Difference between revisions of "Aufgaben:Exercise 2.4Z: Triangular Function"

From LNTwww
m (Text replacement - "[[Signaldarstellung/" to "[[Signal_Representation/")
 
(13 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Signaldarstellung/Fourierreihe
+
{{quiz-Header|Buchseite=Signal_Representation/Fourier_Series
 
}}
 
}}
  
[[File:P_ID317__Sig_Z_2_4.png|right|frame|Vorgegebenes Dreiecksignal]]
+
[[File:P_ID317__Sig_Z_2_4.png|right|frame|Preset triangular signal]]
Wir betrachten das mit  $T_0$  periodische Signal  ${x(t)}$  entsprechend nebenstehender Skizze, wobei für den zweiten Signalparameter   $T_1 ≤ T_0/2$  gelten soll. Dieses Signal ist dimensionslos und auf  $1$  begrenzt.
+
We consider the signal  ${x(t)}$  with  $T_0$  according to the adjacent sketch, where the second signal parameter   $T_1 ≤ T_0/2$  is to apply. This signal is dimensionless and limited to  $1$ .
  
In der Teilaufgabe  '''(3)'''  wird die auf nur  $N = 3$  Koeffizienten basierende Fourierreihendarstellung  $x_3(t)$  verwendet.
+
In subtask  '''(3)'''  the Fourier series representation  $x_3(t)$ based on only  $N = 3$  coefficients is used.
  
Die Differenz zwischen der abgebrochenen Fourierreihe und dem tatsächlichen Signal lautet:
+
The difference between the truncated Fourier series and the actual signal is:
 
:$$\varepsilon_3(t)=x_3(t)-x(t).$$
 
:$$\varepsilon_3(t)=x_3(t)-x(t).$$
  
Line 17: Line 17:
  
  
''Hinweise:''  
+
''Hints:''  
*Die Aufgabe gehört zum Kapitel  [[Signal_Representation/Fourierreihe|Fourierreihe]].
+
*This exercise belongs to the chapter  [[Signal_Representation/Fourier_Series|Fourier Series]].
*Eine kompakte Zusammenfassung der Thematik finden Sie in den beiden Lernvideos
+
*You can find a compact summary of the topic in the two (German language) learning videos
::[[Zur_Berechnung_der_Fourierkoeffizienten_(Lernvideo)|Zur Berechnung der Fourierkoeffizienten]]  
+
::[[Zur_Berechnung_der_Fourierkoeffizienten_(Lernvideo)|Zur Berechnung der Fourierkoeffizienten]]   ⇒   "To calculate the Fourier coefficients"
:: [[Eigenschaften_der_Fourierreihendarstellung_(Lernvideo)|Eigenschaften der Fourierreihendarstellung]]
+
:: [[Eigenschaften_der_Fourierreihendarstellung_(Lernvideo)|Eigenschaften der Fourierreihendarstellung]]   ⇒    "Properties of the Fourier series representation"
 
   
 
   
*Zur Lösung der Aufgabe können Sie das folgende bestimmte Integral benutzen  $(n$ sei ganzzahlig$)$:
+
*To solve the problem, you can use the following definite integral   (let $n$ be an integer$)$:
 
   
 
   
 
:$$\int u \cdot \cos(au)\,{\rm d}u  =  \frac{\cos(au)}{a^2} + \frac{u \cdot \sin(au)}{a}.$$
 
:$$\int u \cdot \cos(au)\,{\rm d}u  =  \frac{\cos(au)}{a^2} + \frac{u \cdot \sin(au)}{a}.$$
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der folgenden Aussagen treffen für alle zulässigen&nbsp; $T_0$&nbsp; und&nbsp; $T_1$&nbsp; zu?
+
{Which of the following statements are true for all permissible&nbsp; $T_0$&nbsp; and&nbsp; $T_1$&nbsp;?
 
|type="[]"}
 
|type="[]"}
+ Der Gleichanteil beträgt&nbsp; $A_0 = T_1/T_0$.
+
+ The DC coefficient is&nbsp; $A_0 = T_1/T_0$.
+ Alle Sinuskoeffizienten&nbsp; $B_n$&nbsp; sind Null.
+
+ All sine coefficients&nbsp; $B_n$&nbsp; are zero.
- Alle Cosinuskoeffizienten&nbsp; $A_n$&nbsp; mit geradzahligem&nbsp; $n$&nbsp; sind Null.
+
- All cosine coefficients&nbsp; $A_n$&nbsp; with even &nbsp; $n$&nbsp; are zero.
  
  
{Berechnen Sie die Fourierkoeffizienten&nbsp; $A_n$&nbsp; in allgemeiner Form. Welche Werte ergeben sich für&nbsp; $A_1$,&nbsp; $A_2$&nbsp; und&nbsp; $A_3$&nbsp; mit&nbsp; $T_1/T_0 = 0.25$?
+
{Calculate the Fourier coefficients&nbsp; $A_n$&nbsp; in general form.&nbsp; What are the values for&nbsp; $A_1$,&nbsp; $A_2$&nbsp; and&nbsp; $A_3$&nbsp; with&nbsp; $T_1/T_0 = 0.25$?
 
|type="{}"}
 
|type="{}"}
 
$A_1\ = \ $ { 0.405 3% }
 
$A_1\ = \ $ { 0.405 3% }
Line 45: Line 45:
  
  
{Schreiben Sie die Funktion&nbsp; ${x(t)}$&nbsp; als Fourierreihe und brechen Sie diese nach&nbsp; $N = 3$&nbsp; Koeffizienten ab. Wie groß ist der Fehler&nbsp; $\varepsilon_3(t = 0)$?
+
{Write the function&nbsp; ${x(t)}$&nbsp; as a Fourier series and break it off after&nbsp; $N = 3$&nbsp; coefficients.&nbsp; How large is the error &nbsp; $\varepsilon_3(t = 0)$?
 
|type="{}"}
 
|type="{}"}
 
$\varepsilon_3(t = 0)\ = \ $  { -0.11--0.09 }
 
$\varepsilon_3(t = 0)\ = \ $  { -0.11--0.09 }
Line 53: Line 53:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  Richtig sind die <u>Lösungsvorschläge 1 und 2</u>:
+
'''(1)'''&nbsp;  Proposed <u>solutions 1 and 2</u> are correct:
*Der Gleichanteil ist tatsächlich&nbsp; $T_1/T_0$. Da&nbsp; ${x(t)}$&nbsp; eine gerade Funktion ist, sind alle Sinuskoeffizienten&nbsp; $B_n = 0$.  
+
*The DC coefficient is actually&nbsp; $T_1/T_0$.&nbsp; Since&nbsp; ${x(t)}$&nbsp; is an even function, all sine coefficients&nbsp; $B_n = 0$.  
*Die geradzahligen Cosinuskoeffizienten&nbsp; $A_{2n}$&nbsp; verschwinden nur dann, wenn&nbsp; $T_1 = T_0/2$&nbsp; ist.
+
*The even cosine coefficients&nbsp; $A_{2n}$&nbsp; only disappear if &nbsp; $T_1 = T_0/2$.&nbsp;  
*In diesem Fall ist die Bedingung&nbsp; ${x(t)} = 2A_0 - x(t - T_0/2)$&nbsp; erfüllt $($mit $A_0 = 0.5)$.  
+
*In this case the condition&nbsp; ${x(t)} = 2A_0 - x(t - T_0/2)$&nbsp; is fulfilled&nbsp; $($with $A_0 = 0.5)$.  
  
  
  
'''(2)'''&nbsp; Unter Ausnutzung der Symmetrieeigenschaft&nbsp; ${x(-t)} = {x(t)}$&nbsp; erhält man:
+
'''(2)'''&nbsp; Taking advantage of the symmetry property&nbsp; ${x(-t)} = {x(t)}$&nbsp; one obtains:
 
:$$A_n=2 \cdot \frac{2}{T_0}\cdot \hspace{-0.1cm}\int_0^{T_1}(1-\frac{t}{T_1})\cos(2\pi n\frac{t}{T_0})\, {\rm d}t.$$
 
:$$A_n=2 \cdot \frac{2}{T_0}\cdot \hspace{-0.1cm}\int_0^{T_1}(1-\frac{t}{T_1})\cos(2\pi n\frac{t}{T_0})\, {\rm d}t.$$
*Dies führt zu zwei Teilintegralen&nbsp; $I_1$&nbsp; und&nbsp; $I_2$. Das erste lautet:
+
*This leads to two partial integrals&nbsp; $I_1$&nbsp; and&nbsp; $I_2$. The first is:
 
:$$I_1=\frac{4}{T_0} \cdot \hspace{-0.1cm} \int_0^{T_1}\cos(2\pi n\frac{t}{T_0})\,{\rm d}t=\frac{2}{\pi n}\sin(2\pi n\frac{T_1}{T_0}).$$
 
:$$I_1=\frac{4}{T_0} \cdot \hspace{-0.1cm} \int_0^{T_1}\cos(2\pi n\frac{t}{T_0})\,{\rm d}t=\frac{2}{\pi n}\sin(2\pi n\frac{T_1}{T_0}).$$
*Für das zweite Integral gilt mit dem Integral auf der Angabenseite:
+
*For the second integral, with the integral on the statement side:
 
:$$I_2=\frac{-4}{T_0\cdot T_1}\cdot \hspace{-0.1cm}\int_0^{T_1}t\cdot\cos(2\pi n\frac{t}{T_0})\,{\rm d}t=\frac{-4}{T_0\cdot T_1}\cdot \hspace{0.1cm}\left[\frac{T^2_0 \cdot \cos(2\pi nt/T_0)}{4\pi^2n^2}+\frac{T_0 \cdot t \cdot \sin(2\pi nt/T_0)}{2\pi n}\right]^{T_1}_0.$$
 
:$$I_2=\frac{-4}{T_0\cdot T_1}\cdot \hspace{-0.1cm}\int_0^{T_1}t\cdot\cos(2\pi n\frac{t}{T_0})\,{\rm d}t=\frac{-4}{T_0\cdot T_1}\cdot \hspace{0.1cm}\left[\frac{T^2_0 \cdot \cos(2\pi nt/T_0)}{4\pi^2n^2}+\frac{T_0 \cdot t \cdot \sin(2\pi nt/T_0)}{2\pi n}\right]^{T_1}_0.$$
*Dieses letzte Integral kann wie folgt zusammengefasst werden:
+
*This last integral can be summarised as follows:
 
:$$I_2=\frac{-\cos(2\pi nT_1/T_0)}{\pi^2 n^2T_1/T_0}+\frac{1}{\pi^2 n^2 T_1/T_0}-I_1.$$
 
:$$I_2=\frac{-\cos(2\pi nT_1/T_0)}{\pi^2 n^2T_1/T_0}+\frac{1}{\pi^2 n^2 T_1/T_0}-I_1.$$
*Daraus folgt mit&nbsp; $1 - \cos(2\alpha) = 2 \cdot \sin^2(\alpha)$:
+
*From this follows with&nbsp; $1 - \cos(2\alpha) = 2 \cdot \sin^2(\alpha)$:
 
:$$A_n=I_1+I_2=\frac{1-\cos(2\pi nT_1/T_0)}{\pi^2 n^2 T_1/T_0}=\frac{2\sin^2 (\pi nT_1/T_0)}{\pi^2 n^2 T_1/T_0}.$$
 
:$$A_n=I_1+I_2=\frac{1-\cos(2\pi nT_1/T_0)}{\pi^2 n^2 T_1/T_0}=\frac{2\sin^2 (\pi nT_1/T_0)}{\pi^2 n^2 T_1/T_0}.$$
*Für&nbsp; $T_1/T_0 = 0.25$&nbsp; erhält man:
+
*For&nbsp; $T_1/T_0 = 0.25$&nbsp; one obtains:
 
:$$A_n=\frac{8\sin^2 (\pi n/4)}{\pi^2 n^2}.$$
 
:$$A_n=\frac{8\sin^2 (\pi n/4)}{\pi^2 n^2}.$$
*Insbesondere gilt:
+
*In particular:
 
:$$A_1=\frac{8}{\pi^2}\sin^2(\pi/4)=\frac{4}{\pi^2}\hspace{0.15cm}\underline{\approx 0.405},\hspace{0.5cm}
 
:$$A_1=\frac{8}{\pi^2}\sin^2(\pi/4)=\frac{4}{\pi^2}\hspace{0.15cm}\underline{\approx 0.405},\hspace{0.5cm}
 
A_2=\frac{2}{\pi^2}\sin^2(\pi/2)=\frac{2}{\pi^2}\hspace{0.15cm}\underline{\approx 0.202},\hspace{0.5cm}
 
A_2=\frac{2}{\pi^2}\sin^2(\pi/2)=\frac{2}{\pi^2}\hspace{0.15cm}\underline{\approx 0.202},\hspace{0.5cm}
Line 80: Line 80:
  
  
'''(3)'''&nbsp;  Es gilt:
+
'''(3)'''&nbsp;  It holds:
 
:$$x_3(t)=\frac{1}{4}+\frac{4}{\pi^2}\left[\cos(\omega_0 t)+\frac{1}{2}\cos(2\omega_0 t)+\frac{1}{9}\cos(3\omega_0 t)\right].$$
 
:$$x_3(t)=\frac{1}{4}+\frac{4}{\pi^2}\left[\cos(\omega_0 t)+\frac{1}{2}\cos(2\omega_0 t)+\frac{1}{9}\cos(3\omega_0 t)\right].$$
*Zum Zeitpunkt&nbsp; $t = 0$&nbsp; ergibt sich hieraus:
+
*At time&nbsp; $t = 0$&nbsp; this gives:
 
:$$x_3(t=0)=\frac{1}{4}+\frac{4}{\pi^2}\cdot \frac{29}{18}\approx 0.9 \hspace{0.5cm}\Rightarrow  \hspace{0.5cm}\varepsilon_3(t=0)=x_3(t=0)-x(t=0)\hspace{0.15cm}\underline{=-0.1}.$$
 
:$$x_3(t=0)=\frac{1}{4}+\frac{4}{\pi^2}\cdot \frac{29}{18}\approx 0.9 \hspace{0.5cm}\Rightarrow  \hspace{0.5cm}\varepsilon_3(t=0)=x_3(t=0)-x(t=0)\hspace{0.15cm}\underline{=-0.1}.$$
* Für die Zeit&nbsp; $t = 0$&nbsp; und bei Vielfachen der Periodendauer&nbsp; $T_0$&nbsp; (jeweils Spitze der Dreiecksfunktionen)&nbsp; ist die Abweichung betragsmäßig am größten.
+
* For the time&nbsp; $t = 0$&nbsp; and for multiples of the period&nbsp; $T_0$&nbsp; $($peak of the triangular functions in each case$)$&nbsp; the deviation is greatest in terms of magnitude.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Signaldarstellung|^2. Periodische Signale^]]
+
[[Category:Signal Representation: Exercises|^2.4 Fourier Series^]]

Latest revision as of 13:48, 15 April 2021

Preset triangular signal

We consider the signal  ${x(t)}$  with  $T_0$  according to the adjacent sketch, where the second signal parameter  $T_1 ≤ T_0/2$  is to apply. This signal is dimensionless and limited to  $1$ .

In subtask  (3)  the Fourier series representation  $x_3(t)$ based on only  $N = 3$  coefficients is used.

The difference between the truncated Fourier series and the actual signal is:

$$\varepsilon_3(t)=x_3(t)-x(t).$$




Hints:

  • This exercise belongs to the chapter  Fourier Series.
  • You can find a compact summary of the topic in the two (German language) learning videos
Zur Berechnung der Fourierkoeffizienten   ⇒   "To calculate the Fourier coefficients"
Eigenschaften der Fourierreihendarstellung   ⇒   "Properties of the Fourier series representation"
  • To solve the problem, you can use the following definite integral   (let $n$ be an integer$)$:
$$\int u \cdot \cos(au)\,{\rm d}u = \frac{\cos(au)}{a^2} + \frac{u \cdot \sin(au)}{a}.$$


Questions

1

Which of the following statements are true for all permissible  $T_0$  and  $T_1$ ?

The DC coefficient is  $A_0 = T_1/T_0$.
All sine coefficients  $B_n$  are zero.
All cosine coefficients  $A_n$  with even   $n$  are zero.

2

Calculate the Fourier coefficients  $A_n$  in general form.  What are the values for  $A_1$,  $A_2$  and  $A_3$  with  $T_1/T_0 = 0.25$?

$A_1\ = \ $

$A_2\ = \ $

$A_3\ = \ $

3

Write the function  ${x(t)}$  as a Fourier series and break it off after  $N = 3$  coefficients.  How large is the error   $\varepsilon_3(t = 0)$?

$\varepsilon_3(t = 0)\ = \ $


Solution

(1)  Proposed solutions 1 and 2 are correct:

  • The DC coefficient is actually  $T_1/T_0$.  Since  ${x(t)}$  is an even function, all sine coefficients  $B_n = 0$.
  • The even cosine coefficients  $A_{2n}$  only disappear if   $T_1 = T_0/2$. 
  • In this case the condition  ${x(t)} = 2A_0 - x(t - T_0/2)$  is fulfilled  $($with $A_0 = 0.5)$.


(2)  Taking advantage of the symmetry property  ${x(-t)} = {x(t)}$  one obtains:

$$A_n=2 \cdot \frac{2}{T_0}\cdot \hspace{-0.1cm}\int_0^{T_1}(1-\frac{t}{T_1})\cos(2\pi n\frac{t}{T_0})\, {\rm d}t.$$
  • This leads to two partial integrals  $I_1$  and  $I_2$. The first is:
$$I_1=\frac{4}{T_0} \cdot \hspace{-0.1cm} \int_0^{T_1}\cos(2\pi n\frac{t}{T_0})\,{\rm d}t=\frac{2}{\pi n}\sin(2\pi n\frac{T_1}{T_0}).$$
  • For the second integral, with the integral on the statement side:
$$I_2=\frac{-4}{T_0\cdot T_1}\cdot \hspace{-0.1cm}\int_0^{T_1}t\cdot\cos(2\pi n\frac{t}{T_0})\,{\rm d}t=\frac{-4}{T_0\cdot T_1}\cdot \hspace{0.1cm}\left[\frac{T^2_0 \cdot \cos(2\pi nt/T_0)}{4\pi^2n^2}+\frac{T_0 \cdot t \cdot \sin(2\pi nt/T_0)}{2\pi n}\right]^{T_1}_0.$$
  • This last integral can be summarised as follows:
$$I_2=\frac{-\cos(2\pi nT_1/T_0)}{\pi^2 n^2T_1/T_0}+\frac{1}{\pi^2 n^2 T_1/T_0}-I_1.$$
  • From this follows with  $1 - \cos(2\alpha) = 2 \cdot \sin^2(\alpha)$:
$$A_n=I_1+I_2=\frac{1-\cos(2\pi nT_1/T_0)}{\pi^2 n^2 T_1/T_0}=\frac{2\sin^2 (\pi nT_1/T_0)}{\pi^2 n^2 T_1/T_0}.$$
  • For  $T_1/T_0 = 0.25$  one obtains:
$$A_n=\frac{8\sin^2 (\pi n/4)}{\pi^2 n^2}.$$
  • In particular:
$$A_1=\frac{8}{\pi^2}\sin^2(\pi/4)=\frac{4}{\pi^2}\hspace{0.15cm}\underline{\approx 0.405},\hspace{0.5cm} A_2=\frac{2}{\pi^2}\sin^2(\pi/2)=\frac{2}{\pi^2}\hspace{0.15cm}\underline{\approx 0.202},\hspace{0.5cm} A_3=\frac{8}{9\pi^2}\sin^2(3\pi/4)=\frac{4}{9\pi^2}\hspace{0.15cm}\underline{\approx 0.045}.$$


(3)  It holds:

$$x_3(t)=\frac{1}{4}+\frac{4}{\pi^2}\left[\cos(\omega_0 t)+\frac{1}{2}\cos(2\omega_0 t)+\frac{1}{9}\cos(3\omega_0 t)\right].$$
  • At time  $t = 0$  this gives:
$$x_3(t=0)=\frac{1}{4}+\frac{4}{\pi^2}\cdot \frac{29}{18}\approx 0.9 \hspace{0.5cm}\Rightarrow \hspace{0.5cm}\varepsilon_3(t=0)=x_3(t=0)-x(t=0)\hspace{0.15cm}\underline{=-0.1}.$$
  • For the time  $t = 0$  and for multiples of the period  $T_0$  $($peak of the triangular functions in each case$)$  the deviation is greatest in terms of magnitude.