time domain

$\text{Example 1:}$  This relationship is illustrated in the graph:


  1. Due to the coarse frequency rastering,  this example results in a relatively small value for the time period  $T_{\rm P}$. 

  2. Therefore,  the  $($blue$)$  periodized time signal  $\text{P}\{ x(t)\}$  differs significantly from  $x(t)$ due to overlaps.


Finite signal representation

One arrives at the so-called  »finite signal representation« 

  • when both the time function  $x(t)$  and
  • the spectral function  $X(f)$
Finite signals of the Discrete Fourier Transform

are specified exclusively by their sample values:

The graph is to be interpreted as follows:

  • In the left graph the function  $\text{A}\{ \text{P}\{ x(t)\}\}$  is drawn in blue.  It is obtained by sampling the periodized time function  $\text{P}\{ x(t)\}$  with equidistant Dirac delta pulses in the distance  $T_{\rm A} = 1/f_{\rm P}$.
  • In the right graph the function  $\text{P}\{ \text{A}\{ X(f)\}\}$  is drawn in green.  This results from periodization  $($with  $f_{\rm P})$  of the sampled spectral function  $\{ \text{A}\{ X(f)\}\}$.
  • There is also a Fourier correspondence between the blue finite signal and the green finite signal,  as follows:
$${\rm A}\{{\rm P}\{x(t)\}\} \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} {\rm P}\{{\rm A}\{X(f)\}\} \hspace{0.05cm}.$$

However,  the Dirac delta lines of the periodic continuation  $\text{P}\{ \text{A}\{ X(f)\}\}$  of the sampled spectral function fall into the same frequency grid as those of  $\text{A}\{ X(f)\}$  only if the frequency period  $f_{\rm P}$  is an integer multiple  $(N)$  of the frequency sampling interval  $f_{\rm A}$. 

When using the finite signal representation,  the following condition must always be fulfilled,  where in practice a power of two is usually used for the natural number  $N$  $($the graph above is based on the value  $N = 8)$:

$$f_{\rm P} = N \cdot f_{\rm A} \hspace{0.5cm} \Rightarrow\hspace{0.5cm} {1}/{T_{\rm A} }= N \cdot f_{\rm A} \hspace{0.5cm} \Rightarrow\hspace{0.5cm} N \cdot f_{\rm A}\cdot T_{\rm A} = 1\hspace{0.05cm}.$$


If the condition  $N \cdot f_{\rm A} \cdot T_{\rm A} = 1$  is satisfied, the order of periodization and sampling can be interchanged. Thus:

$${\rm A}\{{\rm P}\{x(t)\}\} = {\rm P}\{{\rm A}\{x(t)\}\}\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} {\rm P}\{{\rm A}\{X(f)\}\} = {\rm A}\{{\rm P}\{X(f)\}\}\hspace{0.05cm}.$$

$\text{Conclusions:}$ 

  1. The time function  $\text{P}\{ \text{A}\{ x(t)\}\}$  has the period  $T_{\rm P} = N \cdot T_{\rm A}$.
  2. The period in the frequency domain is  $f_{\rm P} = N \cdot f_{\rm A}$.
  3. For the description of the discretized time and frequency course  $N$  »complex numerical values« in the form of pulse weights are sufficient in each case.


$\text{Example 2:}$  A time-limited  $($pulse-like$)$  signal  $x(t)$  is present in sampled form,  where the distance between two samples is  $T_{\rm A} = 1\, {\rm µ s}$: 

  • After a discrete Fourier transform with  $N = 512$  the spectrum  $X(f)$  is available as samples with the distance  $f_{\rm A} = (N \cdot T_{\rm A})^{–1} \approx 1.953\,\text{kHz} $. 
  • Increasing the DFT parameter to  $N= 2048$ results  in a finer frequency grid with  $f_{\rm A} \approx 488\,\text{Hz}$.


Discrete Fourier Transform

From the conventional  »first Fourier integral«

$$X(f) =\int_{-\infty }^{+\infty}x(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm} f \hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.1cm} {\rm d}t$$

»discretization«  $(\text{d}t \to T_{\rm A}$,  $t \to \nu \cdot T_{\rm A}$,  $f \to \mu \cdot f_{\rm A}$,  $T_{\rm A} \cdot f_{\rm A} = 1/N)$  yields the sampled and periodized spectral function

$${\rm P}\{X(\mu \cdot f_{\rm A})\} = T_{\rm A} \cdot \sum_{\nu = 0 }^{N-1} {\rm P}\{x(\nu \cdot T_{\rm A})\}\cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm} \cdot \hspace{0.05cm}\nu \hspace{0.05cm} \cdot \hspace{0.05cm}\mu /N} \hspace{0.05cm}.$$

It is taken into account that due to the discretization the periodized functions have to be used in each case.

For reasons of a simplified notation we now make the following substitutions:

  • Let the  $N$  »time-domain coefficients«  be associated with the indexing variable  $\nu = 0$, ... , $N - 1$:
$$d(\nu) = {\rm P}\left\{x(t)\right\}{\big|}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm A}}\hspace{0.05cm}.$$
  • Let the  $N$  »frequency-domain coefficients«  be associated with the indexing variable  $\mu = 0,$ ... , $N$ – 1:
$$D(\mu) = f_{\rm A} \cdot {\rm P}\left\{X(f)\right\}{\big|}_{f \hspace{0.05cm}= \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm A}}\hspace{0.05cm}.$$
  • Abbreviation for the  »complex rotation factor«  depending on  $N$  is written:
$$w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N} = \cos \left( {2 \pi}/{N}\right)-{\rm j} \cdot \sin \left( {2 \pi}/{N}\right) \hspace{0.05cm}.$$

$\text{Definition:}$  The term  »Discrete Fourier Transform«  $\rm (DFT)$  means the calculation of the  $N$  spectral coefficients  $D(\mu)$  from the  $N$  signal coefficients  $d(\nu)$:

On the definition of the Discrete Fourier Transform  $\rm (DFT)$  with  $N=8$
$$D(\mu) = \frac{1}{N} \cdot \sum_{\nu = 0 }^{N-1} d(\nu)\cdot {w}^{\hspace{0.05cm}\nu \hspace{0.03cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}. $$



In the graph you can see in an example

  1. the  $N = 8$  signal coefficients  $d(\nu)$  at the blue filling,
  2. the  $N = 8$  spectral coefficients  $D(\mu)$  at the green filling.


Inverse Discrete Fourier Transform

The  »Inverse Discrete Fourier Transform«  describes the  »second Fourier integral«:

$$\begin{align*}x(t) & = \int_{-\infty }^{+\infty}X(f) \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm} f \hspace{0.05cm}\cdot \hspace{0.05cm} t}\hspace{0.1cm} {\rm d}f\end{align*}$$

in discretized form:  

$$d(\nu) = {\rm P}\left\{x(t)\right\}{\big|}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm A}}\hspace{0.01cm}.$$

$\text{Definition:}$  The term  »Inverse Discrete Fourier Transform«  $\rm (IDFT)$  refers to the calculation of the signal coefficients  $d(\nu)$  from the spectral coefficients  $D(\mu)$:

For the definition of the IDFT with  $N=8$
$$d(\nu) = \sum_{\mu = 0 }^{N-1} D(\mu) \cdot {w}^{-\nu \hspace{0.03cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$

With the indexing variables 

  • $\nu = 0, \hspace{0.05cm}\text{...} \hspace{0.05cm}, N-1$,
  • $\mu = 0, \hspace{0.05cm}\text{...} \hspace{0.05cm}, N-1$,:


then holds:

  1. $d(\nu) = {\rm P}\left\{x(t)\right\}{\big \vert}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm A} }\hspace{0.01cm},$
  2. $D(\mu) = f_{\rm A} \cdot {\rm P}\left\{X(f)\right\}{\big \vert}_{f \hspace{0.05cm}= \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm A} } \hspace{0.01cm},$
  3. $w = {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N} \hspace{0.01cm}.$


A comparison between DFT and IDFT shows that exactly the same algorithm can be used. The only differences of the IDFT compared to the DFT are:

  • The exponent of the rotation factor must be applied with different sign.
  • With the IDFT the division by  $N$  is omitted.


Interpretation of DFT and IDFT

The graph shows the discrete coefficients in the time and frequency domain together with the periodized continuous-time functions.

Time and frequency domain coefficients of the DFT

When using DFT or IDFT,  it should be noted:

  • According to the above definitions,  the DFT coefficients  $d(ν)$  and  $D(\mu)$  always have the unit of the time function.
  • Dividing  $D(\mu)$  by  $f_{\rm A}$  gives the spectral value  $X(\mu \cdot f_{\rm A})$.
  • The spectral coefficients  $D(\mu)$  must always be set complex to be able to consider also odd time functions.
  • In order to be able to transform band–pass signals in the equivalent low–pass range,  complex time coefficients  $d(\nu)$ are usually used.
  • The basic interval for  $\nu$  and  $\mu$  is usually defined as the range from  $0$  to  $N - 1$,  as in the above diagram.
  • With the complex-valued number sequences 
    • $\langle \hspace{0.03cm}d(\nu)\hspace{0.03cm}\rangle = \langle \hspace{0.03cm}d(0), \hspace{0.05cm}\text{...} \hspace{0.05cm} , d(N-1) \hspace{0.03cm}\rangle$,
    • $\langle \hspace{0.03cm}D(\mu)\hspace{0.03cm}\rangle = \langle \hspace{0.03cm}D(0), \hspace{0.05cm}\text{...} \hspace{0.05cm} , D(N-1) \hspace{0.03cm}\rangle$: 


⇒   DFT and IDFT are symbolized similar to the conventional Fourier transform:
$$\langle \hspace{0.03cm} D(\mu)\hspace{0.03cm}\rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.03cm} d(\nu) \hspace{0.03cm}\rangle \hspace{0.05cm}.$$
  • If the function  $x(t)$  is already limited to the range  $0 \le t \lt N \cdot T_{\rm A}$,  then the time coefficients output by the IDFT directly indicate the samples of the time function:  
$$d(\nu) = x(\nu \cdot T_{\rm A}).$$
  • If  $x(t)$  is shifted with respect to the basic interval,  one has to choose the assignment between  $x(t)$  and the coefficients  $d(\nu)$  as shown in  $\text{Example 3}$. 


$\text{Example 3:}$  The upper graph shows the asymmetric triangular pulse  $x(t)$  whose absolute width is smaller than  $T_{\rm P} = N \cdot T_{\rm A}$.

On assigning of the DFT coefficients with  $N=8$

The sketch below shows the assigned DFT coefficients valid for  $N = 8$:

  • For  $\nu = 0,\hspace{0.05cm}\text{...} \hspace{0.05cm} , N/2 = 4$,    $d(\nu) = x(\nu \cdot T_{\rm A})$   is valid:
$$d(0) = x (0)\hspace{0.05cm}, \hspace{0.15cm} d(1) = x (T_{\rm A})\hspace{0.05cm}, \hspace{0.15cm} d(2) = x (2T_{\rm A})\hspace{0.05cm}, $$
$$d(3) = x (3T_{\rm A})\hspace{0.05cm}, \hspace{0.15cm} d(4) = x (4T_{\rm A})\hspace{0.05cm}.$$
  • The coefficients  $d(5)$,  $d(6)$  and  d$(7)$  are to be set as follows:
$$d(\nu) = x \big ((\nu\hspace{-0.05cm} - \hspace{-0.05cm} N ) \cdot T_{\rm A}\big ) $$
$$ \Rightarrow \hspace{0.2cm}d(5) = x (-3T_{\rm A})\hspace{0.05cm}, \hspace{0.35cm} d(6) = x (-2T_{\rm A})\hspace{0.05cm}, \hspace{0.35cm} d(7) = x (-T_{\rm A})\hspace{0.05cm}.$$




Exercises


Aufgaben 2D-Gauss.png
  • First select the number  $($1, ...$)$  of the exercise.
  • A description of the exercise will be displayed.
  • The parameter values are adjusted.
  • Solution after pressing  »Show solution«.
  • The number  "$0$"  corresponds to a  »Reset«:
  1. Same setting as at program start.
  2. Output of a  »reset text«  with further explanations about the applet.


(1)  New setting:  DFT of signal  $\rm (b)$:  Constant signal.  Interpret the result in the frequency domain.  What is the analogon of the conventional Fourier transform?

  •  All coefficients in the time domain are  $d(\nu)=1$.  Thus all  $D(\mu)=0$  with the exception of  $\textrm{Re}[D(0)]=1$.
  •  This corresponds to the conventional  $($time-continuous$)$  Fourier Transform:  $x(t)=A\hspace{0.15cm} \circ\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm} X(f)=A\cdot \delta (f=0)$  with  $A=1$.

(2)  Assume the obtained  $D(\mu)$  field and shift all coefficients one entry down.  Which time function does the IDFT provide?

  •  Now all  $D(\mu)=0$,  except for  $\textrm{Re}[D(1)]=1$.  The result in the time domain is a complex exponential function.
  •  The real part of the  $d(\nu)$  field shows a cosine and the imaginary part a sine function.  For each function one can see one period respectively.

(3)  Add the following coefficient to the current  $D(\mu)$ field:  $\textrm{Im}[D(1)]=1$.  What are the differences compared to  (2)  in the time domain?  

  •  On the one hand,  a phase shift of two support values can now be detected for the real and the imaginary parts.  This corresponds to the phase  $\varphi = 45^\circ$.
  •  On the other hand,  the amplitudes of the real and the imaginary part were each increased by the factor  $\sqrt{2}$.

(4)  Set the  $D(\mu)$ field  to zero except for  $\textrm{Re}[D(1)]=1$.  Which additional  $D(\mu)$  coefficient yields a real  $d(\nu)$  field?

  •  By trial and error,  one can see that  $\textrm{Re}[D(15)]=1$  must apply additionally.  Then the  $d(\nu)$  field describes a cosine.
  •  The following applies to the conventional  $($time continuous$)$  Fourier transform:  $x(t)=2\cdot \cos(2\pi \cdot f_0 \cdot t)\hspace{0.15cm}\circ\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm} X(f)=\delta (f-f_0)+\delta (f+f_0)$.
  •  The entry  $D(1)$  is representative of the frequency  $f_0$  and due to the periodicity with  $N=16$  the frequency  $-f_0$  is expressed by  $D(15)=D(-1)$.

(5)  According to the IDFT in the  $d(\nu)$  field, by which  $D(\mu)$  field does one obtain a real cosine function with the amplitude  $A=1$?

  •  Like the conventional Fourier transform the discrete Fourier Transform is linear  ⇒   $D(1)=D(15)=0.5$.

(6)  New setting:  DFT of signal  $\rm (e)$:  Cosine signal and subsequent signal shifts.  What are the effects of these shifts in the frequency domain?

  •  A shift in the time domain changes the cosine signal to a  "harmonic oscillation"  with arbitrary phase.
  •  The  $D(\mu)$  field is still zero except for  $D(1)$  and  $D(15)$.  The absolute values  $|D(1)|$  and  $|D(15)|$  also remain the same.
  •  The only change concerns the phase,  i.e. the different distribution of the absolute values between the real and imaginary part.

(7)  New setting:  DFT of signal  $\rm (f)$:  Sinusoidal signal.  Interpret the result in the frequency domain.  What is the analogon of the conventional Fourier Transform?

  •  The sine signal results from the cosine signal by applying four time shifts.  Therefore all statements of  (6)  are still valid.
  •  For the conventional (time continuous) Fourier transform it holds that  $x(t)= \sin(2\pi \cdot f_0 \cdot t)\hspace{0.15cm}\circ\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm} X(f)=j/2 \cdot [\delta (f+f_0)-\delta (f-f_0)]$.
  •  The coefficient  $D(1)$   $\Rightarrow$  $($frequency:  $+f_0)$  is imaginary and has the imaginary part  $-0.5$.  Accordingly,  $\textrm{Im}[D(15)]=+0.5$   ⇒   $($frequency:  $-f_0)$  applies.

(8)  New setting:  DFT of signal  $\rm (g)$:  Cosine signal (two periods).  Interpret the result in comparison to exercise  (5).

  •  Here the time continuous Fourier transform reads  $x(t)=\cos(2\pi \cdot (2 f_0) \cdot t)\hspace{0.15cm}\circ\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm}X(f)=0.5 \cdot \delta (f- 2 f_0)+0.5 \cdot \delta (f+ 2 f_0)$.
  •  $D(2)$  is representative of the frequency  $2 f_0$.  Due to the periodicity,  $D(14)=D(-2)$:   $D(2)=D(14)=0.5$ is representative of the frequency  $-2 f_0$.

(9)  Now examine the case DFT of a sinodial signal (two periods).  Which modifications do you need to make in the time domain?  Interpret the result.

  •  The desired signal can be obtained from the DFT of signal  $\rm (g)$:  Cosine signal (two periods) with two shifts.  With the result of  (7):  Four shifts.
  •  The DFT result is accordingly  $\textrm{Im}[D(2)]=-0.5$  and  $\textrm{Im}[D(14)]=+0.5$.

(10)  New setting: DFT of signal  $\rm (h)$:  Alternating time coefficients.  Interpret the DFT result.

  •  Here, the time continuous Fourier transform is given by:  $x(t)=\cos(2\pi \cdot (8 f_0) \cdot t)\hspace{0.15cm}\circ\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm} X(f)=0.5 \cdot \delta (f- 8 f_0)+0.5 \cdot \delta (f+ 8 f_0)$.
  •  $8 f_0$ is the highest frequency that can be displayed with  $N=16$  in the DFT.  There are only two sampled values per period, namely $+1$ and $-1$.
  •  Difference to exercise  (5):  $D(1)=0.5$  now becomes  $D(8)=0.5$.  Likewise,  $D(15)=0.5$  is shifted to  $D(8)=0.5$.  Final result:  $D(8)=1$.

(11)  What are the differences between the two settings DFT from signal  $\rm (i)$:  Dirac delta impulse and   IDFT from spectrum  $\rm (I)$:  Dirac delta spectrum?

  •  None! In the first case, all coefficients are  $D(\mu)=1$ (real);  in the second case, however, equivalently  $d(\nu)=1$ (real).

(12)  Are there differences in shifting the real  "$1$"  in the according input fields by one place at a time, that is for  $d(\nu = 1)=1$  and  $D(\mu = 1)=1$?

  •  The first case  $\Rightarrow$  $\textrm{Re}[d(\nu = 1)]=1$  results in the complex exponential function in the frequency domain given by  $X(f)= \textrm{e}^{-{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm} 2 \pi\hspace{0.05cm}\cdot\hspace{0.05cm} f/f_0}$  with negative sign.
  •  The second case  $\Rightarrow$  $\textrm{Re}[D(\mu = 1)]=1$ results in the complex exponential function in the time domain given by  $x(t)= \textrm{e}^{+{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm} 2 \pi\hspace{0.05cm}\cdot\hspace{0.05cm} f_0\cdot t}$  with positive sign.
  •  Note:  With  $\textrm{Re}[D(\mu=15)]=1$  the result in the time domain would also be a complex exponential function  $x(t)= \textrm{e}^{-{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm} 2 \pi\hspace{0.05cm}\cdot\hspace{0.05cm} f_0\hspace{0.05cm}\cdot\hspace{0.05cm} t}$ with negative sign.

(13)  New setting: DFT of signal  $\rm (k)$:  Triangle pulse.  Interpret the  $d(\nu)$  assignment under the assumption  $T_\textrm{A} = 1$ ms.

  •  Change the display to "absolute value".  $x(t)$ is symmetrical around  $t=0$  and extends from  $-8 \cdot T_\textrm{A} = -8$  ms to  $+8 \cdot T_\textrm{A}= +8$  ms.
  •  $d(\nu)$  assignment:  $d(0)=x(0)=1$,  $d(1)=x(T_\textrm{A})=0.875$, ... ,  $d(8)=x(8 T_\textrm{A})=0$,  $d(9)=x(-7 T_\textrm{A})=0.125$, ... ,  $d(15)=x(-T_\textrm{A})=0.875$.

(14)  Same setting as  (13).  Interpret the DFT result, especially the coefficients  $D(0)$,  $D(1)$,  $D(2)$  and  $D(15)$.

  • In the frequency range  $D(0)$  stands for the frequency  $f=0$  and  $D(1)$  and  $D(15)$  for the frequencies  $\pm f_\textrm{A}$.  It holds that  $f_\textrm{A}= 1/ (N\cdot T_\textrm{A})=62.5$  Hz.
  • For the value of the continuous spectrum at $f=0$ the following applies:   $X(f=0)=D(0)/f_\textrm{A} = 0.5/ (0.0625$ kHz$)=8\cdot \textrm{kHz}^{-1}$.
  • The first zero of the  $\textrm{si}^2$–shaped spectrum  $X(f)$  occurs at  $2\cdot f_\textrm{A} = 125$ Hz.  The other zeros are equidistant.

(15)  New setting: DFT of signal  $\rm (i)$:  Rectangular pulse.  Interpret the displayed results.

  •  The set (symmetrical) rectangle extends over  $\pm 4 \cdot T_\textrm{A}$.  At the edges, the time coefficients are only half as large:  $d(4)=d(12)=0.5$.
  • The further statements of  (14)  also apply to this  $\textrm{si}$–shaped spectrum  $X(f)$.

(16)  Same setting as for  (15).  Which modifications need to be made in the  $d(\nu)$  field, to have the duration of the rectangle   $\Rightarrow$   $\pm 2 \cdot T_\textrm{A}$.

  •  $d(0) = d(1) = d(15) =1, \ d(2) = d(14) = 0.5$. All other time coefficients zero  ⇒   first zero of the  ${\rm si}$ spectrum at  $4 \cdot f_{\rm A}= 250\text{ Hz}$.

(17)  New setting:  IDFT of spectrum  $\rm (L)$:  Gaussian spectrum.  Interpret the result in the time domain.

  •  Here, the time function  $x(t)$  is Gaussian with the maximum  $x(t=0)=4$.  For the spectrum the following applies:  $X(f=0)=D(0)/f_\textrm{A} = 16 \cdot \textrm{kHz}^{-1}$.
  •  The equivalent duration of the pulse is  $\Delta t = X(f=0)/x(t=0)=4\text{ ms}$.  The inverse value gives the equivalent bandwidth  $\Delta f = 1/\Delta t = 250\text{ Hz}$.




Applet Manual


Screenshot of the German version

    (A)     Time domain (input and result field)

    (B)     (A) representation numerical, graphical, magnitude

    (C)     frequency domain (input and result field)

    (D)     (C) representation numerical, graphical, magnitude

    (E)     Selection: DFT  $(t \to f)$  or IDFT  $(f \to t)$

    (F)     Given  $d(\nu)$ assignments (if DFT), or

                    Given  $D(\mu)$ assignments (if IDFT)

    (G)     Set input field to zero

    (H)     Move input field cyclically down (or up)

    ( I )     Range for experiment execution:   exercise selection

    (J)     Range for experiment execution:   exercise definition

    (K)     Range for experiment execution:   show sample solution

  • Given  $d(\nu)$ assignments (for DFT):
(a)  corresponding number field,  (b)  DC signal,  (c)  Complex exponential function of time,  (d)  Harmonic oscillation  $($phase  $\varphi = 45^\circ)$,
(e)  Cosine signal (one period),  (f)  Sine signal (one period),  (g)  Cosine signal (two periods), (h)  Alternating time coefficients,
  (i)  Dirac delta pulse,  (j)  Rectangular pulse,  (k)  Triangular pulse,  (l)  Gaussian pulse.
  • Given  $D(\mu)$ assignments (for IDFT):
(A)  corresponding number field,  (B)  Constant spectrum,  (C)  Complex exponential function of frequency,  (D)  equivalent to setting (d) in time domain ,
(E)  Cosine signal (one frequency period),  (F)  Sine signal (one frequency period),  (G)  Cosine signal (two frequency periods),  (H)  Alternating spectral coefficients,
(I)  Dirac delta spectrum,  (J)  Rectangular spectrum,  (K)  Triangular spectrum,  (L)  Gaussian spectrum.


About the Authors

This interactive calculation tool was designed and implemented at the  Institute for Communications Engineering  at the  Technical University of Munich.

  • Last revision and English version 2020/2021 by  »Carolin Mirschina«  in the context of a working student activity. 


The conversion of this applet to HTML 5 was financially supported by  Studienzuschüsse  ("study grants") of the TUM Faculty EI. We thank them.


Once again: Open Applet in new Tab

Open Applet in new Tab   Deutsche Version Öffnen