Difference between revisions of "Aufgaben:Exercise 2.2Z: Non-Linearities"
From LNTwww
m (Text replacement - "[[Signaldarstellung/" to "[[Signal_Representation/") |
|||
(12 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Signal Representation/General Description |
}} | }} | ||
− | [[File:P_ID322__Sig_Z_2_2.png|right|frame| | + | [[File:P_ID322__Sig_Z_2_2.png|right|frame|DC component after non-linearities]] |
− | + | We start from the triangular signal ${x(t)}$ according to the figure above. | |
− | + | *If we apply this signal to an amplitude limiter, we get the signal | |
− | :$$y(t)=\left\{ {x(t)\atop \rm 1V}{\hspace{0.5cm} {\rm | + | :$$y(t)=\left\{ {x(t)\atop \rm 1V}{\hspace{0.5cm} {\rm for}\quad x(t)\le \rm 1V \atop {\rm else}}\right..$$ |
− | + | *Another non-linearity provides the signal | |
:$$z(t)=x^2(t).$$ | :$$z(t)=x^2(t).$$ | ||
− | + | The DC signal components are designated $x_0$, $y_0$ and $z_0$ in the following. | |
Line 17: | Line 17: | ||
− | + | ''Hint:'' | |
− | + | *This task belongs to chapter [[Signal_Representation/Direct_Current_Signal_-_Limit_Case_of_a_Periodic_Signal|Direct Current Signal - Limit Case of a Periodic Signal]]. | |
− | '' | ||
− | * | ||
− | + | ===Questions=== | |
− | |||
− | |||
− | === | ||
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Determine the DC signal component $x_0$ of the signal ${x(t)}$. |
|type="{}"} | |type="{}"} | ||
$x_0\ = \ $ { 1 3% } $\text{V}$ | $x_0\ = \ $ { 1 3% } $\text{V}$ | ||
− | { | + | {Determine the DC signal component $y_0$ of the signal ${y(t)}$. |
|type="{}"} | |type="{}"} | ||
$y_0\ = \ $ { 0.75 3% } $\text{V}$ | $y_0\ = \ $ { 0.75 3% } $\text{V}$ | ||
− | { | + | {Determine the DC signal component $z_0$ of the signal ${z(t)}$. |
|type="{}"} | |type="{}"} | ||
$z_0\ = \ $ { 1.333 3% } $\text{V}^2$ | $z_0\ = \ $ { 1.333 3% } $\text{V}^2$ | ||
Line 48: | Line 43: | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' The DC signal $x_0$ is the mean of signal ${x(t)}$. Averaging over a period duration $T_0 = 1 \, \text{ms}$ is sufficient. One obtains: |
:$$x_0=\frac{1}{T_0}\int^{T_0}_0 x(t)\,{\rm d} t \hspace{0.15cm}\underline{=1\,\rm V}.$$ | :$$x_0=\frac{1}{T_0}\int^{T_0}_0 x(t)\,{\rm d} t \hspace{0.15cm}\underline{=1\,\rm V}.$$ | ||
− | '''(2)''' In | + | '''(2)''' In half the time ${y(t)} = 1\, \text{V}$, in the other half is is between $0$ and $1\, \text{V}$ with the mean at $0.5 \,\text{V}$ ⇒ $y_0 \hspace{0.15cm}\underline{= 0.75 \,\text{V}}$. |
− | '''(3)''' | + | '''(3)''' Due to the periodicity and symmetry, averaging in the range from $0$ bis $T_0/2$ is sufficient. |
− | * | + | * With the corresponding characteristic curve, the following then applies: |
:$$z_0=\frac{1}{T_0/2}\int^{T_0/2}_0 x^2(t)\,{\rm d}t=\frac{4\rm V^2}{T_0/2}\int^{T_0/2}_0 ({2t}/{T_0})^2\, {\rm d}t={4}/{3}\rm \;V^2 | :$$z_0=\frac{1}{T_0/2}\int^{T_0/2}_0 x^2(t)\,{\rm d}t=\frac{4\rm V^2}{T_0/2}\int^{T_0/2}_0 ({2t}/{T_0})^2\, {\rm d}t={4}/{3}\rm \;V^2 | ||
\hspace{0.15cm}\underline{\approx1.333\rm \;V^2}.$$ | \hspace{0.15cm}\underline{\approx1.333\rm \;V^2}.$$ | ||
Line 67: | Line 62: | ||
− | [[Category: | + | [[Category:Signal Representation: Exercises|^2.2 Direct Current Signal^]] |
Latest revision as of 12:24, 14 April 2021
We start from the triangular signal ${x(t)}$ according to the figure above.
- If we apply this signal to an amplitude limiter, we get the signal
- $$y(t)=\left\{ {x(t)\atop \rm 1V}{\hspace{0.5cm} {\rm for}\quad x(t)\le \rm 1V \atop {\rm else}}\right..$$
- Another non-linearity provides the signal
- $$z(t)=x^2(t).$$
The DC signal components are designated $x_0$, $y_0$ and $z_0$ in the following.
Hint:
- This task belongs to chapter Direct Current Signal - Limit Case of a Periodic Signal.
Questions
Solution
(1) The DC signal $x_0$ is the mean of signal ${x(t)}$. Averaging over a period duration $T_0 = 1 \, \text{ms}$ is sufficient. One obtains:
- $$x_0=\frac{1}{T_0}\int^{T_0}_0 x(t)\,{\rm d} t \hspace{0.15cm}\underline{=1\,\rm V}.$$
(2) In half the time ${y(t)} = 1\, \text{V}$, in the other half is is between $0$ and $1\, \text{V}$ with the mean at $0.5 \,\text{V}$ ⇒ $y_0 \hspace{0.15cm}\underline{= 0.75 \,\text{V}}$.
(3) Due to the periodicity and symmetry, averaging in the range from $0$ bis $T_0/2$ is sufficient.
- With the corresponding characteristic curve, the following then applies:
- $$z_0=\frac{1}{T_0/2}\int^{T_0/2}_0 x^2(t)\,{\rm d}t=\frac{4\rm V^2}{T_0/2}\int^{T_0/2}_0 ({2t}/{T_0})^2\, {\rm d}t={4}/{3}\rm \;V^2 \hspace{0.15cm}\underline{\approx1.333\rm \;V^2}.$$