Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 1.7: PDF of Rice Fading"

From LNTwww
 
(12 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Mobile Kommunikation/Nichtfrequenzselektives Fading mit Direktkomponente}}
+
{{quiz-Header|Buchseite=Mobile_Communications/Non-Frequency_Selective_Fading_With_Direct_Component}}
  
 
[[File:P_ID2133__Mob_A_1_7.png|right|frame| Rice fading for different values of  |z0|2]]
 
[[File:P_ID2133__Mob_A_1_7.png|right|frame| Rice fading for different values of  |z0|2]]
As you can see in the diagram, we consider the same scenario as in  [[Aufgaben:Exercise_1.6:_Autocorrelation_Function_and_PSD_with_Rice_Fading| Exercise 1.6]]:
+
As you can see in the diagram, we consider the same scenario as in  [[Aufgaben:Exercise_1.6:_Autocorrelation_Function_and_PDS_with_Rice_Fading| Exercise 1.6]]:
* <i>Rice fading</i>&nbsp; with variance of the Gaussian processes &nbsp; σ2=1&nbsp; and parameter&nbsp; |z0|&nbsp; for the direct path.
+
* Rice fading&nbsp; with variance of the Gaussian processes &nbsp; σ2=1&nbsp; and parameter&nbsp; |z0|&nbsp; for the direct path.
 
* Regarding direct path, we are interested in the parameter values&nbsp; |z0|2=0, 2, 4, 10, 20&nbsp; (see graph).
 
* Regarding direct path, we are interested in the parameter values&nbsp; |z0|2=0, 2, 4, 10, 20&nbsp; (see graph).
* The PDF of the magnitude&nbsp; a(t)=|z(t)|&nbsp; is  
+
* The PDF of the magnitude&nbsp; a(t)=|z(t)|&nbsp; is
:$$f_a(a) = \frac{a}{\sigma^2} \cdot {\rm exp} [ -\frac{a^2 + |z_0|^2}{2\sigma^2}] \cdot {\rm I}_0 \left [ \frac{a \cdot |z_0|}{\sigma^2} \right ]\hspace{0.05cm}.$$
+
:$$f_a(a) ={a}/{\sigma^2} \cdot {\rm e}^{  -{(a^2+ |z_0|^2) }/({2\sigma^2})}\cdot {\rm I}_0 \left [ {a \cdot |z_0|}/{\sigma^2} \right ]\hspace{0.05cm}.$$  
 
* For example, the modified zeroth order Bessel function returns the following values:
 
* For example, the modified zeroth order Bessel function returns the following values:
$${\rm I }_0 (2) = 2.28\hspace{0.05cm},\hspace{0.2cm}{\rm I }_0 (4) = 11.30\hspace{0.05cm},\hspace{0.2cm}{\rm I }_0 (3) = 67.23  
+
:$${\rm I }_0 (2) = 2.28\hspace{0.05cm},\hspace{0.2cm}{\rm I }_0 (4) = 11.30\hspace{0.05cm},\hspace{0.2cm}{\rm I }_0 (3) = 67.23  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
 
* The power (noncentral second moment) of the multiplicative factor&nbsp; |z(t)| is
 
* The power (noncentral second moment) of the multiplicative factor&nbsp; |z(t)| is
$${\rm E}\left [ a^2 \right ] = {\rm E}\left [ |z(t)|^2 \right ] = 2 \cdot \sigma^2 + |z_0|^2
+
:$${\rm E}\left [ a^2 \right ] = {\rm E}\left [ |z(t)|^2 \right ] = 2 \cdot \sigma^2 + |z_0|^2
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
* With&nbsp; z0=0,&nbsp; the <i>Rice fading</i>&nbsp; becomes <i>Rayleigh fading</i>, which is more critical. In this case, the probability that&nbsp; a&nbsp; lies in the yellow-shaded area between&nbsp; 0&nbsp; and&nbsp; 1&nbsp; is
+
* With&nbsp; z0=0,&nbsp; the Rice fading&nbsp; becomes Rayleigh fading, which is more critical.&nbsp; In this case, the probability that&nbsp; a&nbsp; lies in the yellow-shaded area between&nbsp; 0&nbsp; and&nbsp; 1&nbsp; is
$$ {\rm Pr}(a \le 1) = 1 - {\rm e}^{-0.5/\sigma^2}  \approx 0.4
+
:$$ {\rm Pr}(a \le 1) = 1 - {\rm e}^{-0.5/\sigma^2}  \approx 0.4
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
 
In this task the probability&nbsp; {\rm Pr}(a &#8804; 1)&nbsp; for &nbsp;|z_0| &ne; 0&nbsp; is to be approximated. There are two ways to do this, namely:
 
In this task the probability&nbsp; {\rm Pr}(a &#8804; 1)&nbsp; for &nbsp;|z_0| &ne; 0&nbsp; is to be approximated. There are two ways to do this, namely:
* the <i>triangular approximation</i>:
+
* the triangular approximation: &nbsp; ${\rm Pr}(a \le 1) = {1}/{2} \cdot f_a(a=1)  
$${\rm Pr}(a \le 1) = {1}/{2} \cdot f_a(a=1)  
+
  \hspace{0.05cm}.$
  \hspace{0.05cm}.$$
+
* the Gaussian approximation: &nbsp; If &nbsp; |z0|σ, then the Rice distribution can be approximated by a Gaussian distribution with mean&nbsp; |z0|&nbsp; and standard deviation&nbsp; σ&nbsp;.
* the <i> Gaussian approximation</i>: &nbsp; If &nbsp; |z0|σ, then the Rice distribution can be approximated by a Gaussian distribution with mean&nbsp; |z0|&nbsp; and standard deviation&nbsp; σ&nbsp;.
 
  
  
Line 30: Line 29:
  
 
''Notes:''
 
''Notes:''
* This task belongs to chapter&nbsp; [[Mobile_Kommunikation/Nichtfrequenzselektives_Fading_mit_Direktkomponente| Nichtfrequenzselektives Fading mit Direktkomponente]].
+
* This task belongs to chapter&nbsp; [[Mobile_Communications/Non-frequency_selective_fading_with_direct_component| Non-frequency selective fading with direct component]].
* For the numerical solutions of the last subtasks, we recommend the interaction module&nbsp; [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|Complementary Gaussian Error Functions]].
+
* For the numerical solutions of the last subtasks, we recommend the applet&nbsp; [[Applets:Complementary_Gaussian_Error_Functions|Complementary Gaussian Error Functions]].
 
   
 
   
  
  
  
===Questionnaire===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Calculate some PDF values for&nbsp; $|z_0| = 0&nbsp; and&nbsp;\sigma = 2$:
+
{Calculate some PDF values for&nbsp; $|z_0| = 2&nbsp; and&nbsp;\sigma = 1$:
 
|type="{}"}
 
|type="{}"}
 
fa(a=1) = { 0.187 3% }
 
fa(a=1) = { 0.187 3% }
Line 44: Line 43:
 
fa(a=3) = { 0.303 3% }
 
fa(a=3) = { 0.303 3% }
  
{Let &nbsp; |z0|=2 &nbsp; &rArr; &nbsp; |z0|2=4&nbsp; ('''blue curve'''). How big is&nbsp; {\rm Pr}(a &#8804; 1)? Use the&nbsp; '''triangular approximation'''.
+
{Let &nbsp; |z0|=2 &nbsp; &rArr; &nbsp; |z0|2=4&nbsp; '''(blue curve)'''.&nbsp; How big is&nbsp; {\rm Pr}(a &#8804; 1)?&nbsp; Use the&nbsp; '''triangular approximation'''.
 
|type="{}"}
 
|type="{}"}
 
{\rm Pr}(a &#8804; 1)\ = \{ 9.4 3% }  %
 
{\rm Pr}(a &#8804; 1)\ = \{ 9.4 3% }  %
  
{Let &nbsp; |z0|2=2&nbsp; ('''red curve'''). How big is&nbsp; {\rm Pr}(a &#8804; 1)? Use the &nbsp;'''triangular approximation'''.
+
{Let &nbsp; |z0|2=2&nbsp; '''(red curve)'''.&nbsp; How big is&nbsp; {\rm Pr}(a &#8804; 1)?&nbsp; Use the &nbsp;'''triangular approximation'''.
 
|type="{}"}
 
|type="{}"}
 
{\rm Pr}(a &#8804; 1) \ = \{ 17.5 3% }  %
 
{\rm Pr}(a &#8804; 1) \ = \{ 17.5 3% }  %
  
{Let&nbsp; |z0|2=10&nbsp; ('''green curve'''). How big is&nbsp; {\rm Pr}(a &#8804; 1)? Use the&nbsp; '''Gaussian approximation'''.
+
{Let&nbsp; |z0|2=10&nbsp; '''(green curve)'''.&nbsp; How big is&nbsp; {\rm Pr}(a &#8804; 1)?&nbsp; Use the&nbsp; '''Gaussian approximation'''.
 
|type="{}"}
 
|type="{}"}
 
{\rm Pr}(a &#8804; 1) \ = \{ 1.5 3% }  %
 
{\rm Pr}(a &#8804; 1) \ = \{ 1.5 3% }  %
  
{Let&nbsp; |z0|2=20&nbsp; ('''purple curve'''). How big is&nbsp; {\rm Pr}(a &#8804; 1)? Use the &nbsp;'''Gaussian approximation'''.
+
{Let&nbsp; |z0|2=20&nbsp; '''(purple curve)'''.&nbsp; How big is&nbsp; {\rm Pr}(a &#8804; 1)?&nbsp; Use the &nbsp;'''Gaussian approximation'''.
 
|type="{}"}
 
|type="{}"}
 
{\rm Pr}(a &#8804; 1) \ = \{ 0.02 3% }  %
 
{\rm Pr}(a &#8804; 1) \ = \{ 0.02 3% }  %
 
</quiz>
 
</quiz>
  
===Sample solution===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; With |z0|=2 and $\sigma = 2$ the Rice PDF is
+
'''(1)'''&nbsp; With&nbsp; |z0|=2&nbsp; and&nbsp; $\sigma = 1$&nbsp; the Rice PDF is
fa(a)=aexp[a2+42]I0(2a).
+
:fa(a)=aexp[a2+42]I0(2a).
  
 
*This gives the desired values:
 
*This gives the desired values:
Line 75: Line 74:
  
  
'''(2)'''&nbsp; With the result of the subtask '''(1)''' &nbsp; &rArr; &nbsp; fa(a=1)=0.187 the triangle approximation gives
+
'''(2)'''&nbsp; With the result of the subtask&nbsp; '''(1)''' &nbsp; &rArr; &nbsp; fa(a=1)=0.187&nbsp; the triangle approximation gives
Pr(a1)=1/20.18719.4%_.
+
:Pr(a1)=1/20.18719.4%_.
 +
 
 +
*This result will be a bit too large, because the blue curve is below the connecting line from&nbsp; (0,0)&nbsp; to&nbsp; (1,0.187) &nbsp; &rArr; &nbsp; convex curve.
  
*This result will be a bit too large, because the blue curve is below the connecting line from (0,0) to (1,0.187) &nbsp; &rArr; &nbsp; convex curve.
 
  
'''(3)'''&nbsp; For the red curve the WDF&ndash;value fa(a=1)0.35 can be read from the graph:
+
'''(3)'''&nbsp; For the red curve the PDF value&nbsp; fa(a=1)0.35&nbsp; can be read from the graph:
Pr(a1)=120.3517.5%_.
+
:Pr(a1)=120.3517.5%_.
  
*The actual probability value will be slightly larger because the red curve is concave in the range between 0 and 1.
+
*The actual probability value will be slightly larger because the red curve is concave in the range between&nbsp; 0&nbsp; and&nbsp; 1.
  
  
  
'''(4)'''&nbsp; The Gaussian approximation states that one can approximate the Rice distribution by a Gaussian distribution with mean |z0|=10=3.16 and standard deviation σ=1 if the quotient |z0|/σ is sufficiently large. Then we have
+
'''(4)'''&nbsp; The Gaussian approximation states that one can approximate the Rice distribution by a Gaussian distribution with mean&nbsp; |z0|=10=3.16&nbsp; and standard deviation&nbsp; σ=1&nbsp; if the quotient&nbsp; |z0|/σ &nbsp; is sufficiently large.&nbsp; Then we have
Pr(a1)Pr(g2.16)=Q(2.16)1.5%_.
+
:Pr(a1)Pr(g2.16)=Q(2.16)1.5%_.
  
*Here, g denotes a Gaussian distributed random variable with mean 0 and standard deviation σ=1.  
+
*Here,&nbsp; g&nbsp; denotes a Gaussian distributed random variable with mean&nbsp; 0&nbsp; and standard deviation&nbsp; σ=1.  
*The numerical value was determined with the specified interactive [[Applets:QFunction|Applet]].
+
*The numerical value was determined with the specified interactive applet&nbsp; [[Applets:Complementary_Gaussian_Error_Functions|Complementary Gaussian Error Functions]].
  
  
 
<i>Note:</i> &nbsp; The Gaussian approximation is certainly associated with a certain error here:  
 
<i>Note:</i> &nbsp; The Gaussian approximation is certainly associated with a certain error here:  
*From the graph you can see that the average value of the green curve is not a=3.16 , but rather 3.31.  
+
*From the graph you can see that the average value of the green curve is not&nbsp; a=3.16,&nbsp; but rather&nbsp; 3.31.  
*Then the power of the Gaussian approximation (3.312+12=12) is exactly the same as that of the Rice distribution:
+
*Then the power of the Gaussian approximation&nbsp; (3.312+12=12)&nbsp; is exactly the same as that of the Rice distribution:
 
:|z0|2+2σ2=10+2=12.
 
:|z0|2+2σ2=10+2=12.
  
  
'''(5)'''&nbsp; Using the same calculation method, replace the Rice PDF with a Gaussian PDF with mean value $\sqrt{20} \approx $4.47 and standard deviation σ=1 and you get
+
'''(5)'''&nbsp; Using the same calculation method, replace the Rice PDF with a Gaussian PDF with mean value&nbsp; $\sqrt{20} \approx 4.47$&nbsp; and standard deviation&nbsp; $\sigma = 1$&nbsp; and you get
Pr(a1)Pr(g3.37)=Q(3.37)0.04%.
+
:Pr(a1)Pr(g3.37)=Q(3.37)0.04%.
  
*If one assumes the equal power Gaussian distribution (see the note to the last subtask), the mean value is mg=214.58, and the probability would then be  
+
*If one assumes the equal power Gaussian distribution&nbsp; (see the note to the last subtask), the mean value is&nbsp; mg=214.58,&nbsp; and the probability would then be  
Pr(a1)Q(3.58)0.02%_.
+
:Pr(a1)Q(3.58)0.02%_.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 110: Line 110:
  
  
[[Category:Exercises for Mobile Communications|^1.4 Fading with Direct Path Component^]]
+
[[Category:Mobile Communications: Exercises|^1.4 Fading with Direct Path Component^]]

Latest revision as of 10:19, 7 July 2021

Rice fading for different values of  |z0|2

As you can see in the diagram, we consider the same scenario as in  Exercise 1.6:

  • Rice fading  with variance of the Gaussian processes   σ2=1  and parameter  |z0|  for the direct path.
  • Regarding direct path, we are interested in the parameter values  |z0|2=0, 2, 4, 10, 20  (see graph).
  • The PDF of the magnitude  a(t)=|z(t)|  is
fa(a)=a/σ2e(a2+|z0|2)/(2σ2)I0[a|z0|/σ2].
  • For example, the modified zeroth order Bessel function returns the following values:
I0(2)=2.28,I0(4)=11.30,I0(3)=67.23.
  • The power (noncentral second moment) of the multiplicative factor  |z(t)| is
E[a2]=E[|z(t)|2]=2σ2+|z0|2.
  • With  z0=0,  the Rice fading  becomes Rayleigh fading, which is more critical.  In this case, the probability that  a  lies in the yellow-shaded area between  0  and  1  is
Pr(a1)=1e0.5/σ20.4.

In this task the probability  Pr(a1)  for  |z0|0  is to be approximated. There are two ways to do this, namely:

  • the triangular approximation:   Pr(a1)=1/2fa(a=1).
  • the Gaussian approximation:   If   |z0|σ, then the Rice distribution can be approximated by a Gaussian distribution with mean  |z0|  and standard deviation  σ .




Notes:



Questions

1

Calculate some PDF values for  |z0|=2  and  σ=1:

fa(a=1) = 

fa(a=2) = 

fa(a=3) = 

2

Let   |z0|=2   ⇒   |z0|2=4  (blue curve).  How big is  Pr(a1)?  Use the  triangular approximation.

Pr(a1) = 

 %

3

Let   |z0|2=2  (red curve).  How big is  Pr(a1)?  Use the  triangular approximation.

Pr(a1) = 

 %

4

Let  |z0|2=10  (green curve).  How big is  Pr(a1)?  Use the  Gaussian approximation.

Pr(a1) = 

 %

5

Let  |z0|2=20  (purple curve).  How big is  Pr(a1)?  Use the  Gaussian approximation.

Pr(a1) = 

 %


Solution

(1)  With  |z0|=2  and  σ=1  the Rice PDF is

fa(a)=aexp[a2+42]I0(2a).
  • This gives the desired values:
fa(a=1) = 1e2.5I0(2)=0.0822.28=0.187_,
fa(a=2) = 2e4I0(4)=20.018311.3=0.414_,
fa(a=3) = 3e6.5I0(6)=30.001567.23=0.303_.
  • The results fit well with the blue curve on the graph.


(2)  With the result of the subtask  (1)   ⇒   fa(a=1)=0.187  the triangle approximation gives

Pr(a1)=1/20.18719.4%_.
  • This result will be a bit too large, because the blue curve is below the connecting line from  (0,0)  to  (1,0.187)   ⇒   convex curve.


(3)  For the red curve the PDF value  fa(a=1)0.35  can be read from the graph:

Pr(a1)=120.3517.5%_.
  • The actual probability value will be slightly larger because the red curve is concave in the range between  0  and  1.


(4)  The Gaussian approximation states that one can approximate the Rice distribution by a Gaussian distribution with mean  |z0|=10=3.16  and standard deviation  σ=1  if the quotient  |z0|/σ   is sufficiently large.  Then we have

Pr(a1)Pr(g2.16)=Q(2.16)1.5%_.
  • Here,  g  denotes a Gaussian distributed random variable with mean  0  and standard deviation  σ=1.
  • The numerical value was determined with the specified interactive applet  Complementary Gaussian Error Functions.


Note:   The Gaussian approximation is certainly associated with a certain error here:

  • From the graph you can see that the average value of the green curve is not  a=3.16,  but rather  3.31.
  • Then the power of the Gaussian approximation  (3.312+12=12)  is exactly the same as that of the Rice distribution:
|z0|2+2σ2=10+2=12.


(5)  Using the same calculation method, replace the Rice PDF with a Gaussian PDF with mean value  204.47  and standard deviation  σ=1  and you get

Pr(a1)Pr(g3.37)=Q(3.37)0.04%.
  • If one assumes the equal power Gaussian distribution  (see the note to the last subtask), the mean value is  mg=214.58,  and the probability would then be
Pr(a1)Q(3.58)0.02%_.