Difference between revisions of "Applets:Digital Filters"

From LNTwww
 
(42 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{LntAppletLink|korrelation}}  
+
{{LntAppletLinkEnDe|digitalFilters_en|digitalFilters}}  
  
==Programmbeschreibung==
+
==Applet Description==
 
<br>
 
<br>
The applet should clarify the properties of digital filters, whereby we confine ourselves to filters of the order $M=2$. Both non-recursive filters $\rm (FIR$,&nbsp; ''Finite Impulse Response''$)$&nbsp; as well as recursive filters $\rm (IIR$,&nbsp; ''Infinite Impulse Response''$)$.  
+
The applet should clarify the properties of digital filters, whereby we confine ourselves to filters of the order $M=2$. Both non-recursive filters $\rm (FIR$,&nbsp; ''Finite Impulse Response''$)$&nbsp; as well as recursive filters $\rm (IIR$,&nbsp; ''Infinite Impulse Response''$)$.
  
 
The input signal $x(t)$ is represented by the sequence $〈x_ν〉$ of its samples, where $x_ν$ stands for $x(ν · T_{\rm A})$. The output sequence $〈y_ν〉$is calculated, i.e. the discrete-time representation of the output signal $y(t)$.
 
The input signal $x(t)$ is represented by the sequence $〈x_ν〉$ of its samples, where $x_ν$ stands for $x(ν · T_{\rm A})$. The output sequence $〈y_ν〉$is calculated, i.e. the discrete-time representation of the output signal $y(t)$.
Line 13: Line 13:
 
It should also be noted that we denote the initial sequence $〈y_ν〉$ as
 
It should also be noted that we denote the initial sequence $〈y_ν〉$ as
  
'''(1)''' the '''discrete-time impulse response''' $〈h_ν〉$ if the “discrete-time Dirac function” is present at the input: &nbsp; &nbsp; &nbsp; &nbsp; $〈x_ν〉= 〈1,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0, \text{...}〉,$
+
'''(1)''' the '''discrete-time impulse response''' $〈h_ν〉$ if the “discrete-time Dirac delta function” is present at the input: &nbsp; &nbsp; &nbsp; &nbsp; $〈x_ν〉= 〈1,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0, \text{...}〉,$
  
'''(2)''' the '''time-discrete step response''' $〈\sigma_ν〉$ if the “time-discrete step function” is present at the input: &nbsp; &nbsp; &nbsp; &nbsp; $〈x_ν〉= 〈1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1, \text{...}〉,$
+
'''(2)''' the '''discrete-time step response''' $〈\sigma_ν〉$ if the “discrete-time step function” is present at the input: &nbsp; &nbsp; &nbsp; &nbsp; $〈x_ν〉= 〈1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1, \text{...}〉,$
  
'''(3)''' the '''discrete-time square response''' $〈\rho_ν^{(2, 4)}〉$ if the “discrete-time square function” is present at the input: &nbsp; &nbsp; $〈x_ν〉= 〈0,\ 0,\ 1,\ 1,\ 1,\ 0,\ 0, \text{...}〉;$<br>&nbsp; &nbsp; &nbsp; &nbsp; In quotation marks are the beginning of the ones $(2)$ and the position of the last ones $(4)$.
+
'''(3)''' the '''discrete-time rectangle response''' $〈\rho_ν^{(2, 4)}〉$ if the “discrete-time rectangle function” is present at the input: &nbsp; &nbsp; $〈x_ν〉= 〈0,\ 0,\ 1,\ 1,\ 1,\ 0,\ 0, \text{...}〉;$<br>&nbsp; &nbsp; &nbsp; &nbsp; In quotation marks are the beginning of the ones $(2)$ and the position of the last ones $(4)$.
  
  
Line 24: Line 24:
 
===General block diagram===
 
===General block diagram===
  
Each signal $x(t)$ can only be represented on a computer by the sequence $〈x_ν〉$ of its samples, where $x_ν$ stands for $x(ν · T_{\rm A})$.  
+
Each signal $x(t)$ can only be represented on a computer by the sequence $〈x_ν〉$ of its samples, where $x_ν$ stands for $x(ν · T_{\rm A})$.
[[Datei:P_ID552__Sto_T_5_2_S1_neu.png |right|frame|Block diagram of a digital (IIR&ndash;) filter $M$&ndash;order]]
+
[[File:P_ID552__Sto_T_5_2_S1_neu.png|right |frame| Block diagram of a digital (IIR&ndash;) filter $M$&ndash;order]]
*Der zeitliche Abstand&nbsp; $T_{\rm A}$&nbsp; zwischen zwei Abtastwerten ist dabei durch das&nbsp; [[Signaldarstellung/Zeitdiskrete_Signaldarstellung#Das_Abtasttheorem|Abtasttheorem]]&nbsp;  nach oben begrenzt.
+
*The time interval $T_{\rm A}$ between two samples is limited by the [https://en.lntwww.de/Signal_Representation/Discrete-Time_Signal_Representation#Sampling_theorem|"sampling theorem"].
*Wir beschränken uns hier auf kausale Signale und Systeme, das heißt, es gilt&nbsp; $x_ν \equiv 0$&nbsp; für&nbsp; $ν \le 0$.
+
*We limit ourselves here to causal signals and systems, which means that $x_ν \equiv 0$ for $ν \le 0$.
  
*Um den Einfluss eines linearen Filters mit Frequenzgang&nbsp; $H(f)$&nbsp; auf das zeitdiskrete Eingangssignal&nbsp; $〈x_ν〉$&nbsp; zu erfassen, bietet es sich an, auch das Filter zeitdiskret zu beschreiben.&nbsp; Im Zeitbereich geschieht das mit der zeitdiskreten Impulsantwort&nbsp; $〈h_ν〉$.   
+
*In order to determine the influence of a linear filter with frequency response $H(f)$ on the discrete-time input signal $〈x_ν〉$, it is advisable to describe the filter discrete-time. In the time domain, this happens with the discrete-time impulse response $〈h_ν〉$.   
*Rechts sehen Sie das entsprechende Blockschaltbild.&nbsp; Für die Abtastwerte des Ausgangssignals&nbsp; $〈y_ν〉$&nbsp; gilt somit:  
+
*On the right you can see the corresponding block diagram. The following therefore applies to the samples of the output signal $〈y_ν〉$ thus holds:
 
:$$y_\nu  = \sum\limits_{\mu  = 0}^M {a_\mu  }  \cdot x_{\nu  - \mu }  + \sum\limits_{\mu  = 1}^M {b_\mu  }  \cdot y_{\nu  - \mu } .$$
 
:$$y_\nu  = \sum\limits_{\mu  = 0}^M {a_\mu  }  \cdot x_{\nu  - \mu }  + \sum\limits_{\mu  = 1}^M {b_\mu  }  \cdot y_{\nu  - \mu } .$$
  
Hierzu ist Folgendes zu bemerken:
+
The following should be noted here:
*Der Index&nbsp; $\nu$&nbsp; bezieht sich auf Folgen, zum Beispiel am  Eingang&nbsp; $〈x_ν〉$&nbsp; und Ausgang &nbsp; $〈y_ν〉$.
+
*The index $\nu$ refers to sequences, for example at the input $〈x_ν〉$ and output $〈y_ν〉$.
*Den Index&nbsp; $\mu$&nbsp; verwenden wir dagegen für die Kennzeichnung der&nbsp; $a$&ndash; und&nbsp; $b$&ndash;Filterkoeffizienten.
+
*On the other hand, we use the index $\mu$ to identify the $a$ and $b$ filter coefficients.
*Die erste Summe beschreibt die Abhängigkeit des aktuellen Ausgangs&nbsp; $y_ν$&nbsp; vom aktuellen Eingang&nbsp; $x_ν$&nbsp; und von den&nbsp; $M$&nbsp; vorherigen Eingangswerten&nbsp; $x_{ν-1}$, ... , $x_{ν-M}.$
+
*The first sum describes the dependency of the current output $y_ν$ on the current input $x_ν$ and on the $M$ previous input values $x_{ν-1}$, ... , $x_{ν-M}$.
*Die zweite Summe kennzeichnet die Beeinflussung von&nbsp; $y_ν$&nbsp; durch die vorherigen Werte&nbsp; $y_{ν-1}$, ... , $y_{ν-M}$&nbsp; am Filterausgang.&nbsp; Sie gibt den rekursiven Teil des Filters an.  
+
*The second sum indicates the influence of $y_ν$ by the previous values $y_{ν-1}$, ... , $y_{ν-M}$ at the filter output. It specifies the recursive part of the filter.
*Den ganzzahligen Parameter&nbsp; $M$&nbsp; bezeichnet man als die ''Ordnung''&nbsp; des digitalen Filters.&nbsp; Im Programm ist dieser Wert auf&nbsp; $M\le 2$&nbsp; begrenzt.
+
*The integer parameter $M$ is called the order of  the digital filter. In the program, this value is limited to $M\le 2$.
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definitionen:}$&nbsp;
+
$\text{Definitions:}$&nbsp;
 
   
 
   
'''(1)'''&nbsp; Man bezeichnet die Ausgangsfolge&nbsp; $〈y_ν〉$&nbsp; als die&nbsp; '''zeitdiskrete Impulsantwort'''&nbsp; $〈h_ν〉$, wenn am Eingang die&nbsp; &bdquo;zeitdiskrete Diracfunktion&rdquo;&nbsp; anliegt:
+
'''(1)'''&nbsp; The output sequence $〈y_ν〉$ is called the '''discrete-time impulse response''' $〈h_ν〉$ if the “discrete-time Dirac delta function” is present at the input:
 
:$$〈x_ν〉= 〈1,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0, \text{...}〉  .$$
 
:$$〈x_ν〉= 〈1,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0, \text{...}〉  .$$
'''(2)'''&nbsp; Man bezeichnet die Ausgangsfolge&nbsp; $〈y_ν〉$&nbsp; als die&nbsp; '''zeitdiskrete Sprungantwort'''&nbsp; $〈\sigma_ν〉$, wenn am Eingang die&nbsp; &bdquo;zeitdiskrete Sprungfunktion&rdquo;&nbsp; anliegt:
+
'''(2)'''&nbsp; The output sequence $〈y_ν〉$ is called the '''discrete-time step response''' $〈\sigma_ν〉$ if the “discrete-time step function” is present at the input:
 
:$$〈x_ν〉= 〈1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1, \text{...}〉  .$$
 
:$$〈x_ν〉= 〈1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1, \text{...}〉  .$$
'''(3)'''&nbsp; Man bezeichnet die Ausgangsfolge&nbsp; $〈y_ν〉$&nbsp; als die&nbsp; '''zeitdiskrete Recheckantwort'''&nbsp; $〈\rho_ν^{(2, 4)}〉$, wenn am Eingang die&nbsp; &bdquo;zeitdiskrete Rechteckfunktion&rdquo;&nbsp; anliegt:
+
'''(3)'''&nbsp; The output sequence $〈y_ν〉$ is called the '''discrete-time rectangle response'''&nbsp; $〈\rho_ν^{(2, 4)}〉$ if the “discrete-time rectangular function” is present at the input:
 
:$$〈x_ν〉= 〈0,\ 0,\ 1,\ 1,\ 1,\ 0,\ 0, \text{...}〉  .$$
 
:$$〈x_ν〉= 〈0,\ 0,\ 1,\ 1,\ 1,\ 0,\ 0, \text{...}〉  .$$
:In Hochkommata angegeben sind hier der Beginn der Einsen&nbsp; $(2)$&nbsp; und die Stelle der letzten Eins&nbsp; $(4)$.
+
:The beginning of ones $(2)$ and the position of the last ones $(4)$ are given in single quotes.
}}
+
}}
  
  
===Nichtrekursives Filter &nbsp; &rArr; &nbsp; FIR&ndash;Filter ===
+
===Non-recursive filter &nbsp; &rArr; &nbsp; FIR&ndash;filter ===
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
[[Datei:P_ID553__Sto_T_5_2_S2_neu.png|right |frame| Nichtrekursives digitales Filter&nbsp; $($FIR&ndash;Filter$)$&nbsp; $M$&ndash;Ordnung]]   
+
[[File:P_ID553__Sto_T_5_2_S2_neu.png|right |frame| Non-recursive digital filter&nbsp; $($FIR filter$)$&nbsp; $M$ order]]   
$\text{Definition:}$&nbsp; Sind alle Rückführungskoeffizienten&nbsp; $b_{\mu} = 0$, so spricht von einem&nbsp; '''nichtrekursiven Filter'''.&nbsp; In der englischsprachigen Literatur ist hierfür auch die Bezeichnung&nbsp; '''FIR Filter'''&nbsp; (''Finite Impulse Response'') gebräuchlich.
+
$\text{Definition:}$ If all feedback coefficients $b_{\mu} = 0$ , one speaks of one '''non-recursive filter'''. In the English language literature, the term '''FIR filter''' (''Finite Impulse Response'') is also used for this.
  
Für die Ordnung&nbsp; $M$&nbsp; gilt:
+
The following applies to the order $M$ applies:
  
*Der Ausgangswert&nbsp; $y_ν$&nbsp; hängt nur vom aktuellen und den&nbsp; $M$&nbsp; vorherigen Eingangswerten ab:  
+
*The output value $y_ν$ depends only on the current and the previous $M$ input values:
 
:$$y_\nu  = \sum\limits_{\mu  = 0}^M {a_\mu  \cdot x_{\mu  - \nu } } .$$
 
:$$y_\nu  = \sum\limits_{\mu  = 0}^M {a_\mu  \cdot x_{\mu  - \nu } } .$$
*Zeitdikrete Impulsantwort mit $〈x_ν〉= 〈1,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0, \text{...}〉$:
+
*Discrete-time impulse response with $〈x_ν〉= 〈1,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0, \text{...}〉$:
 
:$$〈h_\mu〉= 〈a_0,\ a_1,\  \text{...},\ a_M〉 .$$}}
 
:$$〈h_\mu〉= 〈a_0,\ a_1,\  \text{...},\ a_M〉 .$$}}
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 1:}$&nbsp; Ein Zweiwegekanal, bei dem
+
$\text{Example 1:}$&nbsp; A two-way channel where
*das Signal auf dem Hauptpfad gegenüber dem Eingangssignal ungedämpft, aber um&nbsp; $2\ \rm &micro; s$&nbsp; verzögert ankommt, und
+
*the signal on the main path arrives undamped compared to the input signal but is delayed by $2\ \rm &micro; s$ arrives with a delay, and
*in&nbsp; $4\ \rm &micro;  s$&nbsp; Abstand also absolut zur Zeit&nbsp; $t = 6\ \rm &micro; s$&nbsp; ein Echo mit halber Amplitude nachfolgt,  
+
*at $4\ \rm &micro;  s$ distance so absolutely at time $t = 6\ \rm &micro; s$ – follows an echo with half the amplitude,  
  
  
kann durch ein nichtrekursives Filter entsprechend obiger Skizze nachgebildet werden, wobei folgende Parameterwerte einzustellen sind:  
+
can be simulated by a non-recursive filter according to the sketch above, whereby the following parameter values ​​must be set:
 
:$$M = 3,\quad T_{\rm A}  = 2\;{\rm{&micro;  s} },\quad a_{\rm 0}    = 0,\quad a_{\rm 1}  = 1, \quad a_{\rm 2}  = 0, \quad a_{\rm 3}  = 0.5.$$}}  
 
:$$M = 3,\quad T_{\rm A}  = 2\;{\rm{&micro;  s} },\quad a_{\rm 0}    = 0,\quad a_{\rm 1}  = 1, \quad a_{\rm 2}  = 0, \quad a_{\rm 3}  = 0.5.$$}}  
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 2:}$&nbsp; Betrachtet wird ein nichtrekursives Filter mit den Filterkoeffizienten&nbsp; $a_0  =  1,\hspace{0.5cm} a_1  = 2,\hspace{0.5cm} a_2  =  1.$&nbsp;
+
$\text{Example 2:}$ Consider a non-recursive filter with the filter coefficients $a_0  =  1,\hspace{0.5cm} a_1  = 2,\hspace{0.5cm} a_2  =  1.$
[[Datei:P_ID608__Sto_Z_5_3.png|right|frame|Nichtrekursives Filter]]
+
[[File:P_ID608__Sto_Z_5_3.png|right|frame|Non-recursive filter]]
 
   
 
   
'''(1)''' &nbsp; Die herkömmliche Impulsantwort lautet: &nbsp; $h(t) = \delta (t) + 2 \cdot \delta ( {t - T_{\rm A} } ) + \delta ( {t - 2T_{\rm A} } ).$ <br>&nbsp; &nbsp; &nbsp; &nbsp; &rArr; &nbsp; Zeitdiskrete Impulsantwort:&nbsp; $〈h_\mu〉= 〈1,\ 2,\  1〉 .$
+
'''(1)''' The conventional impulse response is: $h(t) = \delta (t) + 2 \cdot \delta ( {t - T_{\rm A} } ) + \delta ( {t - 2T_{\rm A} } ).$ <br>&nbsp; &nbsp; &nbsp; &nbsp; &rArr; &nbsp; discrete-time impulse response: $〈h_\mu〉= 〈1,\ 2,\  1〉 .$
  
'''(2)''' &nbsp; Der Frequenzgang&nbsp; $H(f)$&nbsp; ist die Fouriertransformierte von&nbsp; $h(t)$.&nbsp; Durch Anwendung des Verschiebungssatzes:
+
'''(2)''' &nbsp; The frequency response $H(f)$ is the Fourier transform of $h(t)$. By applying the displacement theorem:
 
:$$H(f) = 2\big [ {1 + \cos ( {2{\rm{\pi }\cdot  }f \cdot T_{\rm A} } )} \big ] \cdot {\rm{e} }^{ - {\rm{j} }2{\rm{\pi } }fT_{\rm A} }\hspace{0.5cm}\Rightarrow \hspace{0.5cm}H(f = 0) = 4.$$
 
:$$H(f) = 2\big [ {1 + \cos ( {2{\rm{\pi }\cdot  }f \cdot T_{\rm A} } )} \big ] \cdot {\rm{e} }^{ - {\rm{j} }2{\rm{\pi } }fT_{\rm A} }\hspace{0.5cm}\Rightarrow \hspace{0.5cm}H(f = 0) = 4.$$
  
'''(3)''' &nbsp; Daraus folgt:&nbsp; Die&nbsp; '''zeitdiskrete Sprungantwort'''&nbsp; $〈\sigma_ν〉$&nbsp; tendiert für große&nbsp; $\nu$&nbsp; gegen&nbsp; $4$.
+
'''(3)''' &nbsp; It follows that the '''discrete-time step response''' $〈\sigma_ν〉$ tends to become $4$ for large $\nu$.
  
'''(4)''' &nbsp; Die zeitdiskrete Faltung der Eingangsfolge&nbsp; $\left\langle \hspace{0.05cm}{x_\nu  } \hspace{0.05cm}\right\rangle  =  \left\langle {\;1,\;0,\;0,\;0,\;1,\;0,\;0,\;0,\;\text{...} } \hspace{0.05cm} \right\rangle$&nbsp; mit&nbsp;  $\left\langle \hspace{0.05cm}{h_\nu  } \hspace{0.05cm}\right\rangle = \left\langle \hspace{0.05cm}{1, \ 2,\ 1  } \hspace{0.05cm}\right\rangle$&nbsp; ergibt
+
'''(4)''' &nbsp; The discrete-time convolution of the input sequence $\left\langle \hspace{0.05cm}{x_\nu  } \hspace{0.05cm}\right\rangle  =  \left\langle {\;1,\;0,\;0,\;0,\;1,\;0,\;0,\;0,\;\text{...} } \hspace{0.05cm} \right\rangle$&nbsp; with $\left\langle \hspace{0.05cm}{h_\nu  } \hspace{0.05cm}\right\rangle = \left\langle \hspace{0.05cm}{1, \ 2,\ 1  } \hspace{0.05cm}\right\rangle$&nbsp; results
 
:$$\left\langle \hspace{0.05cm}{y_\nu  } \hspace{0.05cm}\right\rangle  = \left\langle {\;1,\;2,\;1,\;0,\;1,\;2,\;1,\;0,\;0,\;0,\;0,\; \text{...} \;} \right\rangle. $$
 
:$$\left\langle \hspace{0.05cm}{y_\nu  } \hspace{0.05cm}\right\rangle  = \left\langle {\;1,\;2,\;1,\;0,\;1,\;2,\;1,\;0,\;0,\;0,\;0,\; \text{...} \;} \right\rangle. $$
  
'''(5)''' &nbsp; Die zeitdiskrete Faltung der Eingangsfolge&nbsp; $\left\langle \hspace{0.05cm}{x_\nu  } \hspace{0.05cm}\right\rangle  =  \left\langle {\;1,\;1,\;0,\;0,\;1,\;0,\;0,\;0,\;\text{...} } \hspace{0.05cm} \right\rangle$&nbsp; mit&nbsp;  $\left\langle \hspace{0.05cm}{h_\nu  } \hspace{0.05cm}\right\rangle = \left\langle \hspace{0.05cm}{1, \ 2,\ 1  } \hspace{0.05cm}\right\rangle$&nbsp; ergibt
+
'''(5)''' &nbsp; The discrete-time convolution of the input sequence $\left\langle \hspace{0.05cm}{x_\nu  } \hspace{0.05cm}\right\rangle  =  \left\langle {\;1,\;1,\;0,\;0,\;1,\;0,\;0,\;0,\;\text{...} } \hspace{0.05cm} \right\rangle$&nbsp; with&nbsp;  $\left\langle \hspace{0.05cm}{h_\nu  } \hspace{0.05cm}\right\rangle = \left\langle \hspace{0.05cm}{1, \ 2,\ 1  } \hspace{0.05cm}\right\rangle$&nbsp; results
 
:$$\left\langle \hspace{0.05cm}{y_\nu  } \hspace{0.05cm}\right\rangle  = \left\langle {\;1,\;3,\;3,\;2,\;2,\;1,\;0,\;0,\;0,\;0,\;0,\; \text{...} \;} \right\rangle. $$}}
 
:$$\left\langle \hspace{0.05cm}{y_\nu  } \hspace{0.05cm}\right\rangle  = \left\langle {\;1,\;3,\;3,\;2,\;2,\;1,\;0,\;0,\;0,\;0,\;0,\; \text{...} \;} \right\rangle. $$}}
  
  
  
===Rekursives Filter &nbsp; &rArr; &nbsp; IIR&ndash;Filter ===
+
===Recursive filter &nbsp; &rArr; &nbsp; IIR filter ===
  
 
{{BlaueBox|TEXT=  
 
{{BlaueBox|TEXT=  
[[Datei:P_ID607__Sto_A_5_3.png|right|frame|Rekursives Filter erster Ordnung]]  
+
[[File:P_ID607__Sto_A_5_3.png|right|frame|First order recursive filter]]  
 
$\text{Definition:}$&nbsp;  
 
$\text{Definition:}$&nbsp;  
*Ist zumindest einer der Rückführungskoeffizienten&nbsp; $b_{\mu} \ne 0$, so spricht von einem&nbsp; '''rekursiven Filter'''&nbsp; (siehe rechte Grafik).&nbsp; Insbesondere in der englischsprachigen Literatur ist hierfür auch die Bezeichnung&nbsp; '''IIR Filter'''&nbsp; (''Infinite Impulse Response'') gebräuchlich.&nbsp; Dieses Filter wird in der Verrsuchsdurchführung ausführlich behandelt.
+
*If at least one of the feedback coefficients is $b_{\mu} \ne 0$, then this is referred to as a '''recursive filter''' (see graphic on the right). The term '''IIR filter'''&nbsp; (''Infinite Impulse Response'') is also used for this, particularly in the English-language literature. This filter is dealt with in detail in the trial implementation.
  
  
*Sind zusätzlich alle Vorwärtskoeffizienten identisch&nbsp; $a_\mu = 0$&nbsp; mit Ausnahme von&nbsp; $a_0$, &nbsp; so liegt ein&nbsp; '''rein rekursives Filter'''&nbsp; vor &nbsp; (siehe linke Grafik).
+
*If all forward coefficients are also identical $a_\mu = 0$ with the exception of $a_0$, a '''purely recursive filter''' is available (see graphic on the left).
  
[[Datei:P_ID554__Sto_T_5_2_S3_neu.png|left|frame| Rein rekursives Filter erster Ordnung]] }}
+
[[File:P_ID554__Sto_T_5_2_S3_neu.png|left|frame| Purely recursive first order filter]] }}
  
  
Im Folgenden beschränken wir uns auf den Sonderfall&nbsp; &bdquo;Rein rekursives Filter erster Ordnung&rdquo;.&nbsp; Dieses Filter weist folgende Eigenschaften auf:  
+
In the following we restrict ourselves to the special case “purely recursive filter of the first order”. This filter has the following properties:
*Der Ausgangswert&nbsp; $y_ν$&nbsp; hängt (indirekt) von unendlich vielen Eingangswerten ab:
+
*The output value $y_ν$ depends (indirectly) on an infinite number of input values:
 
:$$y_\nu = \sum\limits_{\mu  = 0}^\infty  {a_0  \cdot {b_1} ^\mu  \cdot x_{\nu  - \mu } .}$$
 
:$$y_\nu = \sum\limits_{\mu  = 0}^\infty  {a_0  \cdot {b_1} ^\mu  \cdot x_{\nu  - \mu } .}$$
*Dies zeigt die folgende Rechung:  
+
*This shows the following calculation:
 
:$$y_\nu  = a_0  \cdot x_\nu  + b_1  \cdot y_{\nu  - 1}  = a_0  \cdot x_\nu  + a_0  \cdot b_1  \cdot x_{\nu  - 1}  + {b_1} ^2  \cdot y_{\nu  - 2} = a_0  \cdot x_\nu  + a_0  \cdot b_1  \cdot x_{\nu  - 1}  + a_0 \cdot {b_1} ^2  \cdot x_{\nu  - 2} + {b_1} ^3  \cdot y_{\nu  - 3} = \text{...}.  $$
 
:$$y_\nu  = a_0  \cdot x_\nu  + b_1  \cdot y_{\nu  - 1}  = a_0  \cdot x_\nu  + a_0  \cdot b_1  \cdot x_{\nu  - 1}  + {b_1} ^2  \cdot y_{\nu  - 2} = a_0  \cdot x_\nu  + a_0  \cdot b_1  \cdot x_{\nu  - 1}  + a_0 \cdot {b_1} ^2  \cdot x_{\nu  - 2} + {b_1} ^3  \cdot y_{\nu  - 3} = \text{...}.  $$
 
   
 
   
*Die zeitdiskrete Impulsantwort ist definitionsgemäß gleich der Ausgangsfolge, wenn am Eingang eine einzelne „Eins” bei&nbsp; $t =0$&nbsp;  anliegt.
+
*By definition, the discrete-time impulse response is the same as the output sequence if there is a single "one" at $t =0$ at the input.
 
:$$h(t)= \sum\limits_{\mu  = 0}^\infty  {a_0  \cdot {b_1} ^\mu  \cdot \delta ( {t - \mu  \cdot T_{\rm A} } )}\hspace{0.3cm}
 
:$$h(t)= \sum\limits_{\mu  = 0}^\infty  {a_0  \cdot {b_1} ^\mu  \cdot \delta ( {t - \mu  \cdot T_{\rm A} } )}\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}〈\hspace{0.05cm}h_\mu\hspace{0.05cm}〉= 〈\hspace{0.05cm}a_0,  \ a_0\cdot {b_1},  \ a_0\cdot {b_1}^2 \ \text{...}  \hspace{0.05cm}〉.$$
 
\Rightarrow \hspace{0.3cm}〈\hspace{0.05cm}h_\mu\hspace{0.05cm}〉= 〈\hspace{0.05cm}a_0,  \ a_0\cdot {b_1},  \ a_0\cdot {b_1}^2 \ \text{...}  \hspace{0.05cm}〉.$$
  
 
{{BlaueBox|TEXT=  
 
{{BlaueBox|TEXT=  
$\text{Fazit:}$&nbsp; Bei einem rekursiven Filter reicht die (zeitdiskrete) Impulsantwort schon  mit&nbsp; $M = 1$&nbsp;  bis ins Unendliche:
+
$\text{Conclusion:}$&nbsp; With a recursive filter, the (discrete-time) impulse response extends to infinity with $M = 1$:
*Aus Stabilitätsgründen muss&nbsp; $b_1 < 1$&nbsp; gelten.  
+
*For reasons of stability, $b_1 < 1$ must apply.  
*Bei&nbsp; $b_1 = 1$&nbsp; würde sich die Impulsantwort&nbsp; $h(t)$&nbsp; bis ins Unendliche erstrecken und bei&nbsp; $b_1 > 1$&nbsp; würde&nbsp; $h(t)$&nbsp; sogar bis ins Unendliche anklingen.  
+
*With $b_1 = 1$ the impulse response $h(t)$ would extend to infinity and with $b_1 > 1$ the variable $h(t)$ would even continue to infinity.
*Bei einem solchen rekursiven Filter erster Ordnung ist jede einzelne Diraclinie genau um den Faktor&nbsp; $b_1$&nbsp; kleiner als die vorherige Diraclinie:  
+
*With such a recursive filter of the first order, each individual Dirac delta line is exactly the factor $b_1$ smaller than the previous Dirac delta line:
 
:$$h_{\mu} = h(\mu  \cdot T_{\rm A}) =  {b_1} \cdot h_{\mu -1}.$$}}
 
:$$h_{\mu} = h(\mu  \cdot T_{\rm A}) =  {b_1} \cdot h_{\mu -1}.$$}}
  
  
 
{{GraueBox|TEXT=  
 
{{GraueBox|TEXT=  
[[Datei:Sto_T_5_2_S3_version2.png |frame| Zeitdiskrete Impulsantwort | rechts]]  
+
[[File:Sto_T_5_2_S3_version2.png |frame| Discrete-time impulse response]]  
$\text{Beispiel 3:}$&nbsp; Die nebenstehende Grafik zeigt die zeitdiskrete Impulsantwort&nbsp; $〈\hspace{0.05cm}h_\mu\hspace{0.05cm}〉$&nbsp; eines rekursiven Filters erster Ordnung mit den Parametern&nbsp; $a_0 = 1$&nbsp; und&nbsp; $b_1 = 0.6$.  
+
$\text{Example 3:}$&nbsp; The graphic opposite shows the discrete-time impulse response $〈\hspace{0.05cm}h_\mu\hspace{0.05cm}〉$ of a recursive filter of the first order with the parameters $a_0 = 1$ and $b_1 = 0.6$.  
*Der (zeitdiskrete) Verlauf ist exponentiell abfallend und erstreckt sich bis ins Unendliche.  
+
*The (discrete-time) course is exponentially falling and extends to infinity.
*Das Verhältnis der Gewichte zweier aufeinanderfolgender Diracs ist jeweils&nbsp; $b_1 = 0.6$.
+
*The ratio of the weights of two successive Dirac deltas is $b_1 = 0.6$.
 
}}  
 
}}  
  
  
  
===Rekursives Filter als Sinus&ndash;Generator===
+
===Recursive filter as a sine generator===
[[Datei:P_ID622__Sto_A_5_4.png|right|frame|Vorgeschlagene Filterstruktur  '''ändern auf''' $T_{\rm A}$]]
+
[[File:EN_Sto_A_5_4_version2.png|right|frame|Proposed filter structure]]
Die Grafik zeigt ein digitales Filter zweiter Ordnung, das zur Erzeugung einer zeitdiskreten Sinusfunktion auf einem digitalen Signalprozessor (DSP) geeignet ist, wenn die Eingangsfolge&nbsp; $\left\langle \hspace{0.05cm} {x_\nu  } \hspace{0.05cm}\right\rangle$&nbsp; eine (zeitdiskrete) Diracfunktion ist:
+
 
 +
The graphic shows a second-order digital filter that is suitable for generating a discrete-time sine function on a digital signal processor (DSP) if the input sequence $\left\langle \hspace{0.05cm} {x_\nu  } \hspace{0.05cm}\right\rangle$&nbsp; a (discrete-time) Dirac delta function is:
 
:$$\left\langle \hspace{0.05cm}{y_\nu  }\hspace{0.05cm} \right\rangle  = \left\langle {\, \sin ( {\nu \cdot T_{\rm A} \cdot \omega _0  } )\, }\right\rangle .$$
 
:$$\left\langle \hspace{0.05cm}{y_\nu  }\hspace{0.05cm} \right\rangle  = \left\langle {\, \sin ( {\nu \cdot T_{\rm A} \cdot \omega _0  } )\, }\right\rangle .$$
  
Die fünf Filterkoeffizienten ergeben sich aus der&nbsp; [https://de.wikipedia.org/wiki/Z-Transformation $Z$-Transformation]:
+
The five filter coefficients result from the:
 +
[https://en.wikipedia.org/wiki/Z-transform "$Z$-transform"]:
 
:$$Z \big \{ {\sin ( {\nu T{\rm A}\cdot \omega _0 } )} \big \} = \frac{{z \cdot \sin \left( {\omega _0 \cdot T_{\rm A}} \right)}}{{z^2  - 2 \cdot z \cdot \cos \left( {\omega _0  \cdot T_{\rm A}} \right) + 1}}.$$
 
:$$Z \big \{ {\sin ( {\nu T{\rm A}\cdot \omega _0 } )} \big \} = \frac{{z \cdot \sin \left( {\omega _0 \cdot T_{\rm A}} \right)}}{{z^2  - 2 \cdot z \cdot \cos \left( {\omega _0  \cdot T_{\rm A}} \right) + 1}}.$$
Nach Umsetzung dieser Gleichung durch ein rekursives Filter zweiter Ordnung erhält man  folgende Filterkoeffizienten:
+
After implementing this equation using a second-order recursive filter, the following filter coefficients are obtained:  
 
:$$a_0 = 0,\quad a_1  = \sin \left( {\omega _0  \cdot T_{\rm A}} \right),\quad a_2  = 0, \quad b_1  = 2 \cdot \cos \left( {\omega _0 \cdot  T_{\rm A}} \right),\quad b_2  =  - 1.$$
 
:$$a_0 = 0,\quad a_1  = \sin \left( {\omega _0  \cdot T_{\rm A}} \right),\quad a_2  = 0, \quad b_1  = 2 \cdot \cos \left( {\omega _0 \cdot  T_{\rm A}} \right),\quad b_2  =  - 1.$$
  
*Auf die Filterkoeffizienten&nbsp; $a_0$&nbsp; und&nbsp; $a_2$&nbsp; kann verzichtet werden und&nbsp; $b_2=-1$&nbsp; hat einen festen Wert.&nbsp;
+
*The filter coefficients $a_0$ and $a_2$ can be omitted and $b_2=-1$ has a fixed value.  
*Die Kreisfrequenz&nbsp; $\omega_0$&nbsp; der Sinusschwingung wird also nur durch&nbsp; $a_0$&nbsp; und&nbsp; $a_0$&nbsp; festelegt.
+
*The angular frequency $\omega_0$ of the sine wave is therefore only determined by $a_0$ and $a_0$.
  
  
 
{{GraueBox|TEXT=  
 
{{GraueBox|TEXT=  
$\text{Beispiel 3:}$&nbsp; Es gelte&nbsp; $a_1 = 0.5$,&nbsp; $b_1 = \sqrt 3$,&nbsp; $x_0 = 1$&nbsp; und&nbsp; $x_{\nu \hspace{0.05cm}\ne\hspace{0.05cm} 0} = 0$.
+
$\text{Example 3:}$&nbsp; Let $a_1 = 0.5$, $b_1 = \sqrt 3$, $x_0 = 1$ and $x_{\nu \hspace{0.05cm}\ne\hspace{0.05cm} 0} = 0$.
 
   
 
   
'''(1)'''&nbsp; Dann gilt für die Ausgangswerte&nbsp; $y_\nu$&nbsp; zu den Zeitpunkten&nbsp; $\nu \ge 0$:<br>   
+
'''(1)'''&nbsp; Then the following applies to the initial values $y_\nu$ at times $\nu \ge 0$:<br>   
 
:*&nbsp; $y_0  = 0;$
 
:*&nbsp; $y_0  = 0;$
:*&nbsp; $y_1  = 0.5$ &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &rArr; &nbsp;die &bdquo;$1$&rdquo; am Eingang wirkt sich wegen&nbsp; $a_0= 0$&nbsp; am Ausgang erst zum Zeitpunkt&nbsp; $\nu = 1$&nbsp; aus;
+
:*&nbsp; $y_1  = 0.5$ &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &rArr; &nbsp;the "$1$" at the input only has an effect at time $\nu = 1$ because of $a_0= 0$ at the output;
:*&nbsp; $y_2  = b_1  \cdot y_1  - y_0  = {\sqrt 3 }/{2}  \approx 0.866$&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &rArr; &nbsp; bei&nbsp; $\nu = 2$&nbsp; wird auch der rekursive Teil des Filters wirksam;
+
:*&nbsp; $y_2  = b_1  \cdot y_1  - y_0  = {\sqrt 3 }/{2}  \approx 0.866$&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &rArr; &nbsp; with $\nu = 2$ the recursive part of the filter also takes effect;
:*&nbsp; $y_3  = \sqrt 3  \cdot y_2  - y_1  = \sqrt 3  \cdot {\sqrt 3 }/{2} - {1}/{2} = 1$&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &rArr; &nbsp;für&nbsp; $\nu \ge 2$&nbsp; ist das Filter rein rekursiv: &nbsp; &nbsp; $y_\nu  = b_1  \cdot y_{\nu  - 1}  - y_{\nu  - 2}$;
+
:*&nbsp; $y_3  = \sqrt 3  \cdot y_2  - y_1  = \sqrt 3  \cdot {\sqrt 3 }/{2} - {1}/{2} = 1$&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &rArr; &nbsp;for&nbsp; $\nu \ge 2$&nbsp; the filter is purely recursive: &nbsp; &nbsp; $y_\nu  = b_1  \cdot y_{\nu  - 1}  - y_{\nu  - 2}$;
 
:*&nbsp; $y_4  = \sqrt 3  \cdot y_3  - y_2  = \sqrt 3  \cdot 1 - {\sqrt 3 }/{2} = {\sqrt 3 }/{2};$
 
:*&nbsp; $y_4  = \sqrt 3  \cdot y_3  - y_2  = \sqrt 3  \cdot 1 - {\sqrt 3 }/{2} = {\sqrt 3 }/{2};$
 
:*&nbsp; $y_5  = \sqrt 3  \cdot y_4  - y_3  = \sqrt 3  \cdot {\sqrt 3 }/{2} - 1 = 0.5;$
 
:*&nbsp; $y_5  = \sqrt 3  \cdot y_4  - y_3  = \sqrt 3  \cdot {\sqrt 3 }/{2} - 1 = 0.5;$
Line 164: Line 166:
 
:*&nbsp; $y_7  = \sqrt 3  \cdot y_6  - y_5  = \sqrt 3  \cdot 0 - {1}/{2}  =  - 0.5.$
 
:*&nbsp; $y_7  = \sqrt 3  \cdot y_6  - y_5  = \sqrt 3  \cdot 0 - {1}/{2}  =  - 0.5.$
  
'''(2)'''&nbsp; Durch Fortsetzung des rekursiven Algorithmuses  erhält man für große&nbsp; $\nu$&ndash;Werte: &nbsp; &nbsp; $y_\nu   = y_{\nu  - 12} $ &nbsp; &rArr; &nbsp; $T_0/T_{\rm A}= 12.$ }}
+
'''(2)'''&nbsp; By continuing the recursive algorithm one gets for large $\nu$&ndash;values: &nbsp; &nbsp; $y_\nu = y_{\nu  - 12}$ &nbsp; &rArr; &nbsp; $T_0/T_{\rm A}= 12.$ }}
  
  
  
  
==Versuchsdurchführung==
+
==Exercises==
  
[[Datei:Exercises_binomial_fertig.png|right]]
+
[[File:Exercises_binomial_fertig.png|right]]
*Wählen Sie zunächst die Nummer&nbsp; '''1'''&nbsp; ...&nbsp; '''10'''&nbsp; der zu bearbeitenden Aufgabe.
+
*First select the number '''1''' ... '''10''' of the task to be processed.
*Eine Aufgabenbeschreibung wird angezeigt. Die Parameterwerte sind angepasst.
+
*A task description is displayed.&nbsp; The parameter values ​​are adjusted.
*Lösung nach Drücken von &bdquo;Musterlösung&rdquo;.
+
*Solution after pressing&nbsp; "Sample Solution".
*Die Nummer&nbsp; '''0'''&nbsp; entspricht einem &bdquo;Reset&rdquo;:&nbsp; Gleiche Einstellung wie beim Programmstart.
+
*The number '''0''' corresponds to a "reset":&nbsp; Same setting as when the program was started.
 
<br clear=all>
 
<br clear=all>
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(1)'''&nbsp; Die Filterkoeffizienten seien&nbsp; $a_0=0.25$,&nbsp; $a_1=0.5$,&nbsp;$a_2=0.25$,&nbsp; $b_1=b_2=0$.&nbsp; Um welches Filter handelt es sich?&nbsp; <br>&nbsp; &nbsp; &nbsp; &nbsp; Interpretieren Sie die Impulsantwort&nbsp; $〈h_ν〉$,&nbsp; die Sprungantwort&nbsp; $〈\sigma_ν〉$&nbsp; und&nbsp; die Rechteckantwort&nbsp; $〈\rho_ν^{(2, 8)}〉$&nbsp; jeweils in zeitdiskreter Darstellung.}}
+
'''(1)'''&nbsp; The filter coefficients are&nbsp; $a_0=0.25$,&nbsp; $a_1=0.5$,&nbsp; $a_2=0.25$,&nbsp; $b_1=b_2=0$.&nbsp; Which filter is it?<br>&nbsp; &nbsp; &nbsp; &nbsp; Interpret the impulse response&nbsp; $〈h_ν〉$,&nbsp; the step response&nbsp; $〈\sigma_ν〉$&nbsp; and the rectangular response&nbsp; $〈\rho_ν^{(2, 8)}〉$, each in a discrete-time representation.}}
  
:*&nbsp; Aufgrund der fehlenden&nbsp; $b$&ndash;Koeffizienten handelt es sich um ein nichtrekursives digitales Filter &nbsp; &rArr; &nbsp; '''FIR&ndash;Filter'''&nbsp; (''Finite Impulse Response'').
+
:*&nbsp; Due to the missing&nbsp; $b$ coefficients, it is a non-recursive digital filter &rArr; &nbsp; '''FIR filter''' (''Finite Impulse Response'').
:*&nbsp; Die Impulsantwort setzt sich aus&nbsp; $M+1=3$&nbsp; Diraclinien gemäß den&nbsp; $a$&ndash;Koeffizienten zusammen:&nbsp; &nbsp; $〈h_ν〉= 〈a_0, \ a_1,\ a_2〉= 〈0.25, \ 0.5,\ 0.25,\ 0, \ 0, \ 0,\text{...}〉 $.
+
:*&nbsp; The impulse response consists of&nbsp; $M+1=3$&nbsp; Dirac delta lines according to the&nbsp; $a$&nbsp; coefficients:&nbsp; $〈h_ν〉= 〈a_0, \ a_1,\ a_2〉= 〈0.25, \ 0.5,\ 0.25,\ 0, \ 0, \ 0,\text{...}〉 $.
:*&nbsp; Die Sprungantwort lautet:&nbsp; &nbsp; $〈\sigma_ν〉= 〈0.25, \ 0.75,\ 1,\ 1, \ 1, \ 1,\text{...}〉 $.&nbsp; Der Endwert ist gleich dem Gleichsignalübertragungsfaktor&nbsp; $H(f=0)=a_0+a_1+a_2 = 1$.
+
:*&nbsp; The step response is:&nbsp; $〈\sigma_ν〉= 〈0.25, \ 0.75,\ 1,\ 1, \ 1, \ 1,\text{...}〉 $.&nbsp; The final value is equal to the DC signal transfer factor&nbsp; $H(f=0)=a_0+a_1+a_2 = 1$.
:*&nbsp; Die Verzerrungen bei Anstieg und Abfall erkennt man auch aus der Rechteckantwort&nbsp; $〈\rho_ν^{(2, 8)}〉= 〈0,\ 0, 0.25, \ 0.75,\ 1,\ 1, \ 1, \ 1, \ 1, \ 0.75, \ 0.25, \ \text{...}〉$.  
+
:*&nbsp; The distortions with rise and fall can also be seen from the rectangular response&nbsp; $〈\rho_ν^{(2, 8)}〉= 〈0,\ 0, 0.25, \ 0.75,\ 1,\ 1, \ 1, \ 1, \ 1, \ 0.75, \ 0.25, \ \text{...}〉$.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(2)'''&nbsp; Wie unterscheiden sich die Ergebnisse mit &nbsp;$a_2=-0.25$? }}
+
'''(2)'''&nbsp; How do the results differ with&nbsp; $a_2=-0.25$? }}
  
:*&nbsp; Unter Berücksichtigung von&nbsp; $H(f=0)= 0.5$&nbsp; ergeben sich vergleichbare Folgen &nbsp; &rArr; &nbsp; Sprungantwort:&nbsp; &nbsp; $〈\sigma_ν〉=  〈0.25, \ 0.75,\ 0.5,\ 0.5, \ 0.5, \ 0.5,\text{...}〉 $.
+
:*&nbsp; Taking into account&nbsp; $H(f=0)= 0.5$&nbsp; there are comparable consequences &nbsp; &rArr; &nbsp; Step response:&nbsp; &nbsp; $〈\sigma_ν〉=  〈0.25, \ 0.75,\ 0.5,\ 0.5, \ 0.5, \ 0.5,\text{...}〉 $.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(3)'''&nbsp; Nun seien die Filterkoeffizienten&nbsp; $a_0=1$,&nbsp; $b_1=0.9$&nbsp; sowie  &nbsp;$a_1=a_2= b_2=0$.&nbsp; Um welches Filter handelt es sich?&nbsp; Interpretieren Sie die Impulsantwort&nbsp; $〈h_ν〉$.}}
+
'''(3)'''&nbsp; Now let the filter coefficients&nbsp; $a_0=1$,&nbsp; $b_1=0.9$&nbsp; and&nbsp; $a_1=a_2= b_2=0$.&nbsp; Which filter is it?&nbsp; Interpret the impulse response&nbsp; $〈h_ν〉$.}}
  
:*&nbsp; Es handelt sich um ein rekursives digitales Filter &nbsp; &rArr; &nbsp; '''IIR&ndash;Filter'''&nbsp; (''Infinite Impulse Response'')&nbsp; erster Ordnung.&nbsp; Es ist das zeitdiskrete Analogon zum RC&ndash;Tiefpass.
+
:*&nbsp; It is a recursive digital filter &nbsp; &rArr; &nbsp; '''IIR filter'''&nbsp; (''Infinite Impulse Response'')&nbsp; of the first order.&nbsp; It is the discrete-time analogon of the RC low-pass.
:*&nbsp; Ausgehend von&nbsp; $h_0= 1$&nbsp; gilt&nbsp; $h_1= h_0 \cdot b_0= 0.9$,&nbsp; $h_2= h_1 \cdot b_0= b_0^2=0.81$,&nbsp; $h_3= h_2 \cdot b_0= b_0^3=0.729$,&nbsp; usw. &nbsp; &rArr; &nbsp; $〈h_ν〉$&nbsp; reicht bis ins Unendliche.
+
:*&nbsp; Starting from&nbsp; $h_0= 1$ is $h_1= h_0 \cdot b_0= 0.9$,&nbsp; $h_2= h_1 \cdot b_0= b_0^2=0.81$,&nbsp; $h_3= h_2 \cdot b_0= b_0^3=0.729$,&nbsp; and so on &nbsp; &rArr; &nbsp; $〈h_ν〉$&nbsp; extends to infinity.
:*&nbsp; Impulsantwort&nbsp; $h(t) = {\rm e}^{-t/T}$&nbsp; mit&nbsp; $T$:&nbsp; Schnittpunkt $($Tangente bei&nbsp; $t=0$, Abszisse$)$ &nbsp;  &rArr; &nbsp; $h_\nu= h(\nu \cdot T_{\rm A}) = {\rm e}^{-\nu/(T/T_{\rm A})}$&nbsp; mit &nbsp;$T/T_{\rm A} = 1/(h_0-h_1)= 10$.
+
:*&nbsp; Impulse response&nbsp; $h(t) = {\rm e}^{-t/T}$&nbsp; with&nbsp; $T$: &nbsp; intersection $($Tangente bei&nbsp; $t=0$, Abscissa$)$ &nbsp;  &rArr; &nbsp; $h_\nu= h(\nu \cdot T_{\rm A}) = {\rm e}^{-\nu/(T/T_{\rm A})}$&nbsp; with &nbsp;$T/T_{\rm A} = 1/(h_0-h_1)= 10$.
:*&nbsp; Also:&nbsp; Die Werte der zeitkontinuierlichen  unterscheiden sich von der zeitdiskreten Impulsantwort.&nbsp; Hierfür ergeben sich die Werte  $1.0, \ 0.9048,\ 0.8187$ ...  
+
:*&nbsp; So:&nbsp; The values ​​of the continuous time differ from the discrete-time impulse response.&nbsp; This results in the values&nbsp; $1.0, \ 0.9048,\ 0.8187$ ...
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(4)'''&nbsp; Die Filtereinstellung wird beibehalten.&nbsp; Interpretieren Sie die Sprungantwort&nbsp; $〈h_ν〉$&nbsp; und&nbsp; die Rechteckantwort&nbsp; $〈\rho_ν^{(2, 8)}〉$.&nbsp; Welcher Wert ergibt sich für&nbsp; $H(f=0)$?}}
+
'''(4)'''&nbsp; The filter setting is retained.&nbsp; Interpret the step response&nbsp; $〈h_ν〉$&nbsp; and the rectangular response&nbsp; $〈\rho_ν^{(2, 8)}〉$.&nbsp; What is the value for&nbsp; $H(f=0)$?}}
  
:*&nbsp; Die Sprungantwort ist das Integral über die Impulsantwort: &nbsp; $\sigma(t) = T \cdot (1-{\rm e}^{-t/T}) ]$ &nbsp;  &rArr; &nbsp; $\sigma_\nu=  10 \cdot (1-{\rm e}^{-\nu/10})$ &nbsp; &rArr; &nbsp; $\sigma_0=1$,&nbsp; $\sigma_1=1.9$,&nbsp; $\sigma_2=2.71$, ...
+
:*&nbsp; The step response is the integral over the impulse response: &nbsp; $\sigma(t) = T \cdot (1-{\rm e}^{-t/T}) ]$ &nbsp;  &rArr; &nbsp; $\sigma_\nu=  10 \cdot (1-{\rm e}^{-\nu/10})$ &nbsp; &rArr; &nbsp; $\sigma_0=1$,&nbsp; $\sigma_1=1.9$,&nbsp; $\sigma_2=2.71$, ...
:*&nbsp; Für große $\nu$&ndash;Werte tendiert die (zeitdiskrete) Sprungantwort gegen den Gleichsignalübertragungsfaktor&nbsp; $H(f=0)= 10$:&nbsp; $\sigma_{40}=9.867$,&nbsp; $\sigma_{50}=9.954$,&nbsp;  $\sigma_\infty=10$.
+
:*&nbsp; For large&nbsp; $\nu$&nbsp; values, the (discrete-time) step response tends to the DC signal transmission factor&nbsp; $H(f=0)= 10$:&nbsp; $\sigma_{40}=9.867$,&nbsp; $\sigma_{50}=9.954$,&nbsp;  $\sigma_\infty=10$.
:*&nbsp;Die Rechteckantwort&nbsp; $〈\rho_ν^{(2, 8)}〉$&nbsp; steigt mit einer Verzögerung von&nbsp; $2$&nbsp; in gleicher Weise an wie&nbsp; $〈\sigma_ν〉$.&nbsp; Im Bereich&nbsp; $\nu \ge 8$&nbsp; fallen die&nbsp; $\rho_ν$&ndash; Werte exponentiell ab.
+
:*&nbsp;The rectangular response&nbsp; $〈\rho_ν^{(2, 8)}〉$&nbsp; increases with a delay of&nbsp; $2$&nbsp; in the same way as&nbsp; $〈\sigma_ν〉$.&nbsp; In the area&nbsp; $\nu \ge 8$&nbsp; the&nbsp; $\rho_ν$&nbsp; values decrease exponentially.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(5)'''&nbsp; Wir betrachten weiterhin das Filter mit&nbsp; $a_0=1$,&nbsp; $b_1=0.9$,&nbsp; $a_1=a_2= b_2=0$.&nbsp; Wie lautet die Ausgangsfolge&nbsp; $〈y_ν〉$ für die Eingangsfolge&nbsp; $〈x_ν〉= 〈1,\ 0,\ -0.5〉$? <br>&nbsp; &nbsp; &nbsp; &nbsp; ''Hinweis'': &nbsp;Die Aufgabe lässt sich ebenfalls mit diesem Programm lösen, obwohl die hier betrachtete Konstellation nicht direkt einstellbar ist.}}
+
'''(5)'''&nbsp; We continue to consider the filter with&nbsp; $a_0=1$,&nbsp; $b_1=0.9$,&nbsp; $a_1=a_2=b_2=0$.&nbsp; What is the output sequence&nbsp; $〈y_ν〉$&nbsp; for the input sequence&nbsp; $〈x_ν〉= 〈1,\ 0,\ -0.5〉$? <br>&nbsp; &nbsp; &nbsp; &nbsp; ''Note'': The task can also be solved with this program, although the constellation considered here cannot be set directly.}}
  
:*&nbsp; Man behilft sich, indem man den Koeffizienten&nbsp; $a_2=-0.5$&nbsp; setzt und dafür die Eingangsfolge auf &nbsp; $〈x_ν〉= 〈1,\ 0,\ 0,\ \text{ ...}〉$ &nbsp; &rArr; &nbsp; „Diracfunktion” reduziert.
+
:*&nbsp; You can help yourself by setting the coefficient&nbsp; $a_2=-0.5$&nbsp; and reducing the input sequence&nbsp; to $〈x_ν〉= 〈1,\ 0,\ 0,\ \text{ ...}〉$ &nbsp; &rArr; &nbsp; „Dirac delta function”.
:*&nbsp; Die tatsächliche Impulsantwort dieses Filters $($mit&nbsp; $a_2=0)$&nbsp; wurde in Aufgabe&nbsp; '''(3)'''&nbsp; ermittelt: &nbsp; $h_0= 1$, &nbsp; $h_1= 0.9$, &nbsp; $h_2= 0.81$, &nbsp; $h_3= 0.729$, &nbsp; $h_4= 0.646$. &nbsp;
+
:*&nbsp; The actual impulse response of this filter&nbsp; $($with&nbsp; $a_2=0)$&nbsp; was determined in task&nbsp; '''(3)''': &nbsp; $h_0= 1$, &nbsp; $h_1= 0.9$, &nbsp; $h_2= 0.81$, &nbsp; $h_3= 0.729$, &nbsp; $h_4= 0.646$. &nbsp;
:*&nbsp; Die Lösung dieser Aufgabe lautet somit: &nbsp; $y_0 = h_0= 1$, &nbsp; $y_1= h_1= 0.9$, &nbsp; $y_2 =h_2-h_0/2= 0.31$, &nbsp; $y_3 =h_3-h_1/2= 0.279$, &nbsp; $y_4 =h_4-h_2/2= 0.251$. &nbsp;
+
:*&nbsp; The solution to this problem is:&nbsp; $y_0 = h_0= 1$, &nbsp; $y_1= h_1= 0.9$, &nbsp; $y_2 =h_2-h_0/2= 0.31$, &nbsp; $y_3 =h_3-h_1/2= 0.279$, &nbsp; $y_4 =h_4-h_2/2= 0.251$. &nbsp;
:*&nbsp; Vorsicht:&nbsp; Sprungantwort und Rechteckantwort beziehen sich nun auf das fiktive Filter $($mit&nbsp; $a_2=-0.5)$&nbsp; und nicht auf das eigentliche Filter $($mit&nbsp; $a_2=0)$.
+
:*&nbsp; Caution:&nbsp; Step response and rectangular response now refer to the fictitious filter&nbsp; $($with&nbsp; $a_2=-0.5)$&nbsp; and not to the actual filter&nbsp; $($with&nbsp; $a_2=0)$.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(6)'''&nbsp; Betrachten und interpretieren Sie die Impulsanwort und die Sprungantwort für die Filterkoeffizienten&nbsp; $a_0=1$,&nbsp; $b_1=1$,&nbsp; $a_1=a_2= b_2=0$.&nbsp; }}
+
'''(6)'''&nbsp; Consider and interpret the impulse response and the step response for the filter coefficients&nbsp; $a_0=1$,&nbsp; $b_1=1$,&nbsp; $a_1=a_2= b_2=0$.&nbsp; }}
  
:*&nbsp; '''Das System ist instabil''': &nbsp; Eine zeitdiskrete Diracfunktion am Eingang&nbsp; $($zur Zeit&nbsp; $t=0)$&nbsp; bewirkt im Ausgangsignal unendlich viele Diracs gleicher Höhe.
+
:*&nbsp; '''The system is unstable''': &nbsp; A discrete-time Dirac delta function at input $($at time&nbsp; $t=0)$&nbsp; causes an infinite number of Dirac deltas of the same height in the output signal.
:*&nbsp; Eine zeitdiskrete Sprungfunktion am Eingang bewirkt im Ausgangsignal unendlich viele Diracs mit monoton ansteigenden Gewichten (bis ins Unendliche).
+
:*&nbsp; A discrete-time step function at the input causes an infinite number of Dirac deltas with monotonically increasing weights (to infinity) in the output signal.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(7)'''&nbsp; Betrachten und interpretieren Sie Impulsanwort und Sprungantwort für die Filterkoeffizienten&nbsp; $a_0=1$,&nbsp; $b_1=-1$,&nbsp; $a_1=a_2= b_2=0$.&nbsp; }}
+
'''(7)'''&nbsp; Consider and interpret the impulse response and step response for the filter coefficients&nbsp; $a_0=1$,&nbsp; $b_1=-1$,&nbsp; $a_1=a_2= b_2=0$.&nbsp; }}
:*&nbsp; Im Gegensatz zur Aufgabe&nbsp; '''(6)'''&nbsp; sind hier die Gewichte der Impulsantwort&nbsp; $〈h_ν〉$&nbsp; nicht konstant gleich&nbsp; $1$, sondern alternierend&nbsp; $\pm 1$.&nbsp; Das System ist ebenfalls instabil.
+
:*&nbsp; In contrast to exercise&nbsp; '''(6)''', the weights of the impulse response&nbsp; $〈h_ν〉$&nbsp; are not constantly equal to&nbsp; $1$, but alternating&nbsp; $\pm 1$.&nbsp; The system is unstable too.
:*&nbsp; Bei der Sprunganwort&nbsp; $〈\sigma_ν〉$&nbsp; wechseln sich dagegen die Gewichte alternierend zwischen&nbsp; $0$&nbsp; $($bei geradem $\nu)$&nbsp; und&nbsp; $1$&nbsp; $($bei ungeradem $\nu)$&nbsp; ab.
+
:*&nbsp; With the jump response&nbsp; $〈\sigma_ν〉$, however, the weights alternate between&nbsp; $0$&nbsp; $($with even $\nu)$&nbsp; and&nbsp; $1$&nbsp; $($with odd $\nu)$.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(8)'''&nbsp; Wir betrachten den&nbsp; &bdquo;Sinusgenerator&rdquo;:&nbsp; $a_1=0.5$,&nbsp; $b_1=\sqrt{3}= 1.732$,&nbsp; $b_2=-1.$&nbsp; Vergleichen Sie die Impulsantwort mit den berechneten Werten in&nbsp; $\text{Beispiel 4}$. <br>&nbsp; &nbsp; &nbsp; &nbsp; Wie beinflussen die Parameter&nbsp; $a_1$&nbsp; und&nbsp; $b_1$&nbsp; die Periodendauer&nbsp; $T_0/T_{\rm A}$&nbsp; und die Amplitude&nbsp; $A$&nbsp; der Sinusfunktion? }}
+
'''(8)'''&nbsp; We consider the "sine generator":&nbsp; $a_1=0.5$,&nbsp; $b_1=\sqrt{3}= 1.732$,&nbsp; $b_2=-1.$&nbsp; Compare the impulse response with the calculated values ​​in&nbsp; $\text{Example 4}$. <br>&nbsp; &nbsp; &nbsp; &nbsp; How do the parameters $a_1$ and $b_1$ influence the period duration&nbsp; $T_0/T_{\rm A}$&nbsp; and the amplitude&nbsp; $A$&nbsp; of the sine function?}}
:*&nbsp; $〈x_ν〉=〈1, 0, 0, \text{...}〉$ &nbsp; &rArr; &nbsp; $〈y_ν〉=〈0, 0.5, 0.866, 1, 0.866, 0.5, 0, -0.5, -0.866, -1, -0.866, -0.5, 0, \text{...}〉$ &nbsp; &rArr; &nbsp; '''Sinus''',&nbsp; Periode&nbsp; $T_0/T_{\rm A}= 12$,&nbsp; Amplitude&nbsp; $1$.     
+
:*&nbsp; $〈x_ν〉=〈1, 0, 0, \text{...}〉$ &nbsp; &rArr; &nbsp; $〈y_ν〉=〈0, 0.5, 0.866, 1, 0.866, 0.5, 0, -0.5, -0.866, -1, -0.866, -0.5, 0, \text{...}〉$ &nbsp; &rArr; &nbsp; '''sine''',&nbsp; period&nbsp; $T_0/T_{\rm A}= 12$,&nbsp; amplitude&nbsp; $1$.     
:*&nbsp; Die Vergrößerung/Verkleinerung von&nbsp; $b_1$&nbsp; führt zur größeren/kleineren Periodendauer&nbsp; $T_0/T_{\rm A}$&nbsp; und zur größeren/kleineren Amplitude&nbsp; $A$.&nbsp; Es muss&nbsp; $b_1 < 2$&nbsp; gelten.  
+
:*&nbsp; The increase/decrease of $b_1$&nbsp; leads to the larger/smaller period&nbsp; $T_0/T_{\rm A}$&nbsp; and the larger/smaller amplitude&nbsp; $A$.&nbsp; $b_1 < 2$ must apply.  
:*&nbsp; $a_1$&nbsp; beinflusst nur die Amplitude, nicht die Periodendauer.&nbsp; Für&nbsp; $a_1$&nbsp; gibt es keine Wertebegrenzumg.&nbsp; Bei negativem&nbsp; $a_1$&nbsp; ergibt sich die Minus&ndash;Sinusfunktion.
+
:*&nbsp; $a_1$&nbsp; only affects the amplitude, not the period.&nbsp; There is no value limit for&nbsp; $a_1$. If&nbsp; $a_1$&nbsp; is negative, the minus sine function results.
:*&nbsp; '''Gibt es hier keine Diskrepanz zu h(t) wertkontinuierlich ???'''
 
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(9)'''&nbsp; Die Grundeinstellung bleibt erhalten.&nbsp; Mit welchen&nbsp; $a_1$&nbsp; und&nbsp; $b_1$ ergibt sich eine Sinusfunktion mit Periodendauer&nbsp; $T_0/T_{\rm A}=16$&nbsp; und Amplitude&nbsp; $A=1$? }}
+
'''(9)'''&nbsp; The basic setting is retained.&nbsp; Which&nbsp; $a_1$&nbsp; and&nbsp; $b_1$&nbsp; result in a sine function with period&nbsp; $T_0/T_{\rm A}=16$&nbsp; and amplitude&nbsp; $A=1$?}}
:*&nbsp; Durch Probieren erreicht man mit&nbsp; $b_1= 1.8478$&nbsp; tatsächlich die Periodendauer&nbsp; $T_0/T_{\rm A}=16.$&nbsp; Allerdings erhöht sich dadurch die Amplitude auf&nbsp; $A=1.307$.
+
:*&nbsp; Trying with&nbsp; $b_1= 1.8478$&nbsp; actually achieves the period duration&nbsp; $T_0/T_{\rm A}=16$.&nbsp; However, this increases the amplitude to&nbsp; $A=1.307$.
:*&nbsp; Die Anpassung des Parameters &nbsp; $a_1= 0.5/1.307=0.3826$&nbsp; führt dann zur gewünschten Amplitude&nbsp; $A=1$.
+
:*&nbsp; Adjusting the parameter&nbsp; $a_1= 0.5/1.307=0.3826$&nbsp; then leads to the desired amplitude&nbsp; $A=1$.
:*&nbsp; Oder man kann das auch wie im Beispiel berechnen:&nbsp; $b_1 = 2 \cdot \cos ( {2{\rm{\pi }}\cdot{T_{\rm A}}/{T_0 }})=  2 \cdot \cos (\pi/8)=1.8478$, &nbsp; &nbsp; $a_1  =    \sin (\pi/8)=0.3827$.
+
:*&nbsp; Or you can calculate this as in the example:&nbsp; $b_1 = 2 \cdot \cos ( {2{\rm{\pi }}\cdot{T_{\rm A}}/{T_0 }})=  2 \cdot \cos (\pi/8)=1.8478$, &nbsp; &nbsp; $a_1  =    \sin (\pi/8)=0.3827$.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(10)'''&nbsp; Wir gehen weiter vom &bdquo;Sinusgenerator&rdquo; aus.&nbsp; Welche Modifikationen muss man vornehmen, um damit einen &bdquo;Cosinus&rdquo; zu generieren?}}
+
'''(10)'''&nbsp; We continue with the&nbsp; "sine generator".&nbsp; What modifications do you have to make to generate a&nbsp; "cosine"?}}
:*&nbsp; Mit&nbsp; $a_1=0.5$,&nbsp; $b_1=\sqrt{3}= 1.732$,&nbsp; $b_2=-1$&nbsp; sowie&nbsp; $〈x_ν〉=〈1, 1, 1, \text{...}〉$&nbsp; ist die Ausgangsfolge&nbsp; $〈y_ν〉$&nbsp; das zeitdiskrete Analogon der Sprungantwort&nbsp; $\sigma(t)$.    
+
:*&nbsp; With&nbsp; $a_1=0.3826$,&nbsp; $b_1=1.8478$,&nbsp; $b_2=-1$&nbsp; and&nbsp; $〈x_ν〉=〈1, 1, 1, \text{...}〉$&nbsp; is the output sequence&nbsp; $〈y_ν〉$&nbsp; the discrete-time analogon of the step response&nbsp; $\sigma(t)$.
:*&nbsp; '''Es fehlen noch einige Statements'''
+
:*&nbsp; The step response is the integral over &nbsp; $\sin(\pi\cdot\tau/8)$ &nbsp; within the limits of &nbsp; $\tau=0$ &nbsp; to &nbsp; $\tau=t$ &nbsp; &rArr; &nbsp; $\sigma(t)=-8/\pi\cdot\cos(\pi\cdot\tau/8)+1$.
 +
:*&nbsp; If you change &nbsp; $a_1=0.3826$ &nbsp; on &nbsp; $a_1=-0.3826\cdot\pi/8=-0.1502$, then &nbsp; $\sigma(t)=\cos(\pi\cdot\tau/8)-1$ &nbsp; &rArr; &nbsp; Values ​​between&nbsp; $0$&nbsp; and&nbsp; $-2$.
 +
:*&nbsp; Would you still in the block diagram &nbsp; $z_\nu=y_\nu+1$ &nbsp; add, then &nbsp; $z_\nu$ &nbsp; a discrete-time cosine curve with &nbsp; $T_0/T_{\rm A}=16$ &nbsp; and &nbsp; $A=1$.
 
      
 
      
  
 +
[[File:EN_DIG_Fil_Mannt.png|right |frame| Screenshot]]
  
==Zur Handhabung des Applets==
+
==Applet Manual==
<br>
+
 
 +
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Input signal selection&nbsp; $($Dirac delta,&nbsp; unit step or rectangular$)$   
 +
 
 +
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Settings for abscissa, ordinate and velocity.
 +
 
 +
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Control panel&nbsp; $($Start, Single step, Total, Pause, Reset$)$ 
 +
 
 +
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Block diagram with stepwise adjustment of all values.
 +
 
 +
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Graphic area for output of the output sequence
 +
 
 +
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Exercise selection
  
==Über die Autoren==
+
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Questions and solutions
 +
<br clear=all>
 +
==About the authors==
 
<br>
 
<br>
Dieses interaktive Berechnungstool  wurde am [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik] der [https://www.tum.de/ Technischen Universität München] konzipiert und realisiert.  
+
This interactive calculation tool was designed and implemented at the [http://www.lnt.ei.tum.de/startseite chair for communications engineering] at the [https://www.tum.de/ Technische Universität München].
*Die erste Version wurde 2005 von [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Bettina_Hirner_.28Diplomarbeit_LB_2005.29|Bettina Hirner]] im Rahmen ihrer Diplomarbeit mit &bdquo;FlashMX&ndash;Actionscript&rdquo; erstellt (Betreuer: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).  
+
*The first version was created in 2005 by [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Bettina_Hirner_.28Diplomarbeit_LB_2005.29|Bettina Hirner]] as part of her diploma thesis with “FlashMX – Actionscript” (Supervisor: [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).  
*2020 wurde das Programm  von [[Andre Schulz]] (Bachelorarbeit LB, Betreuer: [[Benedikt Leible]] und [[Biografien_und_Bibliografien/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]] ) unter  &bdquo;HTML5&rdquo; neu gestaltet.
+
*In 2020 the program was redesigned by [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Andr.C3.A9_Schulz_.28Bachelorarbeit_LB_2020.29|André Schulz]] (Bachelor thesis LB, Supervisors: [[Biographies_and_Bibliographies/Beteiligte_der_Professur_Leitungsgebundene_Übertragungstechnik#Benedikt_Leible.2C_M.Sc._.28bei_L.C3.9CT_seit_2017.29|Benedikt Leible]] and [[Biographies_and_Bibliographies/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]] ) via "HTML5".
  
==Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster==
+
==Once again: Open Applet in new Tab==
  
{{LntAppletLink|korrelation}}
+
{{LntAppletLink|digitalFilters_en}}

Latest revision as of 17:44, 26 April 2023

Open Applet in new Tab   Deutsche Version Öffnen

Applet Description


The applet should clarify the properties of digital filters, whereby we confine ourselves to filters of the order $M=2$. Both non-recursive filters $\rm (FIR$,  Finite Impulse Response$)$  as well as recursive filters $\rm (IIR$,  Infinite Impulse Response$)$.

The input signal $x(t)$ is represented by the sequence $〈x_ν〉$ of its samples, where $x_ν$ stands for $x(ν · T_{\rm A})$. The output sequence $〈y_ν〉$is calculated, i.e. the discrete-time representation of the output signal $y(t)$.

  • $T_{\rm A}$ denotes the time interval between two samples.
  • We also limit ourselves to causal signals and systems, which means that $x_ν \equiv 0$ and $y_ν \equiv 0$ for $ν \le 0$.


It should also be noted that we denote the initial sequence $〈y_ν〉$ as

(1) the discrete-time impulse response $〈h_ν〉$ if the “discrete-time Dirac delta function” is present at the input:         $〈x_ν〉= 〈1,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0, \text{...}〉,$

(2) the discrete-time step response $〈\sigma_ν〉$ if the “discrete-time step function” is present at the input:         $〈x_ν〉= 〈1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1, \text{...}〉,$

(3) the discrete-time rectangle response $〈\rho_ν^{(2, 4)}〉$ if the “discrete-time rectangle function” is present at the input:     $〈x_ν〉= 〈0,\ 0,\ 1,\ 1,\ 1,\ 0,\ 0, \text{...}〉;$
        In quotation marks are the beginning of the ones $(2)$ and the position of the last ones $(4)$.


Theoretical background


General block diagram

Each signal $x(t)$ can only be represented on a computer by the sequence $〈x_ν〉$ of its samples, where $x_ν$ stands for $x(ν · T_{\rm A})$.

Block diagram of a digital (IIR–) filter $M$–order
  • The time interval $T_{\rm A}$ between two samples is limited by the "sampling theorem".
  • We limit ourselves here to causal signals and systems, which means that $x_ν \equiv 0$ for $ν \le 0$.
  • In order to determine the influence of a linear filter with frequency response $H(f)$ on the discrete-time input signal $〈x_ν〉$, it is advisable to describe the filter discrete-time. In the time domain, this happens with the discrete-time impulse response $〈h_ν〉$.
  • On the right you can see the corresponding block diagram. The following therefore applies to the samples of the output signal $〈y_ν〉$ thus holds:
$$y_\nu = \sum\limits_{\mu = 0}^M {a_\mu } \cdot x_{\nu - \mu } + \sum\limits_{\mu = 1}^M {b_\mu } \cdot y_{\nu - \mu } .$$

The following should be noted here:

  • The index $\nu$ refers to sequences, for example at the input $〈x_ν〉$ and output $〈y_ν〉$.
  • On the other hand, we use the index $\mu$ to identify the $a$ and $b$ filter coefficients.
  • The first sum describes the dependency of the current output $y_ν$ on the current input $x_ν$ and on the $M$ previous input values $x_{ν-1}$, ... , $x_{ν-M}$.
  • The second sum indicates the influence of $y_ν$ by the previous values $y_{ν-1}$, ... , $y_{ν-M}$ at the filter output. It specifies the recursive part of the filter.
  • The integer parameter $M$ is called the order of the digital filter. In the program, this value is limited to $M\le 2$.


$\text{Definitions:}$ 

(1)  The output sequence $〈y_ν〉$ is called the discrete-time impulse response $〈h_ν〉$ if the “discrete-time Dirac delta function” is present at the input:

$$〈x_ν〉= 〈1,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0, \text{...}〉 .$$

(2)  The output sequence $〈y_ν〉$ is called the discrete-time step response $〈\sigma_ν〉$ if the “discrete-time step function” is present at the input:

$$〈x_ν〉= 〈1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1, \text{...}〉 .$$

(3)  The output sequence $〈y_ν〉$ is called the discrete-time rectangle response  $〈\rho_ν^{(2, 4)}〉$ if the “discrete-time rectangular function” is present at the input:

$$〈x_ν〉= 〈0,\ 0,\ 1,\ 1,\ 1,\ 0,\ 0, \text{...}〉 .$$
The beginning of ones $(2)$ and the position of the last ones $(4)$ are given in single quotes.


Non-recursive filter   ⇒   FIR–filter

Non-recursive digital filter  $($FIR filter$)$  $M$ order

$\text{Definition:}$ If all feedback coefficients $b_{\mu} = 0$ , one speaks of one non-recursive filter. In the English language literature, the term FIR filter (Finite Impulse Response) is also used for this.

The following applies to the order $M$ applies:

  • The output value $y_ν$ depends only on the current and the previous $M$ input values:
$$y_\nu = \sum\limits_{\mu = 0}^M {a_\mu \cdot x_{\mu - \nu } } .$$
  • Discrete-time impulse response with $〈x_ν〉= 〈1,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0, \text{...}〉$:
$$〈h_\mu〉= 〈a_0,\ a_1,\ \text{...},\ a_M〉 .$$


$\text{Example 1:}$  A two-way channel where

  • the signal on the main path arrives undamped compared to the input signal but is delayed by $2\ \rm µ s$ arrives with a delay, and
  • at $4\ \rm µ s$ distance – so absolutely at time $t = 6\ \rm µ s$ – follows an echo with half the amplitude,


can be simulated by a non-recursive filter according to the sketch above, whereby the following parameter values ​​must be set:

$$M = 3,\quad T_{\rm A} = 2\;{\rm{µ s} },\quad a_{\rm 0} = 0,\quad a_{\rm 1} = 1, \quad a_{\rm 2} = 0, \quad a_{\rm 3} = 0.5.$$


$\text{Example 2:}$ Consider a non-recursive filter with the filter coefficients $a_0 = 1,\hspace{0.5cm} a_1 = 2,\hspace{0.5cm} a_2 = 1.$

Non-recursive filter

(1) The conventional impulse response is: $h(t) = \delta (t) + 2 \cdot \delta ( {t - T_{\rm A} } ) + \delta ( {t - 2T_{\rm A} } ).$
        ⇒   discrete-time impulse response: $〈h_\mu〉= 〈1,\ 2,\ 1〉 .$

(2)   The frequency response $H(f)$ is the Fourier transform of $h(t)$. By applying the displacement theorem:

$$H(f) = 2\big [ {1 + \cos ( {2{\rm{\pi }\cdot }f \cdot T_{\rm A} } )} \big ] \cdot {\rm{e} }^{ - {\rm{j} }2{\rm{\pi } }fT_{\rm A} }\hspace{0.5cm}\Rightarrow \hspace{0.5cm}H(f = 0) = 4.$$

(3)   It follows that the discrete-time step response $〈\sigma_ν〉$ tends to become $4$ for large $\nu$.

(4)   The discrete-time convolution of the input sequence $\left\langle \hspace{0.05cm}{x_\nu } \hspace{0.05cm}\right\rangle = \left\langle {\;1,\;0,\;0,\;0,\;1,\;0,\;0,\;0,\;\text{...} } \hspace{0.05cm} \right\rangle$  with $\left\langle \hspace{0.05cm}{h_\nu } \hspace{0.05cm}\right\rangle = \left\langle \hspace{0.05cm}{1, \ 2,\ 1 } \hspace{0.05cm}\right\rangle$  results

$$\left\langle \hspace{0.05cm}{y_\nu } \hspace{0.05cm}\right\rangle = \left\langle {\;1,\;2,\;1,\;0,\;1,\;2,\;1,\;0,\;0,\;0,\;0,\; \text{...} \;} \right\rangle. $$

(5)   The discrete-time convolution of the input sequence $\left\langle \hspace{0.05cm}{x_\nu } \hspace{0.05cm}\right\rangle = \left\langle {\;1,\;1,\;0,\;0,\;1,\;0,\;0,\;0,\;\text{...} } \hspace{0.05cm} \right\rangle$  with  $\left\langle \hspace{0.05cm}{h_\nu } \hspace{0.05cm}\right\rangle = \left\langle \hspace{0.05cm}{1, \ 2,\ 1 } \hspace{0.05cm}\right\rangle$  results

$$\left\langle \hspace{0.05cm}{y_\nu } \hspace{0.05cm}\right\rangle = \left\langle {\;1,\;3,\;3,\;2,\;2,\;1,\;0,\;0,\;0,\;0,\;0,\; \text{...} \;} \right\rangle. $$


Recursive filter   ⇒   IIR filter

First order recursive filter

$\text{Definition:}$ 

  • If at least one of the feedback coefficients is $b_{\mu} \ne 0$, then this is referred to as a recursive filter (see graphic on the right). The term IIR filter  (Infinite Impulse Response) is also used for this, particularly in the English-language literature. This filter is dealt with in detail in the trial implementation.


  • If all forward coefficients are also identical $a_\mu = 0$ with the exception of $a_0$, a purely recursive filter is available (see graphic on the left).
Purely recursive first order filter


In the following we restrict ourselves to the special case “purely recursive filter of the first order”. This filter has the following properties:

  • The output value $y_ν$ depends (indirectly) on an infinite number of input values:
$$y_\nu = \sum\limits_{\mu = 0}^\infty {a_0 \cdot {b_1} ^\mu \cdot x_{\nu - \mu } .}$$
  • This shows the following calculation:
$$y_\nu = a_0 \cdot x_\nu + b_1 \cdot y_{\nu - 1} = a_0 \cdot x_\nu + a_0 \cdot b_1 \cdot x_{\nu - 1} + {b_1} ^2 \cdot y_{\nu - 2} = a_0 \cdot x_\nu + a_0 \cdot b_1 \cdot x_{\nu - 1} + a_0 \cdot {b_1} ^2 \cdot x_{\nu - 2} + {b_1} ^3 \cdot y_{\nu - 3} = \text{...}. $$
  • By definition, the discrete-time impulse response is the same as the output sequence if there is a single "one" at $t =0$ at the input.
$$h(t)= \sum\limits_{\mu = 0}^\infty {a_0 \cdot {b_1} ^\mu \cdot \delta ( {t - \mu \cdot T_{\rm A} } )}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}〈\hspace{0.05cm}h_\mu\hspace{0.05cm}〉= 〈\hspace{0.05cm}a_0, \ a_0\cdot {b_1}, \ a_0\cdot {b_1}^2 \ \text{...} \hspace{0.05cm}〉.$$

$\text{Conclusion:}$  With a recursive filter, the (discrete-time) impulse response extends to infinity with $M = 1$:

  • For reasons of stability, $b_1 < 1$ must apply.
  • With $b_1 = 1$ the impulse response $h(t)$ would extend to infinity and with $b_1 > 1$ the variable $h(t)$ would even continue to infinity.
  • With such a recursive filter of the first order, each individual Dirac delta line is exactly the factor $b_1$ smaller than the previous Dirac delta line:
$$h_{\mu} = h(\mu \cdot T_{\rm A}) = {b_1} \cdot h_{\mu -1}.$$


Discrete-time impulse response

$\text{Example 3:}$  The graphic opposite shows the discrete-time impulse response $〈\hspace{0.05cm}h_\mu\hspace{0.05cm}〉$ of a recursive filter of the first order with the parameters $a_0 = 1$ and $b_1 = 0.6$.

  • The (discrete-time) course is exponentially falling and extends to infinity.
  • The ratio of the weights of two successive Dirac deltas is $b_1 = 0.6$.


Recursive filter as a sine generator

Proposed filter structure

The graphic shows a second-order digital filter that is suitable for generating a discrete-time sine function on a digital signal processor (DSP) if the input sequence $\left\langle \hspace{0.05cm} {x_\nu } \hspace{0.05cm}\right\rangle$  a (discrete-time) Dirac delta function is:

$$\left\langle \hspace{0.05cm}{y_\nu }\hspace{0.05cm} \right\rangle = \left\langle {\, \sin ( {\nu \cdot T_{\rm A} \cdot \omega _0 } )\, }\right\rangle .$$

The five filter coefficients result from the: "$Z$-transform":

$$Z \big \{ {\sin ( {\nu T{\rm A}\cdot \omega _0 } )} \big \} = \frac{{z \cdot \sin \left( {\omega _0 \cdot T_{\rm A}} \right)}}{{z^2 - 2 \cdot z \cdot \cos \left( {\omega _0 \cdot T_{\rm A}} \right) + 1}}.$$

After implementing this equation using a second-order recursive filter, the following filter coefficients are obtained:

$$a_0 = 0,\quad a_1 = \sin \left( {\omega _0 \cdot T_{\rm A}} \right),\quad a_2 = 0, \quad b_1 = 2 \cdot \cos \left( {\omega _0 \cdot T_{\rm A}} \right),\quad b_2 = - 1.$$
  • The filter coefficients $a_0$ and $a_2$ can be omitted and $b_2=-1$ has a fixed value.
  • The angular frequency $\omega_0$ of the sine wave is therefore only determined by $a_0$ and $a_0$.


$\text{Example 3:}$  Let $a_1 = 0.5$, $b_1 = \sqrt 3$, $x_0 = 1$ and $x_{\nu \hspace{0.05cm}\ne\hspace{0.05cm} 0} = 0$.

(1)  Then the following applies to the initial values $y_\nu$ at times $\nu \ge 0$:

  •   $y_0 = 0;$
  •   $y_1 = 0.5$                                                                                         ⇒  the "$1$" at the input only has an effect at time $\nu = 1$ because of $a_0= 0$ at the output;
  •   $y_2 = b_1 \cdot y_1 - y_0 = {\sqrt 3 }/{2} \approx 0.866$                             ⇒   with $\nu = 2$ the recursive part of the filter also takes effect;
  •   $y_3 = \sqrt 3 \cdot y_2 - y_1 = \sqrt 3 \cdot {\sqrt 3 }/{2} - {1}/{2} = 1$          ⇒  for  $\nu \ge 2$  the filter is purely recursive:     $y_\nu = b_1 \cdot y_{\nu - 1} - y_{\nu - 2}$;
  •   $y_4 = \sqrt 3 \cdot y_3 - y_2 = \sqrt 3 \cdot 1 - {\sqrt 3 }/{2} = {\sqrt 3 }/{2};$
  •   $y_5 = \sqrt 3 \cdot y_4 - y_3 = \sqrt 3 \cdot {\sqrt 3 }/{2} - 1 = 0.5;$
  •   $y_6 = \sqrt 3 \cdot y_5 - y_4 = \sqrt 3 \cdot {1}/{2} - {\sqrt 3 }/{2} = 0;$
  •   $y_7 = \sqrt 3 \cdot y_6 - y_5 = \sqrt 3 \cdot 0 - {1}/{2} = - 0.5.$

(2)  By continuing the recursive algorithm one gets for large $\nu$–values:     $y_\nu = y_{\nu - 12}$   ⇒   $T_0/T_{\rm A}= 12.$



Exercises

Exercises binomial fertig.png
  • First select the number 1 ... 10 of the task to be processed.
  • A task description is displayed.  The parameter values ​​are adjusted.
  • Solution after pressing  "Sample Solution".
  • The number 0 corresponds to a "reset":  Same setting as when the program was started.


(1)  The filter coefficients are  $a_0=0.25$,  $a_1=0.5$,  $a_2=0.25$,  $b_1=b_2=0$.  Which filter is it?
        Interpret the impulse response  $〈h_ν〉$,  the step response  $〈\sigma_ν〉$  and the rectangular response  $〈\rho_ν^{(2, 8)}〉$, each in a discrete-time representation.

  •   Due to the missing  $b$ coefficients, it is a non-recursive digital filter ⇒   FIR filter (Finite Impulse Response).
  •   The impulse response consists of  $M+1=3$  Dirac delta lines according to the  $a$  coefficients:  $〈h_ν〉= 〈a_0, \ a_1,\ a_2〉= 〈0.25, \ 0.5,\ 0.25,\ 0, \ 0, \ 0,\text{...}〉 $.
  •   The step response is:  $〈\sigma_ν〉= 〈0.25, \ 0.75,\ 1,\ 1, \ 1, \ 1,\text{...}〉 $.  The final value is equal to the DC signal transfer factor  $H(f=0)=a_0+a_1+a_2 = 1$.
  •   The distortions with rise and fall can also be seen from the rectangular response  $〈\rho_ν^{(2, 8)}〉= 〈0,\ 0, 0.25, \ 0.75,\ 1,\ 1, \ 1, \ 1, \ 1, \ 0.75, \ 0.25, \ \text{...}〉$.

(2)  How do the results differ with  $a_2=-0.25$?

  •   Taking into account  $H(f=0)= 0.5$  there are comparable consequences   ⇒   Step response:    $〈\sigma_ν〉= 〈0.25, \ 0.75,\ 0.5,\ 0.5, \ 0.5, \ 0.5,\text{...}〉 $.

(3)  Now let the filter coefficients  $a_0=1$,  $b_1=0.9$  and  $a_1=a_2= b_2=0$.  Which filter is it?  Interpret the impulse response  $〈h_ν〉$.

  •   It is a recursive digital filter   ⇒   IIR filter  (Infinite Impulse Response)  of the first order.  It is the discrete-time analogon of the RC low-pass.
  •   Starting from  $h_0= 1$ is $h_1= h_0 \cdot b_0= 0.9$,  $h_2= h_1 \cdot b_0= b_0^2=0.81$,  $h_3= h_2 \cdot b_0= b_0^3=0.729$,  and so on   ⇒   $〈h_ν〉$  extends to infinity.
  •   Impulse response  $h(t) = {\rm e}^{-t/T}$  with  $T$:   intersection $($Tangente bei  $t=0$, Abscissa$)$   ⇒   $h_\nu= h(\nu \cdot T_{\rm A}) = {\rm e}^{-\nu/(T/T_{\rm A})}$  with  $T/T_{\rm A} = 1/(h_0-h_1)= 10$.
  •   So:  The values ​​of the continuous time differ from the discrete-time impulse response.  This results in the values  $1.0, \ 0.9048,\ 0.8187$ ...

(4)  The filter setting is retained.  Interpret the step response  $〈h_ν〉$  and the rectangular response  $〈\rho_ν^{(2, 8)}〉$.  What is the value for  $H(f=0)$?

  •   The step response is the integral over the impulse response:   $\sigma(t) = T \cdot (1-{\rm e}^{-t/T}) ]$   ⇒   $\sigma_\nu= 10 \cdot (1-{\rm e}^{-\nu/10})$   ⇒   $\sigma_0=1$,  $\sigma_1=1.9$,  $\sigma_2=2.71$, ...
  •   For large  $\nu$  values, the (discrete-time) step response tends to the DC signal transmission factor  $H(f=0)= 10$:  $\sigma_{40}=9.867$,  $\sigma_{50}=9.954$,  $\sigma_\infty=10$.
  •  The rectangular response  $〈\rho_ν^{(2, 8)}〉$  increases with a delay of  $2$  in the same way as  $〈\sigma_ν〉$.  In the area  $\nu \ge 8$  the  $\rho_ν$  values decrease exponentially.

(5)  We continue to consider the filter with  $a_0=1$,  $b_1=0.9$,  $a_1=a_2=b_2=0$.  What is the output sequence  $〈y_ν〉$  for the input sequence  $〈x_ν〉= 〈1,\ 0,\ -0.5〉$?
        Note: The task can also be solved with this program, although the constellation considered here cannot be set directly.

  •   You can help yourself by setting the coefficient  $a_2=-0.5$  and reducing the input sequence  to $〈x_ν〉= 〈1,\ 0,\ 0,\ \text{ ...}〉$   ⇒   „Dirac delta function”.
  •   The actual impulse response of this filter  $($with  $a_2=0)$  was determined in task  (3):   $h_0= 1$,   $h_1= 0.9$,   $h_2= 0.81$,   $h_3= 0.729$,   $h_4= 0.646$.  
  •   The solution to this problem is:  $y_0 = h_0= 1$,   $y_1= h_1= 0.9$,   $y_2 =h_2-h_0/2= 0.31$,   $y_3 =h_3-h_1/2= 0.279$,   $y_4 =h_4-h_2/2= 0.251$.  
  •   Caution:  Step response and rectangular response now refer to the fictitious filter  $($with  $a_2=-0.5)$  and not to the actual filter  $($with  $a_2=0)$.

(6)  Consider and interpret the impulse response and the step response for the filter coefficients  $a_0=1$,  $b_1=1$,  $a_1=a_2= b_2=0$. 

  •   The system is unstable:   A discrete-time Dirac delta function at input $($at time  $t=0)$  causes an infinite number of Dirac deltas of the same height in the output signal.
  •   A discrete-time step function at the input causes an infinite number of Dirac deltas with monotonically increasing weights (to infinity) in the output signal.

(7)  Consider and interpret the impulse response and step response for the filter coefficients  $a_0=1$,  $b_1=-1$,  $a_1=a_2= b_2=0$. 

  •   In contrast to exercise  (6), the weights of the impulse response  $〈h_ν〉$  are not constantly equal to  $1$, but alternating  $\pm 1$.  The system is unstable too.
  •   With the jump response  $〈\sigma_ν〉$, however, the weights alternate between  $0$  $($with even $\nu)$  and  $1$  $($with odd $\nu)$.

(8)  We consider the "sine generator":  $a_1=0.5$,  $b_1=\sqrt{3}= 1.732$,  $b_2=-1.$  Compare the impulse response with the calculated values ​​in  $\text{Example 4}$.
        How do the parameters $a_1$ and $b_1$ influence the period duration  $T_0/T_{\rm A}$  and the amplitude  $A$  of the sine function?

  •   $〈x_ν〉=〈1, 0, 0, \text{...}〉$   ⇒   $〈y_ν〉=〈0, 0.5, 0.866, 1, 0.866, 0.5, 0, -0.5, -0.866, -1, -0.866, -0.5, 0, \text{...}〉$   ⇒   sine,  period  $T_0/T_{\rm A}= 12$,  amplitude  $1$.
  •   The increase/decrease of $b_1$  leads to the larger/smaller period  $T_0/T_{\rm A}$  and the larger/smaller amplitude  $A$.  $b_1 < 2$ must apply.
  •   $a_1$  only affects the amplitude, not the period.  There is no value limit for  $a_1$. If  $a_1$  is negative, the minus sine function results.

(9)  The basic setting is retained.  Which  $a_1$  and  $b_1$  result in a sine function with period  $T_0/T_{\rm A}=16$  and amplitude  $A=1$?

  •   Trying with  $b_1= 1.8478$  actually achieves the period duration  $T_0/T_{\rm A}=16$.  However, this increases the amplitude to  $A=1.307$.
  •   Adjusting the parameter  $a_1= 0.5/1.307=0.3826$  then leads to the desired amplitude  $A=1$.
  •   Or you can calculate this as in the example:  $b_1 = 2 \cdot \cos ( {2{\rm{\pi }}\cdot{T_{\rm A}}/{T_0 }})= 2 \cdot \cos (\pi/8)=1.8478$,     $a_1 = \sin (\pi/8)=0.3827$.

(10)  We continue with the  "sine generator".  What modifications do you have to make to generate a  "cosine"?

  •   With  $a_1=0.3826$,  $b_1=1.8478$,  $b_2=-1$  and  $〈x_ν〉=〈1, 1, 1, \text{...}〉$  is the output sequence  $〈y_ν〉$  the discrete-time analogon of the step response  $\sigma(t)$.
  •   The step response is the integral over   $\sin(\pi\cdot\tau/8)$   within the limits of   $\tau=0$   to   $\tau=t$   ⇒   $\sigma(t)=-8/\pi\cdot\cos(\pi\cdot\tau/8)+1$.
  •   If you change   $a_1=0.3826$   on   $a_1=-0.3826\cdot\pi/8=-0.1502$, then   $\sigma(t)=\cos(\pi\cdot\tau/8)-1$   ⇒   Values ​​between  $0$  and  $-2$.
  •   Would you still in the block diagram   $z_\nu=y_\nu+1$   add, then   $z_\nu$   a discrete-time cosine curve with   $T_0/T_{\rm A}=16$   and   $A=1$.


Screenshot

Applet Manual

    (A)     Input signal selection  $($Dirac delta,  unit step or rectangular$)$

    (B)     Settings for abscissa, ordinate and velocity.

    (C)     Control panel  $($Start, Single step, Total, Pause, Reset$)$

    (D)     Block diagram with stepwise adjustment of all values.

    (E)     Graphic area for output of the output sequence

    (F)     Exercise selection

    (G)     Questions and solutions

About the authors


This interactive calculation tool was designed and implemented at the chair for communications engineering at the Technische Universität München.

Once again: Open Applet in new Tab

Open Applet in a new tab